
Electronic Communications of the EASST
Volume 48 (2011)

Proceedings of the
Fifth International Workshop on
Foundations and Techniques for

Open source Software Certification
(OpernCert 2011)

A Formal Specification of the DNSSEC Model

Ezequiel Bazan Eixarch, Gustavo Betarte, and Carlos Luna

20 pages

Guest Editors: Luis Soares Barbosa, Dimitrios Settas
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

A Formal Specification of the DNSSEC Model

Ezequiel Bazan Eixarch1, Gustavo Betarte2, and Carlos Luna2

1 ezequielbazan@gmail.com
Facultad de Ciencias Exactas, Ingenierı́a y Agrimensura

Universidad Nacional de Rosario, Rosario, Argentina

2 [gustun,cluna]@fing.edu.uy
Instituto de Computación, Facultad de Ingenierı́a

Universidad de la República, Montevideo, Uruguay

Abstract: The Domain Name System Security Extensions (DNSSEC) is a suite of
specifications that provide origin authentication and integrity assurance services for
DNS data. In particular, DNSSEC was designed to protect resolvers from forged
DNS data, such as the one generated by DNS cache poisoning. This article presents
a minimalistic specification of a DNSSEC model which provides the grounds needed
to formally state and verify security properties concerning the chain of trust of the
DNSSEC tree. The model, which has been formalized and verified using the Coq
proof assistant, specifies an abstract formulation of the behavior of the protocol and
the corresponding security-related events, where security goals, such as the preven-
tion of cache poisoning attacks, can be given a formal treatment.

Keywords: DNS, DNSSEC, security properties, formal modelling, Coq

1 Introduction

The Domain Name System (DNS) [Moc87a] [Moc87b] constitutes a distributed database that
provides support to a wide variety of network applications such as electronic mail, WWW, and
remote login. The database is indexed by domain names. A domain name represents a path in
a hierarchical tree structure, which in turn constitutes a domain name space. Each node of this
tree is assigned a label, thus, a domain name is built as a sequence of labels separated by a dot,
from a particular node up to the root of the tree.

A distinguishing feature of the design of DNS is that the administration of the system can be
distributed among several (authoritative) name servers. A zone is a contiguous part of the domain
name space that is managed by a set of authoritative name servers. Then, distribution is achieved
by delegating part of a zone administration to a set of delegated sub-zones. DNS is a widely
used scalable system, but it was not conceived with security concerns in mind, as it was designed
to be a public database with no intentions to restrict access to information. Nowadays, a large
amount of distributed applications make use of domain names. Confidence on the working of
those aplications depends critically on the use of trusted data: fake information inside the system
has been shown to lead to unexpected and potentially dangerous problems.

Already in the early 90’s serious security flaws were discovered by Bellovin and eventually
reported in [Bel95]. Different types of security issues concerning the working of DNS have been

1 / 20 Volume 48 (2011)

mailto:ezequielbazan@gmail.com
mailto:[gustun,cluna]@fing.edu.uy

A Formal Specification of the DNSSEC Model

discussed in the literature, see, for instance, [Bel89, Bel95, Cer01, Gav93, CS94, Vix95]. Iden-
tified vulnerabilities of DNS make it possible to launch different kinds of attack, namely: cache
poisoning, client flooding, dynamic update vulnerability, information leakage and compromise
of the DNS servers authoritative database [Dav99, Bel95, AA04].

DNSSEC [AAL+05a, AAL+05c, AAL+05b] is a suite of Internet Engineering Task Force
(IETF) specifications for securing information provided by DNS. More specifically, this suite
specifies a set of extensions to DNS which are oriented to provide mechanisms that support au-
thentication and integrity of DNS data but not its vailability or confidentiality. In particular, the
security extensions were designed to protect resolvers from forged DNS data, such as the one
generated by DNS cache poisoning, by digitally signing DNS data using public-key cryptogra-
phy. The keys used to sign the information are authenticated via a chain of trust, starting with a
set of verified public keys that belong to the DNS root zone, which is the trusted third party.

The DNSSEC standards were finally released in 2005 and a number of testbeds, pilot de-
ployments, and services have been rolled out in the last few years [Fou11, IAN11, IRL11,
Nom11, PIR11, ABD+, YOM+11]. In particular, the main objective of the OpenDNSSEC
project [ABD+] is to develop an open source software that manages the security of domain
names on the Internet.

Contributions

The important and critical role of DNSSEC in software systems and networks makes it a prime
target for formal verification. We are not aware of projects that have set out to formally verify the
correctness of DNSSEC implementations. Reasoning about implementations provides the ulti-
mate guarantee that the deployment of these protocols satisfies the expected properties. We are
convinced, though, of the need for complementary approaches where verification is performed
on simplified models that abstract away from the specifics of any particular implementation.

This article initiates such an approach by developing a minimalistic specification of a DNSSEC
model, and yet provides a realistic setting in which to explore the security issues that pertain to
the realm of DNS. The specification puts forward an abstract formulation of the behavior of the
protocol and the corresponding security-related events, where security goals, such as the preven-
tion of cache poisoning attacks, can be given a formal treatment. In particular the formal model
provides the grounds needed to formally state and verify security properties concerning the chain
of trust generated along the DNSSEC tree and the prevention of cache poisoning attacks.

The specification has been developed using the Calculus of Inductive Constructions (CIC)
[CH88, CP90, PM93] and it was formally verified using the Coq proof assistant [The10, BC04].
The Coq system is a free open source software that provides a (dependently typed) functional
programming language and a reasoning framework based on higher order logic to perform proofs
of programs. As one example of its applicability, Coq has been used for the development and
formal verification of a compiler of a large subset of the C programming language [Ler09].

A detailed description of the specification of the model is presented in Spanish in [Baz11].
That document and the Coq development are available in http://www.fing.edu.uy/inco/grupos/
gsi/sources/dnssec.

Proc. OpenCert 2011 2 / 20

http://www.fing.edu.uy/inco/grupos/gsi/sources/dnssec
http://www.fing.edu.uy/inco/grupos/gsi/sources/dnssec

ECEASST

Contents of the paper

The rest of the paper is organized as follows: Section 2 provides a primer on DNS and DNSSEC
focusing on the elements that are most relevant for our formal model, which we develop in
Section 3. Section 4 presents some of the verified properties and outlines the corresponding
proofs. Finally, Section 5 concludes and discusses directions for future work.

2 A Primer on the Vulnerabilities of DNS

In this section we provide some background on DNS, its vulnerabilities and the security exten-
sions specified in DNSSEC.

The administration of DNS can be distributed among several (authoritative) name servers.
DNS defines two types of server:

• Nameservers: which are authoritative servers that manage data of a contiguous part of the
domain name space and where the master files reside. For redundancy sake, primary and
secondary nameservers are provided for each zone.

• Resolvers: which are standard programs used to interact with the nameservers to extract
information in response to client requests.

The process of obtaining information from DNS is called name resolution. Each server is
initialized with the contact information of some authoritative servers of the root zone. Moreover,
the root servers know how to contact the authoritative name servers of second level (e.g. the
domains com, net, edu). Second level servers know the information of third level servers, and so
on. By these means, the requestor can proceed refining the sought response by walking the tree
structure, contacting different servers and getting “closer” to the answer after each referral.

Servers store the results of previous queries in their caches in order to speed up the resolution
process, but as the mapping of names evolves, cached data has a limited time of validity. Author-
itative servers attach, for instance, a Time To Live atribute (TTL) to this stored data, indicating
when it should be removed from the cache. For more details concerning the working of DNS we
refer to [LA06, Moc87a, Moc87b].

In an early work, Cheung and Levitt [CL00] discuss security issues of DNS and provide formal
basis to model and prove security mechanisms that can be added to the system to prevent two
specific problems:

• Failure to authenticate DNS responses: The message authentication mechanism used by
DNS is weak. DNS checks if a received response matches a previously asked query only
by checking if the Id attached in the query’s header matches with the Id of the pointed
response. In this way, if an attacker can predict the used query Id and his answer reaches
before the real one does (as if a name server receives multiple responses for its query, it
uses the first one), it will be able to send a forged response.

• Cache poisoning attacks: An attacker can take advantage of the lack of authentication
mechanisms to intentionally formulating misleading information, injecting bogus infor-
mation into some server DNS cache. Having cached this information, the cheated DNS

3 / 20 Volume 48 (2011)

A Formal Specification of the DNSSEC Model

server is likely to get a Denial of Service (DoS), if the attacker sends a negative response
that could actually be resolved; or in the worst case, the attacker can masquerade as a
trusted entity, and then be able to intercept, analyze and intentionally corrupt the commu-
nication.

Cache poisoning attacks exploits a flaw in DNS, namely, the weak mechanisms used to ensure
the authentication of data origin. As one of the goals of the DNS security extensions was to
solve these vulnerabilities, we have put special focus in developing a formal specification that
allows us to reason on the effectiveness of those extensiond regarding impersonation and cache
poisoning attacks.

The extensions introduced by DNSSEC to improve the security of DNS require the combined
application of mechanisms that make it possible to i) sign data, using public key cryptography,
within zones ii) generate a chain of trust along the DNSSEC tree iii) perform key exchange
within parent-child zones, and regular key rollover routines. The security extensions provide
origin authentication and integrity assurance services for DNS data, including mechanisms for
public key distribution and authenticated denial of existence of DNS data. However, respecting
the principle assumed in the design of DNS that all data in the system must be visible, DNSSEC
is not designed to provide confidentiality [AAL+05a].

The specification of the security extensions does not prevent the interaction of secure name
servers and resolvers with non-secure ones. However, any communication that involves an unse-
cure server results in the loss of all DNSSEC security related capabilities. For this reason, in our
model it is assumed that every server is security aware.

3 Formalization of the DNSSEC Model

In this section, we present an abstract model of DNSSEC. First, we introduce auxiliary defini-
tions, to proceed then to define the set of states and a notion of valid state. Finally, we define the
semantics of security-related events as state transformers and provide a formal definition of their
execution. We start by providing notation used in this document.

3.1 Notation

We use standard notation for equality and logical connectives (∧, ∨, ¬,→, ∀, ∃). We extensively
use record types and enumerated types. Record types definitions are of the form R def

= [[f ield0 :
A0, . . . , f ieldn : An]]. Field selection is abbreviated using dot notation. We define an inductive
relation I by giving introduction rules of the form:

rule
a0 . . .a j

I b0 . . .bn

where free occurrences of variables are implicitly universally quantified.
Sets of type A are defined as set A, where set is an inductive type encoding sets as lists. We use
{a0, . . . ,an}A to denote the set of elements a0, . . . ,an of type A. When the type A is obvious from
the context, we write {a0, . . . ,an}. Classical notation is used for set operations (∪,∩,\,∈,⊆).

Proc. OpenCert 2011 4 / 20

ECEASST

3.2 Formalizing States

The state of a DNSSEC system consists of a collection of components that we now proceed to
describe. Servers distributed globally are represented as objects of an abstract type Process.

3.2.1 Secure Resource Records

A Resource Record (RR) is the basic unit of information used in DNS. A structure of this kind
is defined by six fields: i) the field NAME defines the domain name that applies to the given
RR, ii) the field TY PE indicates the type of resource record. Figure 1 depicts the most common
ones, iii) the field CLASS is used to identify the protocol group to which the record belongs. In
the sequel we shall only make use of the class IN, which is the one of interest to people using
TCP/IP software, since it stands for Internet, iv) T T L stands for Time To Live; it is primarily
used by resolvers, and specifies how long a resource record should be cached before discarding
it, v) the field RDLENGT H is an unsigned integer that specifies the length of the RDATA field,
vi) the field RDATA contains the data of the resource record. The data field is defined differently
for each type and class of data.

Type Description
A Internet Address
CNAME Canonical Name (nickname pointer)
HINFO Host Information
MX Mail Exchanger
NS Name Server
PTR Pointer
SOA Start Of Authority

Figure 1: Types of Resource Records

Formally, a resource record is defined as an object of the following record type:

RR def
= [[Rdname :DName, Rtype :RRType, RClass :RRClass,

Rttl :T T L, RDL :RDLength, Rrdata :RData]]

A set of resource records that share the same domain name, type and class is formalized as an
object of the following type:

RRset def
= set RR

To implement the proposed security extensions, DNSSEC introduces additional security-related
resource records: i) for origin authentication DNSSEC provides a hierarchical public key in-
frastructure (PKI), which allows resolvers to obtain the DNSSEC key of a zone and use it for
authenticating signed data belonging to that zone. To support this PKI, three resource records
were introduced: RRSIG, DNSKEY and DS, ii) for assuring integrity of data each zone signs
all the RRsets over it is authoritative. In every transmission, RRSIGs are transmitted along with
the replied RRsets, and by these means, when a transmission is received, data integrity can be

5 / 20 Volume 48 (2011)

A Formal Specification of the DNSSEC Model

verified, iii) for authenticated denial of existence, Next Secure (NSEC) resource records are pro-
vided. They list all of the existent RRs belonging to an owner name within an authoritative zone,
making it possible to verify the non-existence of a RR, by comparing against the RR list of its
owner name. Figure 2 describes the security oriented new resource records.

RR Description
RRSIG Signature over RRset made using private key
DNSKEY Public key, needed for verifying a RRSIG
DS Delegation Signer, pointer for building chains of trust.

The Parent DNSKEY signs the Parent DS, Parent DS signs the Child
DNSKEY, and so forth, providing a mechanism to verify origin integrity
from a domain name up to the root servers

NSEC Used to provide an authenticated non-existence of data.
Indicates which name is the next one in the zone and which type codes
are available for the current name

Figure 2: Resource records introduced by DNSSEC

The type of a resource record, which includes the specific types defined by the DNSSEC
specifications, is defined by the following enumerated type:

RRType def
= A | PT R | NS |CNAME |MX | SOA | HINFO
| RRSIG | DNSKEY | DS | NSEC

We formalize the notion of secure (set of) RR by the following two types:

SecRR def
= [[RR′ :RR, Rsign :RR]]

SecRRset def
= [[RRset ′ :RRset, RRsign :RR]]

where Rsign and RRsign contain, respectively, the signature corresponding to RR′ and to RRset ′.

3.2.2 The Distributed Database

DNS manages a distributes database, which is indexed by a tuple (dname, type, class) of type
Idx:

Idx def
= [[Idname :DName, Itype :RRType, IClass :RRClass]]

The range of this database is a set of secure RRs. A DNS database is thus formalzed as an object
of the function type:

DbMap def
= Idx→ SecRRset

3.2.3 DNS Message

A DNS(SEC) message consists of a header and four additional sections, as illustrated in Fig-
ure 3. The HEADER contains an identification (Id) field, which is used to match an answer to
its corresponding query. The QUESTION section consists of a target domain name (QNAME),

Proc. OpenCert 2011 6 / 20

ECEASST

Figure 3: DNS Message Format [Dav99]

a type (TYPE), and a class (QCLASS). A query to find out, for instance, the IP address of the
host h1.fceia.unr.edu.ar will have QNAME=h1.fceia.unr.edu.ar, QTYPE=A and QCLASS=IN.
The ANSWER section contains RRs which directly answer the query. The AUTHORITY section
carries RRs which describe other authoritative server (e.g. may contain RRs to refer the querier
to other name servers during the resolution process). The ADDITIONAL section carries RRs that
may be helpful for using RRs information of other sections (e.g. may contain A RRs to provide
the IP address for the RRs listed in the authority section).

We define the DNSMessage type as follows:

DNSMessage def
= [[Hdr :Header, Q : Idx, Ans :SecRRset,

Auth :SecRRset, Additional :SecRRset]]

3.2.4 Pending Submissions

Pending submissions, that is to say, requests or answers, possibly triggered by a received answer,
which are waiting to be delivered, are defined as objects of the following type:

SendQR def
= [[SendQ :set In f oMsg, SendR :set In f oMsg]]

An object of the type In f oMsg represents the required information needed to be sent.

InfoMsg def
= [[MFrom :Process, MTo :Process, MMsg :DNSMessage]]

3.2.5 System Keys

DNSSEC security is based in the use of public key cryptography. Each DNS server owns two
keys, namely, a Zone Signing Key (ZSK) and a Key Signing Key (KSK). A ZSK key is used
to sign every RRset within a zone, generating the RRSIG records. A KSK key is used especifi-
cally to sign the DNSKEY RRset and generate its corresponding RRSIG. To access the system’s
DNSKEYS, the following record have been defined:

keySet def
= [[key :RR, ksign :RR]]

where key is a DNSKEY and ksign its corresponding RRSIG signature.
Each server has its corresponding pair of keys:

keys def
= [[zsk :keySet, ksk :keySet]]

7 / 20 Volume 48 (2011)

A Formal Specification of the DNSSEC Model

3.2.6 Delegations

A delegation describes a father-child relationship between DNSSEC servers. As shown in Fig-
ure 2, it helps building the DNSSEC chain of trust. To model delegation in our specification we
have defined the following function:

DSpDB def
= Process→ DSp

where:
DSp def

= [[T srv :Process, rrDS :SecRR]]

In words, we have defined a function that maps Parent servers with its corresponding Childs to
whom they trust, along with the digest RR to prove it. This is an essential part of the model, as
it will allow us to reason over the effectiveness of the chain of trust.

3.2.7 System State

To reason about the DNSSEC security system most details of the state may be abstracted. States
are modeled by a record type with nine components:

State def
= [[Servers :set Process,

TrustedServers :set Process,

ServerKeys :Process→ keys,

Delegations :Process→ DSpDB,

Parents :Process→ DSp,

viewAuth :Process→ DbMap,

viewCache :Process→ DbMap,

PendingQueries :Process→ set Header,

SendBu f f er :Process→ SendQR]]

The component Servers indicates the involved DNS servers, whereas that TrustedServers and
ServerKeys represent set of publicly known trusted servers and the set of keys for every server,
respectively. The delegations issued by each server and the fathers of a server are indicated by
the components Delegations and Parents. The components viewAuth and viewCache are used to
represent the authoritative view and the cache view of every server, PendingQueries is a function
that maps a server with the expected answers to the already performed queries, and SendBu f f er
is a buffer with the corresponding pending submissions for each server.

3.2.8 Valid State

We define a notion of valid state that captures essential security properties of the system, and
more particularly of the DNSSEC specification provided by the “DNSSEC protocol document
set”, which refers to the three documents that form the core of the DNS security extensions:

Proc. OpenCert 2011 8 / 20

ECEASST

“DNS Security Introduction and Requirements” [AAL+05a], “Resource Records for DNS Se-
curity Extensions” [AAL+05c], and “Protocol Modifications for the DNS Security Extensions”
[AAL+05b].

We say that the predicate Valid holds on state s if s satisfies the following properties:

1. “Every RRset within the view of a server must be signed by its corresponding RRSIG
signature”, which can be stated formally as follows,

RR integrity s def
= ∀ srv :Process, srv ∈ s.Servers→

signedView s srv (s.viewAuth srv) ∧
signedView s srv (s.viewCache srv)

where signedView verifies that every RRset of a sever’s zone is correctly signed by its
corresponding RRSIG.

2. “Every server’s Zone keys must be signed by its corresponding Key Signing Key (KSK)”,

ZSK integrity s def
= ∀ (srv :Process), srv ∈ s.Servers→

veri f ySign (s.ServerKeys srv).ksk.key

{(s.ServerKeys srv).ksk.key}∪{(s.ServerKeys srv).zsk.key}
(s.ServerKeys srv).zsk.ksign

where veri f ySign checks that the RRSIG of a RRset has been effectively generated from
a given key.

3. “Every server must be publicly known as trusted, or be verified by the corresponding
digest in its father’s zone”,

KSK integrity s def
= ∀ (srv :Process), srvH ∈ s.TrustedServers ∨

checkDigest s srvH (s.Parents srvH).rrDS.RR′

where checkDigest validates if a DS record in the Parent zone really contains a digest of
its Child keys.

We thus formally define the Valid predicate over State as the conjunction of the previous validity
conditions:

Valid s def
= RR integrity s ∧ ZSK integrity s ∧ KSK integrity s

3.3 Events

The working of the system is modelled in terms of the execution of events. An event is under-
stood as an action that transforms the state of the system. Next we present the syntax, and specify
the semantics and execution of events.

9 / 20 Volume 48 (2011)

A Formal Specification of the DNSSEC Model

Table 1: Events

Name Description
Add Server Creates a new server in the domain name system
Delete Server Deletes a server from the domain name system
Add RRset Inserts a new RRset in the authoritative view of a given server
Delete RRset Deletes a RRset from the authoritative view of a given server
Server ZSK rollover Performs a rollover of the zone key of a given server
Server KSK rollover Performs a rollover of the KSK of a given server
Add TrustedServer Indicates the reliable publication of a server known as trusted
Del TrustedServer Indicates that a server should no longer be consider as trusted
Send Query Sends a specific query to a given server
Receive Response Receives a response from a given server
Send PendingQ Sends pending queries
Send PendingR Sends pending responses
RR TimeOut Indicates that the TTL of a given RRset has expired

3.3.1 Syntax

The syntax and signature for every event relevant to our abstract model of DNSSEC is formalized
by the non-recursive inductive set Event:

Event def
=
| Add Server : Process→ keys→ DSpDB→ DSp→ DbMap→ DbMap→ Event
| Delete Server : Process→ Event
| Add RRset : Process→ Idx→ RRset→ Event
| Delete RRset : Process→ Idx→ Event
| Server ZSK rollover : Process→ RR→ Event
| Server KSK rollover : Process→ RR→ RR→ Event
| Add TrustedServer : Process→ Event
| Del TrustedServer : Process→ Event
| Send Query : Process→ Process→ DNSMessage→ Event
| Receive Query : Process→ Process→ DNSMessage→ Event
| Receive Response : Process→ Process→ DNSMessage→ Event
| Send PendingQ : Process→ Event
| Send PendingR : Process→ Event
| RR TimeOut : Process→ Idx→ RR→ Event

A brief description of each event is shown in Table 1. In the next section we present the formal
semantics for a small subset of these events.

Proc. OpenCert 2011 10 / 20

ECEASST

3.3.2 Semantics

The behavior of the events is specified by their pre- and postconditions, which are given by the
predicates Pre and Post respectively,

Pre : State→ Event→ Prop
Post : State→ State→ Event→ Prop

Preconditions are defined in terms of the system state while postconditions are defined in terms
of the before and after states. Due to space constraints, we only present here the formal spec-
ification of three distinguished events, namely, Server ZSK rollover, Receive Response and
RR TimeOut. In the specification of the postconditions we have omitted all fields of the state
that remain invariant when executing the corresponding event. The names of the auxiliary func-
tions and predicates used should be self-explanatory.

• Server ZSK rollover srv rrzsk This event performs the rollover of the ZSK key for a specific
server srv. For this event to take place it is needed that srv exists in the system and rrzsk
should be a ZSK key, that is to say,a key which is identified as a Zone Signing key by the
information of its RRDATA.

Pre s (Server ZSK rollover srv rrzsk) def
=

isServer s srv ∧ isZSK rrzsk

Pos s s’ (Server ZSK rollover srv rrzsk) def
=

(s′.ServerKeys srv).zsk.key = rrzsk

∧ (s′.ServerKeys srv).zsk.ksign =

sign (s.ServerKeys srv).ksk.key ({(s.ServerKeys srv).ksk.key} ∪ {rrzsk})
∧ ∀ (i : Idx), (s′.viewAuth srv i).RRsign = sign rrzsk (s.viewAuth srv i).RRset ′

The postcondition states that when this event executes successfully the key rrzsk is stored
as the new ZSK, its signature is calculated, using sign, and stored as its corresponding
RRSIG. In addition to that, all the signatures for the resource records within the authorita-
tive view of the server srv are re-calculated.

• Receive Response srv from srv to m This event models the processing of an answer message
m. For this operation to succeed, servers srv f rom and srv to must belong to the set
of servers of the system and the received response should be an answer to a previously
submitted query delivered by the server srv to.

Pre s (Receive Response srv from srv to m) def
=

isServer s srv f rom ∧ isServer s srv to

∧ m.Hdr ∈ (s.PendingQueries srv to)

11 / 20 Volume 48 (2011)

A Formal Specification of the DNSSEC Model

Pos s s’ (Receive Response srv from srv to m) def
=

i f (nodata newre f er m)

(s′.SendBu f f er srv to).SendQ = (s.SendBu f f er srv to).SendQ ∪
{(makeResp srv to (next m.Additional.RRset ′) m)}

elsei f (veri f ySign (s.ServerKeys srv to).zsk.key m.Ans.RRset ′ m.Ans.RRsign)

((s′.viewCache srv to) m.Q).RRset ′ = m.Ans.RRset ′

∧ ((s′.viewCache srv to) m.Q).RRsign = m.Ans.RRsign

∧ s′.PendingQueries srv to = (s.PendingQueries srv to)\{m.Hdr}

The postconditions establishes the conditions required to be satisfied for a given resource
record to be accepted and allocated in the cache view of a server. In the case that the
received answer does not contain information in its auth section, but it does contain a
closer server to refer, then the message will be re-sent to that server. On the contrary, if
the received message contains data in its auth section, and the received RRsets as well
as their corresponding received signatures are verified by the sender zsk key, then the
RRsets and their signatures are added to the server’s cache view and, as the query has been
successfully replied, the message is removed from the PendingQueries set. It should be
noticed that a correct execution of this event would prevent a cache poisoning like the one
discussed in Section 2. In section 4 we will skecth the proof that the state remains valid
after the execution of this event.

• RR TimeOut srv i rr Runs on the expiration of the TTL of a resource record rr for a given
server srv. The operation precondition will be verified when srv belongs to the set of
servers of the system and the TTL of rr has expired due to timeout of either the resource
record or its corresponding signature.

Pre s (RR TimeOut srv i rr) def
=

isServer s srv ∧ isTimeout s srv i rr

∧ (rr ∈ (s.viewCache srv i).RRset ′ ∨ rr ∈ (s.viewAuth srv i).RRset ′)

Pos s s’ (RR TimeOut srv i rr) def
=

i f (rr ∈ (s.viewAuth srv i).RRset ′)

((s′.viewAuth srv) i).RRset ′ = ((s.viewAuth srv) i).RRset ′ \{rr}
∧ ((s′.viewAuth srv) i).RRsign =

sign (s.ServerKeys srv).zsk.key ((s′.viewAuth srv) i).RRset ′

else ((s′.viewCache srv) i).RRset ′ = ((s.viewCache srv) i).RRset ′{rr}
∧ ((s′.viewCache srv) i).RRsign =

sign (s.ServerKeys srv).zsk.key ((s′.viewCache srv) i).RRset ′

The postcondition of RR TimeOut states that the expired resource record and its signature
are removed from the correponding authoritative or cache view.

Proc. OpenCert 2011 12 / 20

ECEASST

3.3.3 Errors

When an event is executed and a precondition is not valid, the system answers with a correspond-
ing error code. These error codes are defined by the enumerated type ErrorCode:

ErrorCode def
= server not exists | invalid zsk | query not asked

| rrset not exists | rr not timeout | ...

Table 2 specifies the error code associated to unverified preconditions of the three events whose
semantics was presented in Section 3.3.2. In our model this is formalized as a relation ErrorMsg
between valid states of the system and error messages.

Table 2: Error messages

Server ZSK rollover srv rrzsk
¬ isServer s srv server not exists
¬ isZSK rrzsk invalid zsk

Receive Response srv from srv to m
¬ isServer s srv f rom∨ ¬ isServer s srv to server not exists
¬ m.Hdr ∈ s.PendingQueries srv to query not asked

RR TimeOut srv i rr
¬ isServer s srv server not exists
rr /∈ (s.viewCache srv i).RRset ′

∨ rr /∈ (s.viewAuth srv i).RRset ′ rrset not exists
¬isTimeout s srv i rr rr not timeout

3.3.4 One-step Execution

Executing an event e over a state s produces a new state s′ and a corresponding answer r (de-
noted s ↪

e/ans−−−→ s′), where the relation between the former state and the new one is given by the
postcondition relationship Post.

exec pre Pre s e Post s s′ e

s ↪
e/ok−−→ s′

exec npre
¬ Pre s e ∃ ec :ErrorCode, ErrorMsg s e ec∧ans = error ec

s ↪
e/ans−−−→ s

If the precondition Pre s e is satisfied, then the resulting state s′ and the corresponding answer
ans are the ones described by the relation exec. However, if Pre s e is not satisfied, then the
state s remains unchanged and the system answer is the error message determined by the relation

13 / 20 Volume 48 (2011)

A Formal Specification of the DNSSEC Model

ErrorMsg. Formally, the possible answers of the system are defined by the type answer:

answer def
= ok : answer
| error : ErrorCode→ answer

where ok is the answer resulting from a successful execution of an event.

4 Verification of Security Properties

In this section we discuss two relevant properties of the model that have been formally stated and
verified. We first concentrate on the proof that one-step execution preserves the validity of states.
We sketch the proof of this property and show that the notion of valid state embodies necessary
conditions to prove the objective security properties. Then, we show, formally, that to have this
invariance result is not enough to ensure consistency of the chain of trust.

4.1 An Invariant of One-step Execution

A one-step execution invariant is a property that if it holds for the state before the execution of
any event it remains valid for the state resulting from that execution. We show that the validity
of the model state, as defined in Section 3.2, is a one-step invariant of our specification.

Proposition 1 For any s s′ : State, ans : answer and e : Event, if Valid s and s ↪
e/ans−−−→ s′ hold,

then Valid s′ also holds.

Proof. The proof of this proposition proceeds by case analysis on the execution s ↪
e/ans−−−→ s′: i) if

the precondition Pre s e is not satisfied, then the specification of executions establishes that the
state s is not modified and that s = s′, so s′ is trivially valid because s is valid, ii) otherwise,
Post s s′ r e must hold and then we proceed by case analysis on the event e.

We shall here discuss in detail the proof argument for the case the event e is of the form
Receive Response srv f rom srv to m. The complete formal proof of this and each of the re-
maining cases can be found in the accompanying formalization.

The proof start by analyzing the type of response obtained. In the case the answer has author-
itative content we proceed by checking whether the signature of the received RRset is verified.
Then we have two possible cases:

1. If the received answer does not contain data, then, as specified in its postconditions, when
executing Receive Response, the component viewCache of the state s′ will remain invari-
ant, moreover the only component modified in s′ will be SendBu f f er which is not verified
in the validity property, so we can state that s′ remain valid.

2. On the contrary, if the answer contains data in its Auth section, we must analyze if the
received RRset is verified by its corresponding signature RRsig: i) if the signature is not
verified, the received answer will be discarded and no component of the state will be
modified, so the property will remain satisfied for s′, ii) if the signature is correctly verified
and so the RRset is added to the viewCache view of the server srv to, the resultant state

Proc. OpenCert 2011 14 / 20

ECEASST

s′ will stay valid, as viewCache is the only modified component and, by adding verified
RRset and RR signature, it remains correctly signed.

Observe that the instantiation of Proposition 1 to the case in which the executed event is
Receive Response reflects the (informal) security requirement that no man-in-the-middle can
masquerade as a trusted entity in order to provide answers with fake resource records. By proving
the correct execution of this event, we are providing (formally verified) evidence that if a classical
DNS attacker sends a malicious resource record to a secure server that record shall be discarded
as it will not be verified by its corresponding signature, which, in turn, has been created by its
father within the chain of trust. This is clearly a security improvement regarding DNS, because
the reception mechanism of this system is what makes it a potential victim of cache poisoning
attacks.

4.2 Compromising the Chain of Trust

It is important to notice that the conditions specified for a state of our model to be a valid one
constitute an almost straightforward interpretation of the (security) recommendations laid down
in relevant DNSSEC RFCs like, for instance, [AAL+05a, AAL+05c, AAL+05b]. We can show,
however, that despite the validity of states is preserved by execution this does not necessarily
guarantee that the chain of trust remains valid. In particular, analyzing the conditions required
for the rollover of a zone key, which in our model is specified as part of the semantics of the event
Server ZSK rollover, we have detected a small inconsistency concerning the data of the system.
Namely, for a resource record to be discarded from a view either authoritative or cache, it is only
required that its corresponding TTL is recached. Now, a rollover of a zone key might be needed
to be executed, for instance, in the case the server’s zone is compromised, even if the TTL of
the key has not expired. Consequently, every RRset within the zone must be signed to generate
the new RRSIG records. Therefore, every DNS server that contains these, just re-signed, records
inside its cache view will become inconsistent. This issue could not be detected during the
verification of the invariance of the event Server ZSK rollover because the specification of the
DNSSEC protocol mandates for a resource record to be discarded from the zone file only in if
its TTL has expired.

This problem was independently discovered and pointed out by Bau and Mitchell in [BM10],
where they study the security properties of a restricted model of DNSSEC using model checking
techniques. We adhere to their recommendation that the resolver logic specified in the corre-
sponding RFC [AAL+05a] should be strengthened so as to prevent the identified problem.

We now proceed to provide a formal argument that the (incomplete) current specification
of the zone key rollover procedure may facilitate the occurrence of inconsistent chains of trust.
DNSSEC provides no mechanisms to validate a cached resource record faced to another signature
in its attestation chain. We shall show that if for some reason it is performed a rollover of the
zone key for a given server (srv) which has not yet arrived to its TTL a resolver (srvOldCache)
caching the corresponding resource record (identified by its index a) signed with the old zone

15 / 20 Volume 48 (2011)

A Formal Specification of the DNSSEC Model

key may keep cached that resource record for the entire signature validity period, turning the
previous valid chain of trust into an inconsistent one.

We assume that the server srvOldCache has information in its cache view corresponding to
the authoritative zone of the server srv, i.e. for an index a:

((s.viewAuth srv) a).RRsign = ((s.viewCache srvOldCache) a).RRsign (1)

Now, let us consider a correct execution of the event Server ZSK rollover. Thus, for arbitrary
s′ : State and rrzsk : RR, the following predicates are verified:

Valid s

Pre s (Server ZSK rollover srv rrzsk)

Post s s′ (Server ZSK rollover srv rrzsk)

Therefore, when performing a rollover of the zone key zsk for the server srv, the following
inconsistency will take place:

((s′.viewAuth srv) a).RRsign 6= ((s′.viewCache srvOldCache) a).RRsign (2)

The proof will be performed by reduction to the absurd, assuming that the mentioned incon-
sistency in fact does not occur, considering as valid:

((s′.viewAuth srv) a).RRsign = ((s′.viewCache srvOldCache) a).RRsign (3)

We know from the postcondition of the event Server ZSK rollover that:

(s′.ServerKeys srv).zsk.key = rrzsk (4)

∀ i : Idx, ((s′.viewAuth srv) i).RRsign = sign rrzsk (s.viewAuth srv i).RRset ′ (5)

s′.viewCache = s.viewCache (6)

Rewriting (6) and then (1) in (3) we have that:

((s′.viewAuth srv) a).RRsign = ((s.viewAuth srv) a).RRsign (7)

Now, considering that if a given record RR is signed with two different zsk keys, different RRSIG
records are obtained, we arrive to:

((s′.viewAuth srv) a).RRsign 6= ((s.viewAuth srv) a).RRsign (8)

The propositions (7) and (8) reflects an absurd. This allow us to conclude that (2) holds.

5 Conclusion and Future Work

We have developed an abstract model of DNS that incorporates the security extensions defined
by the DNSSEC specification suite. We have established and proved the security properties re-
quired to be satisfied by the operational behaviour of an implementation of this version of DNS,

Proc. OpenCert 2011 16 / 20

ECEASST

which is specified in our model by an abstract state and the events that represent the working of
the system. In particular, this result provides a formal means to assess the effectiveness of a (cor-
rect) deployment of the security requirements specified by DNSSEC to prevent cache poisoning
attacks.

In addition to that, we have identified an exploitable vulnerability that, according to our un-
derstanding, emerges as a flaw of the specification in question. As shown in Section 4, the
conditions that must be verified in the case a rollover of a zone key must be performed, as
specified in the RFC 4033 [AAL+05a], do not suffice to ensure the validity of the chain of
trust. We have sketched in this article a formal proof that shows how the chain of trust can
be compromised if only the expiration time of a key is considered as the cause to perform the
rollover procedure. This property is established as a lemma in the formalization available in
http://www.fing.edu.uy/inco/grupos/gsi/sources/dnssec.

The formal development is about 5kLOC of Coq (see Figure 4), including proofs, and forms
a suitable basis for reasoning about DNSSEC.

There are several directions for future work. One Model and basic lemmas 2k
Valid state invariance 3k
Proof of inconsistency 0.2k
Total 5.2k

Figure 4: LOC of Coq development

immediate direction is to extend our specification
and to establish results concerning the impact of
introducing resource records of type NSEC. An
NSEC record points to the next valid name in the
zone file and is used to provide proof of non-existence
of names within a zone. Through repeated queries
that return NSEC records it is possible to retrieve all of the names in the zone, a process com-
monly called walking the zone. This side effect of the NSEC architecture subverts policies fre-
quently implemented by zone owners which forbid zone transfers by arbitrary clients. We see as
an interesting and challenging task to specify ways of preventing zone walking by constructing
NSEC records that cover fewer names [WI06].

We also intend to obtain an executable specification of the model in a high level functional
language. This prototype shall be constructed as an algorithm that verifies the formal specifica-
tion that has been developed and it shall be codified also using the proof assistant Coq. Once
verified, it could be derived, using the program extraction mechanism of Coq, a high-level and
correct implementation of the specified system.

Bibliography

[AA04] D. Atkins, R. Austein. Threat analysis of the domain name system. In DNS). RFC
3833, Internet Engineering Task Force. 2004.

[AAL+05a] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose. DNS Security Introduction
and Requirements. RFC 4033 (Proposed Standard), Mar. 2005. Updated by RFC
6014.
http://www.ietf.org/rfc/rfc4033.txt

[AAL+05b] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose. Protocol Modifications for
the DNS Security Extensions. RFC 4035 (Proposed Standard), Mar. 2005. Updated

17 / 20 Volume 48 (2011)

http://www.fing.edu.uy/inco/grupos/gsi/sources/dnssec
http://www.ietf.org/rfc/rfc4033.txt

A Formal Specification of the DNSSEC Model

by RFCs 4470, 6014.
http://www.ietf.org/rfc/rfc4035.txt

[AAL+05c] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose. Resource Records for the
DNS Security Extensions. RFC 4034 (Proposed Standard), Mar. 2005. Updated by
RFCs 4470, 6014.
http://www.ietf.org/rfc/rfc4034.txt

[ABD+] R. Arends, R. Bellgrim, A. Dalitz, J. A. Dickinson, J. Jansen, S. Lloyd,
M. Mekking, S. Morris, R. Post, Y. Schaeffer, J. Schlyter, P. Wallstrm. The
OpenDNSSEC project.
http://www.test.org/doe/

[Baz11] E. Bazan. Especificación formal del modelo DNSSEC en el cálculo de construc-
ciones inductivas. Master’s thesis, FCEIA, Universidad Nacional de Rosario, Ar-
gentina, Oct. 2011.

[BC04] Y. Bertot, P. Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer-Verlag, 2004.
http://www.labri.fr/publications/l3a/2004/BC04

[Bel89] S. M. Bellovin. Security problems in the TCP/IP protocol suite. SIGCOMM Com-
put. Commun. Rev. 19:32–48, April 1989.
doi:http://doi.acm.org/10.1145/378444.378449
http://doi.acm.org/10.1145/378444.378449

[Bel95] S. M. Bellovin. Using the Domain Name System for System Break-ins. In Pro-
ceedings of the 5th conference on USENIX UNIX Security Symposium - Volume 5.
Pp. 18–18. USENIX Association, Berkeley, CA, USA, 1995.
http://dl.acm.org/citation.cfm?id=1267591.1267609

[BM10] J. Bau, J. C. Mitchell. A Security Evaluation of DNSSEC with NSEC3. IACR Cryp-
tology ePrint Archive 2010:115, 2010.

[Cer01] C. Cert/c. CERT Advisory CA-2001-02 Multiple Vulnerabilities in BIND. Aug.
2001.
http://www.cert.org/advisories/CA-2001-02.html

[CH88] T. Coquand, G. Huet. The Calculus of Constructions. In Information and Compu-
tation. Volume 76(2/3), pp. 95–120. Academic Press, Feb./Mar. 1988.

[CL00] S. Cheung, K. N. Levitt. A Formal-Specification Based Approach for Protecting
the Domain Name System. In Proceedings of the IEEE International Conference
on Dependable Systems and Networks. Pp. 25–28. 2000.

[CP90] T. Coquand, C. Paulin-Mohring. Inductively defined types. In Martin-Löf and
Mints (eds.), COLOG-88, International Conference on Computer Logic, Tallinn,

Proc. OpenCert 2011 18 / 20

http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.test.org/doe/
http://www.labri.fr/publications/l3a/2004/BC04
http://dx.doi.org/http://doi.acm.org/10.1145/378444.378449
http://doi.acm.org/10.1145/378444.378449
http://dl.acm.org/citation.cfm?id=1267591.1267609
http://www.cert.org/advisories/CA-2001-02.html

ECEASST

USSR, December 1988. Lecture Notes in Computer Science 417, pp. 50–66.
Springer-Verlag, 1990.

[CS94] P. U. D. of Computer Sciences, C. Schuba. Addressing weaknesses in the domain
name system protocol. CSD-TR / Computer Sciences Department, Purdue Univer-
sity n.o 28. Purdue University, Dept. of Computer Sciences, 1994.
http://books.google.com/books?id=QDHDPgAACAAJ

[Dav99] D. Davidowicz. Domain Name System (DNS) Security. 1999.
http://compsec101.antibozo.net/papers/dnssec/dnssec.html

[Fou11] T. I. I. Foundation. .se Top Level Domain. 2011.
http:/www.iis.se/

[Gav93] E. Gavron. RFC 1535: A Security Problem and Proposed Correction With Widely
Deployed DNS Software. Oct. 1993. Status: INFORMATIONAL.
ftp://ftp.internic.net/rfc/rfc1535.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc1535.txt

[IAN11] IANA. Interim Trust-Anchor Repository. 2011.
https:/itar.iana.org

[IRL11] U. C. D. Internet Research Lab. The SecSpider DNSSEC Monitoring Project. 2011.
http:/secspider.cs.ucla.edu/

[LA06] C. Liu, P. Albitz. DNS and BIND. Fifth edition, 2006.
http://www.oreilly.com/catalog/9780596100575

[Ler09] X. Leroy. Formal verification of a realistic compiler. Commun. ACM 52:107–115,
July 2009.
doi:http://doi.acm.org/10.1145/1538788.1538814
http://doi.acm.org/10.1145/1538788.1538814

[Moc87a] P. Mockapetris. Domain names - concepts and facilities. RFC 1034 (Standard),
Nov. 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308,
2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936.
http://www.ietf.org/rfc/rfc1034.txt

[Moc87b] P. Mockapetris. Domain names - implementation and specification. RFC 1035
(Standard), Nov. 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995,
1996, 2065, 2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035,
4343, 5936, 5966.
http://www.ietf.org/rfc/rfc1035.txt

[Nom11] Nominet. Nominet DNSSEC Testbed. 2011.
http://www.nominet.org.uk/registrars/DNSSEC/

19 / 20 Volume 48 (2011)

http://books.google.com/books?id=QDHDPgAACAAJ
http://compsec101.antibozo.net/papers/dnssec/dnssec.html
http:/www.iis.se/
ftp://ftp.internic.net/rfc/rfc1535.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc1535.txt
https:/itar.iana.org
http:/secspider.cs.ucla.edu/
http://www.oreilly.com/catalog/9780596100575
http://dx.doi.org/http://doi.acm.org/10.1145/1538788.1538814
http://doi.acm.org/10.1145/1538788.1538814
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.nominet.org.uk/registrars/DNSSEC/

A Formal Specification of the DNSSEC Model

[PM93] C. Paulin-Mohring. Inductive Definitions in the system Coq - Rules and Properties.
In Proceedings of the International Conference on Typed Lambda Calculi and Ap-
plications. Pp. 328–345. Springer-Verlag, London, UK, 1993.
http://dl.acm.org/citation.cfm?id=645891.671440

[PIR11] P. PIR. Org Top Level Domain. 2011.
http://www.iana.org/domains

[The10] The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.3. 2010.
http://coq.inria.fr

[Vix95] P. Vixie. DNS and BIND security issues. In Proceedings of the 5th conference on
USENIX UNIX Security Symposium - Volume 5. Pp. 19–19. USENIX Association,
Berkeley, CA, USA, 1995.
http://dl.acm.org/citation.cfm?id=1267591.1267610

[WI06] S. Weiler, J. Ihren. Minimally Covering NSEC Records and DNSSEC On-line Sign-
ing. RFC 4470 (Proposed Standard), Apr. 2006.
http://www.ietf.org/rfc/rfc4470.txt

[YOM+11] H. Yang, E. Osterweil, D. Massey, S. Lu, L. Zhang. Deploying Cryptography in
Internet-Scale Systems: A Case Study on DNSSEC. IEEE Trans. Dependable Sec.
Comput. 8(5):656–669, 2011.

Proc. OpenCert 2011 20 / 20

http://dl.acm.org/citation.cfm?id=645891.671440
http://www.iana.org/domains
http://coq.inria.fr
http://dl.acm.org/citation.cfm?id=1267591.1267610
http://www.ietf.org/rfc/rfc4470.txt

	Introduction
	A Primer on the Vulnerabilities of DNS
	Formalization of the DNSSEC Model
	Notation
	Formalizing States
	Secure Resource Records
	The Distributed Database
	DNS Message
	Pending Submissions
	System Keys
	Delegations
	System State
	Valid State

	Events
	Syntax
	Semantics
	Errors
	One-step Execution

	Verification of Security Properties
	An Invariant of One-step Execution
	Compromising the Chain of Trust

	Conclusion and Future Work

