
Electronic Communications of the EASST
Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools

(GraBaTs 2006)

Specifying Distributed Graph Transformation Systems

Ulrike Ranger, Erhard Schultchen, and Christof Mosler

12 pages

Guest Editors: Albert Zündorf, Daniel Varró
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Specifying Distributed Graph Transformation Systems

Ulrike Ranger1, Erhard Schultchen1, and Christof Mosler1

1 RWTH Aachen University, Department of Computer Science 3,
Ahornstrasse 55, 52074 Aachen, Germany

[ranger|erhard|christof]@i3.informatik.rwth-aachen.de

Abstract: Graph transformation systems simplify software development by mod-
eling the system in a visual and declarative language. Despite their expressive-
ness, they fail to support specifiers in modeling distributed systems. As software
projects increasingly demand support for distribution, we aim to fill this gap for
graph transformation systems. With our concepts, specifiers can visually specify
graph transformations affecting multiple applications simultoniously. Based on this
visual specification, the corresponding distribution to the different applications is
automatically derived. We introduce our concepts in general and demonstrate their
applicability by means of an example.

Keywords: Graph Transformations, Distributed Systems, Visual Specification

1 Introduction

Graph transformation systems (GTS) provide suitable means to model complex applications vi-
sually and in a declarative way. By declarative, we understand to model what an application
should do instead of how the result should be achieved. PROGRES [Sch91] is one representative
of these systems and has been applied successfully in various large projects from different do-
mains. However, PROGRES in particular and graph transformation systems in general provide
only little support for modeling distributed systems. As modern large-scaled software projects
often require the interaction of separated applications, this lack constitutes a severe drawback of
GTS.

In common approaches for distributed systems, the coupling is modeled using textual elements
like remote procedure calls or messages. This is even true for visual programming environments
like Fujaba [FNTZ00]. E.g. [Tic02] describes the modeling of component-based systems using
remote procedure calls. However, no support for modeling distributed graph transformations in
a visual way is provided.

In our project, we develop concepts to model distributed systems visually using graph trans-
formations. A distributed system is composed of different specifications, which are executed as
separated applications at runtime. This is in contrast to other approaches like [Tae96], which uses
one hierarchical distributed graph. Instead, every application stores its runtime graph indepen-
dent of the coupled applications. The coupling of these applications is achieved by a Coupling
Specification, which encapsulates all functionality concerning several applications. We aim to
enable the specifier to model distributed graph transformations just like local transformations in
order to preserve the advantages of declarative programming. This extends our approach pre-
sented in [BR04], which introduced the exchange of messages. Messages are still provided, but

1 / 12 Volume 1 (2006)

Specifying Distributed Graph Transformation Systems

are left out in this paper as we focus on purely visual modeling of distributed systems.
The development of a distributed system is divided into two different steps: (1) Using an

import/export mechanism, interfaces can be exchanged between specifications containing node
and edge types. (2) The interfaces exported by specifications may be used to model distributed
graph transformations concerning several applications. In this paper, we focus on the second step
of modeling distributed systems, by a visual approach. Although this approach is very general,
we focus on PROGRES in this paper.

Until now, our work does not especially focus on parallelism of distributed graph transfor-
mations. As a distributed transformation is executed on separated computers, it is inherently
executed in parallel. However, synchronization is solely assured by the underlying infrastructure
and not modeled explicitly by the specifier. Research activities on parallel graph transformations
are presented e.g. in [LETE04]. We are still investigating how these results can be included into
our work.

The paper is structured as follows: In Section 2 we introduce our concepts in a general form.
Section 3 gives an example for distributed system modeled in a visual way. Implementation
aspects are presented in Section 4. The paper gives an outlook on future work in Section 5 and
is summarized in Section 6.

2 Distributed Graph Transformation Systems

In this section, we present our concepts for specifying distributed graph transformation systems
in a visual way. These concepts will be illustrated in Section 3 considering a simple process
management system as example.

2.1 Structure of a Distributed System

In our concept, a distributed system is modeled in a similar way as a non-distributed software
application. The standard proceeding is as follows: First, the structure and the behavior of the
software is modeled within a specification consisting of a graph schema and of appropriate graph
transformations. Afterwards, adequate source code for the specification is generated. This code
can be executed e.g. as a prototype based on the UPGRADE framework [BJSW02]. The executed
application stores a runtime graph representing the application’s state. Furthermore, the specified
graph transformations can be applied via the prototype changing the state of the application and
thus of the runtime graph.

In contrast to a non-distributed software application, a distributed system consists of several
applications, which are in turn graph transformation systems. Each of these applications is de-
veloped in the standard way (as described above), and is executed separately at runtime. Thus,
every application stores its own runtime graph, and may perform graph transformations. To
couple these applications, we use distributed graph transformations, which affect several appli-
cations simultaneously.

To distinguish the actual functionality of the software applications and the logic needed for
their coupling, we introduce a separate Coupling Specification covering the distributed graph
transformations. The Coupling Specification is executed at runtime and is responsible for the

Proc. GraBaTs 2006 2 / 12

ECEASST

coordination of the distributed applications. It contains all information required for modeling
the distributed transformations, like node and edge types1 of the coupled applications. Figure 2
shows the structure of a sample distributed system, whose details will be explained in Subsec-
tion 3.1. The coupling logic does not have to be modeled necessarily in an own specification,
but otherwise the coupling logic has to be integrated in the specifications of the coupled appli-
cations in addition to their actual functionality. As the coupling logic may be very complex and
extensive, this may lead to confusing specifications, which are difficult to maintain.

2.2 Exchanging Specification Interfaces

Before distributed graph transformations can be visually specified, the Coupling Specification
needs information about node and edge types of the coupled applications. Therefore, for each
application an interface is defined consisting of graph schema elements. The schema elements
that should form the interface are marked with the <e> stereotype, an abbreviation for export
this element. The interface covers also public attributes of node types. Additionally, certain
consistency and completeness constraints for the interface have to be checked. For example, for
every edge type of the interface the node types of its source and target node have to be contained
in the interface, too. If one constraint is violated, a corresponding error message is shown to
the specifier. After defining the interfaces, the Coupling Specification uses these interfaces by
importing the node and edge types into its graph schema.

Used elements are read-only and thus can not be changed e.g. by adding a new attribute to a
node type or changing the type of an attribute. Though read-only, the used schema elements can
be applied within the specification similar to self-defined elements, e.g. in visual graph transfor-
mations or queries. To distinguish between self-defined and used types within the specification,
nodes and edges of used types are illustrated as striped rectangles resp. dashed arrows. The
specifier can define edge types between self-defined and used node types or just between used
types. That way, he integrates the imported schema elements into his specification, and defines
new relations between schema elements of different applications. An example for exchanging
interfaces is depicted in Figure 2 described in Subsection 3.1.

2.3 Distributed Graph Transformations

Before distributed graph transformations can be modeled, we have to point out the difference
between nodes and edges of used and of self-defined types: Nodes and edges of used types
refer to remote objects, in contrast to nodes and edges of self-defined types, which refer to local
objects like in non-distributed applications. Therefore, instances of used types are not stored in
the Coupling Specification, but in the application which is based on the specification defining
the element’s type. For sake of simplicity, we assume that every specification is executed exactly
once within a distributed system. This simplifies determining the application storing the instance
of a used type, as specifications may be executed simultaneously several times. Section 5 will
present appropriate concepts to relieve this restriction.

1 In the following we regard PROGRES graph transformations, but do not consider the two-level typing system.
The terms node class and node type are used as synonyms.

3 / 12 Volume 1 (2006)

Specifying Distributed Graph Transformation Systems

We use reference nodes as helper structures for accessing remote objects, instead of repli-
cating remote objects in the local runtime graph. In contrast, we do not store reference edges
as references in general are helper structures and have only little semantics. But the storage of
reference nodes simplifies the realization of edges between nodes of different applications. Ref-
erence nodes do not store any information except the location of the actual remote node. The
management of references is implicitly handled by the application and the runtime environment.
All operations performed on a reference node are transparently propagated to the remote node.
For propagating remote operations and the management of reference nodes, we use the features
of the database DRAGOS [Böh04] (see Section 4).

Distributed graph transformations can be specified in a similar way as standard graph trans-
formations. Subsection 3.2 will give an example considering the distributed transformation of
Figure 3. Note that by using DRAGOS even distributed graph transformations are executed as
transactions. The creation of a remote node is triggered in the same way as the creation of a
node of a self-defined node type, i.e. by using the node only on the right-hand side of a graph
transformation. Thus, a new node will be created in the remote application and an appropriate
reference node is automatically inserted in the local graph, which stores a link to the remote
node. To destroy a remote node, the corresponding variable is used only on the left-hand side
of a transformation. This will cause the instance node to be located and deleted in the remote
application. Consequently, the local reference node is deleted, too. The same mechanism is used
for creating and deleting remote edges, which is triggered by applying used edge types.

As reference nodes are only helper structures, they are not created explicitly within transfor-
mations, but instantiated on-demand in the local runtime graph. A reference node is inserted in
two different scenarios: Either, the reference is automatically created when a new remote node
is created (as described above), or if the corresponding node is used in the left-hand side of a
transformation. In the latter case, the local application is searched for a reference node fulfilling
the transformation conditions. If no adequate node is found, an appropriate node is requested
from the remote application and a reference node is created in the local graph. The deletion of
reference nodes is triggered automatically if the actual remote node is destroyed – independent
of the application which has caused the deletion of the actual node.

Up to now, we have assumed that we can create and delete remote nodes and edges without
any restrictions. In practice, additional constraints may apply for performing modifications on
remote runtime graphs ensuring their consistency. For example, an additional actions for the
consistency have to be performed. In some cases, it might even be required that an applica-
tion forbids the creation or deletion of nodes and edges by remote applications as described in
[HEET99]. For these reasons, we are developing a rule engine, which will perform constraint
validations at certain graph modifications and triggers actions preserving the consistency.

In this section, we have informally introduced the modeling of distributed graph transfor-
mation systems. We have only described a simplified approach, in which every specification is
executed exactly once within a distributed system (see Section 5 for an advanced approach). Fur-
thermore, we have assumed that we have only one Coupling Specification using node and edge
types of different applications. But our approach considers even more complex topologies of
distributed systems. For example, we offer the possibility to mutual import and export interfaces
leading to cyclic relationships between applications. Additionally, our approach supports to in-
clude used types in an application’s interface. At the moment, we specify appropriate scenarios

Proc. GraBaTs 2006 4 / 12

ECEASST

Requirements Definition successor Architecture

Software Architect

capability

assigned

needs

...

needs

Requirements
Specialist

John Smith

Figure 1: Sample runtime graph of the simplified PMS

to prove our concepts. For lack of space, in the next section we present only a little example
according to the simplified approach and show the usage of the presented concepts.

3 Example

One of the largest PROGRES specifications is that of the process management system AHEAD
[JSW00] (250 pages). Using AHEAD, complex development processes can be modeled and ex-
ecuted. Managers get an overview of the process’s progress and developers receive an agenda
of their tasks. A process management system (PMS) comprises different management aspects,
so modularization is beneficial to retain maintainability. Also, the management aspects are com-
monly used by different persons, and so the PMS is an interesting application for distributed
systems.

This section illustrates the concepts explained in Section 2 by means of a simplified PMS.
Figure 1 shows a simple runtime graph of this system for a software development project. The
process in Figure 1 is modeled by two tasks, Requirements Definition and modeling of the soft-
ware’s Architecture. Other tasks like the implementation have been left out for lack of space. As
requirements have to be defined before the architecture can be described, a successor relation is
modeled between the two tasks.

Resources are required to perform a task. For resource management, we distinguish between
abstract resources and concrete resources. Abstract resources denote capabilities or roles (like
Requirements Specialist), whereas concrete resources refer to objects or persons (like John Smith).
With the needs edge, tasks express a demand for an abstract resource. For this abstract resource,
an appropriate concrete resource has to be assigned before the task can be started. Here, the task
Requirements Definition is associated with the abstract resource Requirements Specialist. The con-
crete resource (person) John Smith is capable of working as a Requirements Specialist, as indicated
by the capability edge. Therefore, he is assigned to the task. As the task’s needs are fulfilled, it is
put into the state ’started’ indicated by the gears icon.

From this simple example, we can identify two different (but interrelated) system parts con-
cerning the management of tasks and resources. When building a non-distributed system, modu-
larization can be used to separate the implementation of these two parts. As they are commonly
used by different persons, we model them in separate specifications so they can be executed as
autonomous applications at runtime. In the following section we introduce how the two specifica-

5 / 12 Volume 1 (2006)

Specifying Distributed Graph Transformation Systems

Legend
Self-defined node class

Used node class
Self-defined edge type
Used edge type

<e> Export stereotype

Resource Manager
Specification

CR

<e>

<e> o:=f
AR

<e>

* *

Coupling Specification
Specification

AR R
*

* ** 1 1 1CR
o:=f

T
s:=d

1 1

Task Manager
Specification

*

T

<e>

<e>

s:=d
TM *1

usesuses

n

n

Figure 2: Distributed system modeled by different specifications

tions are coupled statically by means of their graph schemes. Afterwards, the system’s program
logic is modeled using distributed graph transformations, providing the dynamic coupling.

3.1 Static Structure

The PMS depicted in Figure 2 is split up into two separated Managers, which encapsulate in-
dependent parts of the system’s functionality. For simplicity, only relevant attributes are shown.
In the left-lower part of the figure, the Task Manager defines the node type T representing tasks,
which are ordered by a successor relation indicated by a reflexive edge type. Tasks have an at-
tribute s indicating their state, for example in Definition d if the task has been defined, but not yet
started. The node type TM manages all tasks of a project and is used to group tasks. In the right-
lower part, the Resource Manager manages abstract and concrete resources. Abstract resources
are modeled by node type AR and identified by an unique name attribute n. Concrete resources
CR may be marked as free or occupied using a boolean attribute (o := f resp. o := t). The relation
between both node types defines a capability.

Figure 2 also depicts the Coupling Specification, which is used to couple both Managers. To
model the Coupling Specification, the specifier needs to know parts of the Task and Resource
Manager’s graph schema. These are provided by an import/export mechanism, which works as
follows: First, the specifiers of the Manager specifications decide, which node and edge types
should be accessible from outside the specification. These elements are marked as exported,
depicted by <e> markers in Figure 2, and form the specification interface. Second, marked
elements are exported in a textual document, which is passed to the Coupling Specification.
Third, the specifier of the Coupling Specification imports the interfaces.

The used elements are depicted differently within the Coupling Specification shown in Fig-
ure 2 to indicate their remote character. Edge types defined in the Coupling Specification may
connect used and self-defined node types. As an example, the Coupling Specification in Fig-
ure 2 introduces a self-defined rating node type R to rate concrete resources. This node type is
connected to the used node type CR via a self-defined edge-type. We also allow the definition of

Proc. GraBaTs 2006 6 / 12

ECEASST

Coupling Specification

Specification
transformation assignConRes(t:T) =

Runtime-Graph Runtime-Graph

::=

Legend

Edge of a self-
Defined edge type

Specification

Runtime-Graph

Node of a self-
Defined node class

a:ARt

r:Rc

at
s:=r

o:=t

T1 AR1

CR1

T1 AR1

R1

Resource Manager

Runtime-Graph Runtime-Graph

AR1

CR1 CR1
o:=t

AR1

Runtime-Graph Runtime-Graph

T1 T1
s:=r

Task Manager

Node of a used
node class

Edge of a used
edge type

Local edge

Reference node

Local node

c:CR
o!=t

Figure 3: Transformation for assigning a concrete resource

edge types between two used node types: The edge type connecting T and CR is defined locally
in the Coupling Specification and indicates the assignment of resources to tasks. Note that this
connection cannot be modeled within a Manager specification as only one of the connected node
types is available in each of them.

Graph transformations modeled in the Coupling Specification can use both self-defined and
used elements. Utilizing used elements invokes remote applications at runtime. To execute
the transformation, its distribution to the corresponding Managers is derived automatically. We
demonstrate such a transformation in the following section.

3.2 Dynamic Coupling

As an example for a distributed graph transformation, the transformation assignConRes for find-
ing a concrete resource for a task is presented. For the task’s abstract resource, a concrete re-
source is requested from the Resource Manager and assigned to the task. The concrete resource
must fulfill the abstract resource and may not be assigned to another task. Furthermore, a rating
for the concrete resource is created and the task’s state is changed. Based on the Coupling Spec-
ification’s graph schema of Figure 2, we model the transformation assignConRes as depicted in
Figure 3, given task t of node type T as an input parameter. The transformation looks similar to
a local transformation in the Coupling Specification2.

In the left-hand side of the transformation, task t is shown with its assigned abstract resource
a. Moreover, a node c of node type CR is required, which fulfills the abstract resource a, and
whose attribute o should be unequal to value t. As all nodes within the left-hand side are of used
node types, they are represented as striped rectangles. In contrast to the edge incident to t, the
edge connecting the abstract resource a and the concrete resource c is dashed, representing an
used edge type.

The right-hand side of the transformation defines the effects of applying the graph transfor-
mation rule. Besides the nodes and edges of the left-hand side, a new node r of node type R is

2 For sake of simplicity, we do not follow the PROGRES syntax exactly, instead we use an abstract syntax where
it is suitable.

7 / 12 Volume 1 (2006)

Specifying Distributed Graph Transformation Systems

depicted. This node is created by the transformation and connected to the concrete resource c
by an edge. The rating node is used to assess the concrete resource. Additionally, a new edge is
created connecting t with the found concrete resource c. Furthermore, the attributes of t and c are
updated representing their execution status and the occupied status, respectively.

The effects of the transformation’s execution on the applications are also depicted in Figure 3:
For each application two runtime graphs are shown, describing sample runtime graphs before
and after the transformation. In the Task Manager, only the attribute s of task T1 (represented
by node t in the transformation) has to be modified. No modifications have to be performed to
the corresponding reference node T1 in the Coupling Specification. In the Resource Manager,
the attribute o of the concrete resource CR1 (represented by node c in the transformation) is
set to t indicating its occupation. In the runtime graph of the Coupling Specification, a new
reference node pointing to CR1 in the Resource Manager is inserted. Furthermore, two new edge
are created: one connecting CR1 and T1, and one edge connecting CR1 and the new object R1
(represented by node r in the transformation). Please note, that the edge between CR1 and AR1
does not exist in the Coupling Specification because reference edges are not stored.

4 Realization

As our approach is very general, we are currently implementing the basic functionality not only
in PROGRES, but also in the open-source CASE tool Fujaba [FNTZ00]. Both systems have
been extended by an import/export functionality using the standardized XMI format as a com-
mon textual exchange format for interfaces. Furthermore, we have adapted both systems so that
used elements cannot be modified by the specifier. For the implementation of distributed graph
transformations, changes to the code generation of PROGRES and Fujaba have been made. De-
tails on the modifications are presented in [RL06].

The code generated requires some special functionality which has to be provided by the under-
lying infrastructure. This functionality can be subsumed under the following four requirements:
(1) The runtime state of each application has to be stored persistently; (2) for the realization of
reference nodes, each application has to provide unique identifiers for remotely accessible nodes;
(3) concurrent modifications to an application’s runtime graph by several remote applications
have to be handled w.r.t. the ACID properties known from databases; (4) for the implementa-
tion of the rule engine mentioned in Subsection 2.3, an event mechanism has to inform rules
about changes to the local runtime graph. These rules check violated consistency constraints and
trigger appropriate transformations.

The four requirements are fulfilled by the graph-based database DRAGOS, which is already
used by PROGRES prototypes for the persistent storage of the runtime graph. Similar support
for applications generated by Fujaba has recently been added. Due to its extensible architecture,
DRAGOS can easily be extended for operation in distributed systems. For example, we have
implemented a new transaction manager for distributed transactions using the two-phase-commit
protocol.

The coupling of the generated applications needs some kind of middleware for the basic com-
munication. We use CORBA for this purpose, as synchronous remote procedure calls are well
suited for invoking remote parts of a distributed graph transformation. Asynchronous communi-

Proc. GraBaTs 2006 8 / 12

ECEASST

Coupling Specification

Specification

transformation delegateNewTask(t:T) =

::= t dt:Tt

distribution
t = „contractor“;
dt := „subcontractor“;

end;

Figure 4: Transformation for delegating a task

cation required for message-based coupling is provided by an appropriate service, too. CORBA
also provides a distributed transaction manager, which is used to coordinate the applications’
local transaction managers. However, other middleware architectures, like RMI, could be used
for this purpose as well, as the middleware is only an implementation detail.

Our conceptual work focuses on visual and declarative modeling of distributed systems. There-
fore, we do not concentrate on network-related details of the coupling, which have been devel-
oped in the area of distributed systems. For example, modern distributed systems often provide
caching of data to reduce the amount of queries sent accross the network. Another example is
fault-tolerance usually achieved through replication. Although these aspects are interesting for
the practical use of distributed systems, they do not affect the visual modeling of these systems.

5 Coupling of Similar Specifications

In Section 2 we have assumed that every specification is executed exactly once within a dis-
tributed system. Thus, we determine the application in which a remote object is located by its
underlying specification defining the object’s type. This is too restrictive for the practical usage,
as also the multiple execution of a specification is desirable. For example, several companies
may use their own Task Manager, and cooperate by delegating tasks to other companies, as
described in [HJ04]. Thus, the specification of the Task Manager is executed several times in
parallel. Therefore, we have to distinguish between applications based on the same specification
but located in different applications. For this purpose, we will introduce appropriate means at
specification time and at runtime.

At specification time, we will integrate new language constructs into the specification lan-
guage. These language constructs should allow to specify that nodes of the same type should
be located in different applications or have to be located in the same application respectively. In
addition, we will introduce the definition of roles for applications. These can be used to deter-
mine the precise application, in which a node of a transformation should be searched, created, or
deleted. Figure 4 shows an example for these concepts. Here, the transformation delegateNewTask
of the Coupling Specification creates a new task dt as successor of the task t. The task dt shall be
delegated from one company to another. For this purpose, we will introduce the section distribu-
tion in the graph transformation’s definition. Here, different constraints regarding the location of

9 / 12 Volume 1 (2006)

Specifying Distributed Graph Transformation Systems

objects can be defined. In Figure 4, we specify that the application owning the task t has to fulfill
the contractor role. On the other hand, a remote application is searched, taking over the role of a
subcontractor. As every application can only fulfill one role within a certain relationship, the two
applications have to be different at runtime. A relationship concerns the instance-level, so that a
application can fulfill different roles regarding different objects. For example, an application can
be a subcontractor as well as contractor dependent on the task.

At runtime, a configuration file is used to assign roles to the available applications. Addi-
tionally, an order can be specified for applications based on the same specification and having
the same role. Depending on the configuration file, the concrete applications for remote objects
can be determined fulfilling the role constraints. In future, we will analyze, which language
constructs are needed and how the configuration of the applications can be supported best.

6 Conclusion

In this paper, we described concepts for visually modeling distributed systems using graph trans-
formation systems. Each application of the distributed system is specified in a similar way to
a non-distributed application. Additionally, interfaces for the applications have to be defined,
which consist of node and edge types and can be used by other specifications. Used elements
are read-only and displayed differently within the specification indicating their remote character.
Knowing node and edge types of other specifications, distributed graph transformations can be
specified in a visual way. At runtime, the specifications are executed in different applications,
which interact according to the distributed graph transformations. The usage of reference nodes
pointing to remote nodes enables to access and to relate remote objects. As we are at the begin-
ning of visually specifying distributed graph transformations, we have to evaluate our presented
concepts with regards to paths, negative application conditions, and folding of nodes.Our ap-
proach is advantageous, as the specifier only has to model the coupling logic in a visual way
analogously to a non-distributed specification. Based on the visual specification, the correspond-
ing distribution to the different applications is automatically derived. They can be integrated in
the existing PROGRES language and are easy to use as they follow the PROGRES semantics for
local graph transformations. Furthermore, our approach offers potential for useful extensions, as
the following two examples show.

As mentioned in Section 4, the code generation has to be adapted for processing distributed
graph transformations. Due to the high communication costs within a network, we have devel-
oped concepts for the efficient processing of distributed graph transformations. These concepts
are integrated into existing search tree algorithms, which is described in detail in [RL06]. The
search for a graph pattern within an application has an exponential worst-case complexity, so we
sketch our idea for the optimization considering only the distributed query in Figure 5. The main
idea is the division of the distributed graph pattern into several partial patterns. Each pattern
affects exactly one coupled application and is extracted as large as possible. Thus, the coupled
applications are not queried for every single element of the pattern, which reduces the communi-
cation costs. This mechanism allows us to parameterize the patterns with all information needed
to find the pattern (like attribute conditions). In Figure 5 the query q is divided into two queries
q1 and q2. q2 regarding the Resource Manager can be parametrized with the abstract resource

Proc. GraBaTs 2006 10 / 12

ECEASST

Coupling Specification

Specification
query q(t:T, m:String) =

c:CR

a:ARt
n=m

Coupling Specification

Specification
query q1(t:T) =

a:ARt

Resource Manager

Specification
query q2(a:AR, m:String) =

c:CR

a
n=m

Figure 5: Dividing a distributed pattern

a, thus reducing the complexity of the pattern search. Without the parameterization, query q2
would consist of the two unbound nodes a and c increasing the search complexity. At runtime,
these patterns are sent to the corresponding applications, which in turn reply their results. The
results of all partial patterns determine the match of the entire distributed pattern.

Furthermore, we will extend our import/export mechanism by introducing abstract graph
views. In the current approach, every specification interface consists of a graph schema part.
In abstract graph views, abstract graph elements can be exported, which represent several con-
crete graph elements in the local graph. To model such graph views, the specifier has to define
appropriate rules for abstract elements using the rule engine mentioned in Subsection 2.3. The
rules define the mapping of abstract elements to several concrete elements. Additionally, they
define the actions, which have to be performed when an abstract element is created, deleted or
changed by a remote application.

Bibliography

[BJSW02] B. Böhlen, D. Jäger, A. Schleicher, B. Westfechtel. UPGRADE: A Framework for
Building Graph-Based Interactive Tools. In Mens et al. (eds.), Graph-Based Tools
(GraBaTs 2002). ENTCS 72. Elsevier Science, 2002.

[BR04] B. Böhlen, U. Ranger. Concepts for Specifying Complex Graph Transformation Sys-
tems. In Ehrig et al. (eds.), Graph Transformations: 2nd Intern. Conf., ICGT 2004.
LNCS 3256, pp. 96–111. Springer-Verlag, 2004.

[Böh04] B. Böhlen. Specific Graph Models and Their Mappings to a Common Model. Pp. 45–
60 in [PNB04].

[FNTZ00] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A new Graph Rewrite
Language based on the Unified Modelling Language and Java. In Ehrig et al. (eds.),

11 / 12 Volume 1 (2006)

Specifying Distributed Graph Transformation Systems

Theory and Application of Graph Transformations, 6th Intern. Workshop, TAGT’98.
LNCS 1764, pp. 296–309. Springer-Verlag, 2000.

[HEET99] R. Heckel, H. Ehrig, G. Engels, G. Taentzer. A View-Based Approach to System
Modeling Based on Open Graph Transformation Systems. In Ehrig et al. (eds.),
Handbook on Graph Grammars and Computing by Graph Transformation: Applica-
tions, Languages, and Tools. Volume 2, pp. 639–668. WORLDSCIENTIFIC, 1999.

[HJ04] M. Heller, D. Jäger. Graph-Based Tools for Distributed Cooperation in Dynamic
Development Processes. Pp. 352–368 in [PNB04].

[JSW00] D. Jäger, A. Schleicher, B. Westfechtel. AHEAD: A Graph-Based System for Mod-
eling and Managing Development Processes. In Nagl et al. (eds.), Applications of
Graph Transformations with Industrial Relevance, International Workshop, AG-
TIVE’99. LNCS 1779, pp. 325–339. Springer-Verlag, 2000.

[LETE04] J. de Lara, C. Ermel, G. Taentzer, K. Ehrig. Parallel Graph Transformation for Model
Simulation applied to Timed Transition Petri Nets. In Heckel (ed.), Proceedings
of the Workshop on Graph Transformation and Visual Modelling Techniques, GT-
VMT’04. ENTCS 109, pp. 17–29. Elsevier Science, 2004.

[PNB04] J. L. Pfaltz, M. Nagl, B. Böhlen (eds.). Applications of Graph Transformations with
Industrial Relevance, 2nd Intern. Workshop, AGTIVE 2003. LNCS 3062. Springer-
Verlag, 2004.

[RL06] U. Ranger, M. Lüstraeten. Search Trees for Distributed Graph Transformation Sys-
tems. In Karsai and Taentzer (eds.), 2nd International Workshop on Graph and Model
Transformation, GraMoT’06. Electronic Communications of the EASST 4. Euro-
pean Association of Software Science and Technology (EASST), 2006.

[Sch91] A. Schürr. Operationales Spezifizieren mit programmierten Graphersetzungssyste-
men. PhD-Thesis, RWTH Aachen, 1991.

[Tae96] G. Taentzer. Hierarchically Distributed Graph Transformation. In Cuny et al. (eds.),
Graph Grammars and Their Application to Computer Science, 5th Intern. Workshop.
LNCS 1073, pp. 304–320. Springer-Verlag, 1996.

[Tic02] M. Tichy. Durchgängige Unterstützung für Entwurf, Implementierung und Betrieb
von Komponenten in offenen Softwarearchitekturen mittels UML. Master Thesis,
Univ. Paderborn, 2002.

Proc. GraBaTs 2006 12 / 12

	Introduction
	Distributed Graph Transformation Systems
	Structure of a Distributed System
	Exchanging Specification Interfaces
	Distributed Graph Transformations

	Example
	Static Structure
	Dynamic Coupling

	Realization
	Coupling of Similar Specifications
	Conclusion

