
Electronic Communications of the EASST
Volume 3 (2006)

Proceedings of the
Third Workshop on Software Evolution

through Transformations:
Embracing the Change

(SeTra 2006)

Exogenous Model Merging by means of Model Management Operators

Artur Boronat, Jośe Á. Carśı and Isidro Ramos

19 pages

Guest Editors: Jean-Marie Favre, Reiko Heckel, Tom Mens
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Exogenous Model Merging by means of Model Management
Operators

Artur Boronat 1, Jośe Á. Carsı́ 2 and Isidro Ramos3

1 aboronat@dsic.upv.es, 2 pcarsi@dsic.upv.es, 3 iramos@dsic.upv.es
http://issi.dsic.upv.es

Information Systems and Computation Department
Technical University of Valencia, Spain

Abstract: In Model-Driven Engineering, model merging plays a relevant role in
the maintenance and evolution of model-based software. Depending on the amount
of metamodels involved in a model merging process, we can classify model merg-
ing techniques in two categories: endogenous merging, when all the models to be
merged conform to the same metamodel; and exogenous merging, when the models
to be merged conform to different metamodels. MOMENT (MOdel manageMENT)
is a framework that is integrated in the Eclipse platform, and provides a collection
of generic set-oriented operators to manipulate MOF models, following the Model
Management discipline. In this paper, we study how model transformations are use-
ful in a model merging process and we provide a solution for both kinds of model
merging by means of model management operators and the QVT Relations lan-
guage.

Keywords: Model-Driven Architecture, Model Management, Exogenous Model
Merging, QVT Relations

1 Introduction

Software merging is an essential aspect of the maintenance and evolution of large-scale infor-
mation systems. Information systems can be specified by means of models in Model-Driven
Engineering. Models collect the information that describes the information system at a high
level of abstraction, which permits the development of the application in an automated way us-
ing generative programming techniques. The consolidation of the Meta-Object Facility standard
[OMG04] as a four-layer architecture, where metamodels can be specified as a set of syntacti-
cal well-formedness rules to define models, permits the definition of modeling domains where
merging processes can be performed. A model merging process can be defined over a meta-
model. Then, any two well-formed models in this metamodel can be merged. Traditionally,
the tasks that are involved in this process have usually been solved in an ad-hoc manner for a
specific context or metamodel: relational databases [BLN86, BDK92], XML schemas [Beh00],
OWL-DL ontologies [HM05] , aspect-oriented modeling [SGS+04], UML models [OWK03],
etc.

[Men02] presents a classification of merge approaches, where domain independence and cus-
tomizability of a generic merge operator to a specific domain are desired features. However,

1 / 19 Volume 3 (2006)

mailto:aboronat@dsic.upv.es
mailto:pcarsi@dsic.upv.es
mailto:iramos@dsic.upv.es
http://issi.dsic.upv.es


Exogenous Model Merging by means of Model Management Operators

the definition of metamodels by means of a common metamodeling language (like MOF, or any
MOF-like implementation) is a desired feature that should be preserved on the grounds that it
permits the development of generic infrastructures to manipulate models.

Following this direction, Model Management [BHP00] is a new emergent discipline that pur-
sues an abstract reusable solution for problems of this kind, independently of the metamodel un-
der study. The Model Management discipline deals with software artifacts by means of generic
operators that do not depend on their internal implementation because they work on mappings
between models [Ber03]. These operators treat models as first-class citizens and increase the
level of abstraction of the solution avoiding programming tasks and improving the reusability of
the solution.

As stated in [BLN86], a model merging process consists of three main phases: a model com-
parison phase, where elements of different models that are equivalent are found; a consistency
checking phase, where conflicts that may appear if we merge equivalent elements are identified,
defining a conflict resolution strategy to eliminate them; and a merging phase, where the equiva-
lent elements that are found in the first step are merged taking into account the conflict strategy
defined in the second step.

Generic model merging approaches provide support for these three phases in different ways.
[AP03] uses MOF identifiers to compare elements in different versions of a same base model.
[BP03, BCE+06] provide a set of model management operators to define equivalence relation-
ships between elements of different models by means mappings, which are used by a merge op-
erator later on. [KPP06] proposes several domain-specific languages to define model comparison
and model merging over metamodels. The model comparison language permits the definition of
equivalence relationships between elements of a metamodel that can be applied over elements
of the corresponding models afterwards. The model merging language embeds the comparison
language so that these equivalence relationships can be used in the merging process.

In our approach, we propose a set of model management operators that use the QVT Relations
language [OMG05] to perform model comparison and model transformation. In a model merging
process where two models are involved, the comparison phase is achieved by defining relations
between elements of the same metamodel. The consistency phase is solved by defining a model
transformation that takes the two models to be merged as input models. Finally, the merging
phase is performed by a generic operator that uses the QVT Relations programs defined in the
previous phases. Thus, we enhance the use of the QVT Relations language within the Model
Management field, avoiding the definition of a new DSL for every model management operator.
In this paper, we show how this approach can be used by providing an example of exogenous
model merging, where the models to be merged conform1 to different metamodels.

The structure of the paper is as follows: Section 2 presents the exogenous model merging
problem; Section 3 introduces theModelGenoperator for model transformation; Section 4 in-
troduces theMergeoperator for model merging; Section 5 provides the solution for the example
in Section 2; Section 6 provides some related works. Finally, Section 7 summarizes the main
contributions of the paper.

1 A model conforms to a metamodel if it is syntactically well-formed by using the constructs of the metamodel.

Proc. SeTra 2006 2 / 19



ECEASST

Figure 1: Exogenous model merging of a UML model and a relational schema.

2 Exogenous Model Merging Scenario

When two models are merged, an equivalence relation must be defined between their correspond-
ing metamodels, associating their elements using a set of relationships. These relationships are
used to identify equivalent elements in different models in order to avoid duplicated information
in the merged model.

Generic approaches to merge models use this concept of equivalence relation, but they do
not usually differentiate between an endogenous and an exogenous model merging. In Fig.
1, we provide an example of exogenous model merging: the integration of a UML model
and a relational schema. We have used the Ecore metamodel [BBM03] as an implementa-
tion for the UML class diagram metamodel, and the relational metamodel that appears in the
Query/View/Transformation (QVT) standard specification [OMG05]. In Fig. 1, the relational
schema is shown in a tree-like form.

In this paper, we use this example to show that an exogenous model merging process is a
generalization of an endogenous model merging process. Therefore, it can be broken down into
simpler processes, which can be solved by means of model management operators. Our approach
for solving the example consists of two steps: a model transformation that permits representing
the UML model as a relational schema; and a model merging between relational schemas. We
present how we deal with model transformation and endogenous model merging in the following
sections.

3 The QVT Relations Language and theModelGenOperator

In the QVT Relations language, a model transformation is defined among several metamodels,
which are called the domains of the transformation. A QVT transformation is constituted by
QVT relations, which become declarative transformation rules. A QVT relation specifies a rela-
tionship that must hold between the model elements of different candidate models. The direction
of the transformation is defined when it is invoked by choosing a specific domain as target. If

3 / 19 Volume 3 (2006)



Exogenous Model Merging by means of Model Management Operators

the target domain is defined in the QVT transformation asenforce, a transformation is performed
by creating the corresponding elements in the target model. If the target domain is defined as
checkonly, just a checking is performed without creating any new element in the target model.
Both kinds of transformations are used in our approach.

A relation can be also constrained by two sets of predicates, awhenclause and awhereclause.
Thewhenclause specifies the conditions under which the relationship needs to hold. Thewhere
clause specifies the condition that must be satisfied by all model elements participating in the
relation.

A transformation contains two kinds of relations: top-level (marked with thetop keyword)
and non-top-level. The execution of a transformation requires that all its top-level relations
hold, whereas non-top-level relations are required to hold only when they are invoked directly or
transitively from the where clause of another relation.

As example, we have taken theUmlToRdbmstransformation that is presented in the MOF
QVT final specification2. The top relation below specifies the transformation of aClass into
a Table. By means of thewhereclause, the relationClassToTableneeds to hold only when
thePackageToSchemarelation holds between the package containing the class and the schema
containing the table. By means of thewhenclause, theClassToTablerelation holds, the relation
AttributeToColumnmust also hold.

top relation ClassToTable{
className: String;
checkonly domain ecoreDomain c: EClass{

ePackage = p:EPackage{},
name=className

};
enforce domain rdbmsDomain t: Table{

schema = s:Schema{},
name = className,
column = cl:Column{

name = className + ’tid’,
type = ’NUMBER’

},
key = k:Key{

name = className + ’pk’,
column=cl

}
};
when{

PackageToSchema(p, s);
}
where{

AttributeToColumn(c, t, className);
}

}
In MOMENT, a model transformation can be applied to several source models, which may

or may not conform to the same metamodel. When the transformation is invoked, it generates
one target model and a set of traceability models. A traceability model contains a set of traces

2 In this paper, we are using a version of this transformation in which we consider Ecore as an implementation of
the UML Class Diagram metamodel. The version of the transformation that is used is presented in Appendix B.

Proc. SeTra 2006 4 / 19



ECEASST

Figure 2: Traceeability Editor in the MOMENT Framework.

that relate the elements of the source model to the elements of the target model, indicating which
transformation rule has been applied to each source element. A QVT Relations enforced trans-
formation is executed by means of theModelGenoperator as follows:

< out put model, trac1, ..., tracn >= ModelGen(trans f ormation, input model1, ..., input modeln)

wheretrans f ormationis the name of the QVT transformation;input model1, ..., input modeln
are the input models, which may conform to different metamodels;out put modelis the gener-
ated model; andtrac1, ..., tracn are the trace models that are generated for each one of the
corresponding input models.

Fig. 2 presents the traceability editor of the MOMENT framework. This editor shows the
trace model that is generated by theUmlToRdbmstransformation, when it is applied to the UML
model that is defined in Fig. 1. This transformation constitutes the first step of the exogenous
model merging process. Trace models in our framework conform to our traceability metamodel,
which was presented in [BCR05]. The traceability editor is constituted by three main frames,
the left frame shows an input model of the transformation, the right frame shows the output
generated model and the frame in the middle shows the traces that relate elements of the input
model to elements of the target model. Traces also provide information about the transformation
rule (or relation) that has been applied to source elements to generate the corresponding trace
and the related target elements.

5 / 19 Volume 3 (2006)



Exogenous Model Merging by means of Model Management Operators

4 TheMergeOperator

TheMergeoperator takes two models as input and produces a third one. If A and B are models
that conform to the same metamodel, the application of theMergeoperator on them produces a
model C, which consists of the members of A together with the members of B, i.e. the union of
A and B. Taking into account that duplicates are not allowed in a model, the union is disjoint.

To understand the semantics of theMergeoperator in our example, we need to introduce two
concepts: the equivalence relation, for finding duplicates by comparing models, and the conflict
resolution strategy, for integrating them.

4.1 The equivalence relation

In an endogenous model merging, an equivalence relation is defined between elements that be-
long to different models that conform to the same metamodel. To define an equivalence relation
among the elements of a model in our approach, the user can use the QVT Relation language
in the checkonly mode. Only checkonly transformations with two domains are accepted in this
context. Both domains have to refer to the same metamodel in our approach. For the example,
we customize theMergeoperator to merge relational schemas, i.e., models that conform to the
RDBMSmetamodel of Appendix A. To do so we use a checkonly QVT Transformation whose
domains refer to theRDBMSmetamodel. The user can add a QVT relation for each of the classes
that appear in the metamodel when it is desired. Such QVT relations act as equivalence relation-
ships that must hold over the elements of twoRDBMSmodels. These QVT relations are used in
the merging process to check when two elements are equivalent in order to eliminate duplicates.

For instance, the following relation can be defined to indicate that two tables are the same
if they belong to the same schema and they have the same name by means of thetableName
variable3:
top relationTableEquivalence{

tableName: String;
checkonly domainrdbmsDomain1 t1: Table{

schema = s1:Schema{},
name=tableName

};
checkonly domainrdbmsDomain2 t2: Table{

schema = s2:Schema{},
name=tableName

};
when{

SchemaEquivalence(s1, s2);
}

}
where theSchemaEquivalenceis another QVT Relation defined within the same transformation,
describing when two Schema instances are equivalent (for instance, by name). In our approach,
this kind of equivalences may involve several instances of two models as in the above example,

3 We have chosen these criteria for the example. Nevertheless, they can be customized to a specific metamodel
by the user. Nothing impedes us to add semantic annotations to the elements of a model and use this information to
determine which elements are equals or not.

Proc. SeTra 2006 6 / 19



ECEASST

whereTableinstances andSchemainstances are used to check whether two tables are equivalent
or not.

During the merging process, this checkonly transformation permits checking when groups
of elements of different models represent duplicate elements so that they will be merged. In a
checkonly QVT transformation, helper functions can be defined by using OCL expressions to
manipulate and compare names, and to navigate the structure of the corresponding model. Thus,
the user only has to be aware of the standard QVT Relations language and the domain-specific
knowledge.

4.2 The conflict resolution strategy

During a model merging process, when two software artifacts (each of which belongs to a dif-
ferent model) are supposed to be equivalent, one of them must be erased. Their syntactical
differences may cast doubt on which should be the syntactical structure for the merged element.
Here, the conflict resolution strategy comes into play. The conflict resolution strategy is a model
transformation that has two input models and one output model, the merged one. The generic
semantics of this strategy in our framework consists of the preferred model strategy. When the
Mergeoperator is applied to two models, one has to be chosen as preferred (the first argument
of theMergeoperator). In this way, when two groups of elements (that belong to different mod-
els) are equivalent due to an equivalence relation, the elements of the preferred model prevail
although they may differ syntactically.

To refine theMergeoperator, the conflict resolution strategy can also be customized. During
the merging process, when theMergeoperator finds two duplicates, they should be integrated.
This integration involves a transformation process where information of both duplicates may be
taken into account to define the merged model. Thus, an enforced QVT transformation can be
used to customize the conflict resolution strategy in the same way a checkonly QVT transforma-
tion is used to customize the generic equivalence relation.

A QVT transformation that is used to define a specific conflict resolution strategy has three
domains. All of them refer to the metamodel under study (RDBMSin our example). The first two
domains are defined as checkonly and they only query the two input models of theMergeopera-
tor. The third domain is defined as enforce and is the one that produces merged elements. In the
case study, when we integrate two tables that are equivalent (because they have the same name),
we have to integrate their respective columns, primary keys and foreign keys. The following
QVT Relation is intended to perform this task:
top relationTableMerging{

tableName: String;
checkonly domainrdbmsDomain1 t1: Table{

schema = s1:Schema{},
name = tableName

};
checkonly domainrdbmsDomain2 t2: Table{

schema = s2:Schema{},
name = tableName

};
enforce domainrdbmsDomain3 t3: Table{

schema = s3:Schema{},

7 / 19 Volume 3 (2006)



Exogenous Model Merging by means of Model Management Operators

name = tableName
};
when{

SchemaMerging(s1, s2, s3);
}
where{

ColumnMerging(t1, t2, t3);
PKMerging(t1, t2, t3);
FKMerging(t1, t2, t3);

}
}
where theSchemaMergingQVT relation, which is invoked in thewhenclause, ensures that
the container schemas of bothTable instances must be equivalent in order to apply the current
relation to the involved tables. The QVT Relations that are invoked in thewhereclause ensure
that the merging process will go on by merging columns, primary keys and foreign keys of the
involved tables.

The enforce QVT transformation that the user defines to customize the conflict resolution
strategy is automatically compiled into aModelGenequation as briefly introduced in the previous
section4.

4.3 TheMergeoperator

TheMergeoperator takes two models that conform to the same metamodel as inputs. The outputs
of theMergeoperator are a merged model (mergedmodel) and two models of traces (trac1 and
trac2) that relate the elements of each input model (model1 andmodel2) to the elements of the
output merged model. The operator is used as follows:

< mergedmodel, trac1, trac2 >= Merge(model1,model2)

The Mergeoperator uses the equivalence relation that is defined for a metamodel to detect
duplicated elements between the two input models. When two duplicated elements are found,
the conflict resolution strategy is applied to them in order to obtain merged elements, which are
then added to the output model. The elements that belong to only one model, without being
duplicated in the other one, are copied into the merged model.

The two output trace models are automatically generated by theMergeoperator on the grounds
that it reuses the model transformation mechanism that is described in Section 3, through the
conflict resolution strategy. These trace models provide full support for keeping traceability
between the input models and the new merged one. The second step of the exogenous model
merging in the example constitutes a merging process that involves the modelRDBMS’and the
modelRDBMS. The modelRDBMS’ is the result of applying theUmlToRdbmstransformation
(defined in Appendix B) to the modelUML that is defined in Fig. 1, as explained in Section 3.
The modelRDBMSis provided in Fig. 1. In Fig. 3, we show the trace model that is generated
during this merging process for theRDMBS’model (shown in the left frame of the editor). The
model that appears in the right frame of the editor is the final merged relational schema.

4 More information about the semantics of theMergeoperator can be found in [BCRL06]

Proc. SeTra 2006 8 / 19



ECEASST

Figure 3: Trace model that is produced during the merging of the modelsRDBMS’andRDBMS.

5 Exogenous Model Merging in MOMENT

The exogenous model merging problem consists in the merging of two models that conform to
different metamodels, as in the example in Section 2. This problem can be divided into simpler
ones that can be solved by two simple model management operators. A composite operator,
calledExogenousMerge, can be defined for this purpose by composing theMergeoperator and
theModelGenoperator. This operator has three arguments: the model A, which conforms to the
metamodelMMA (the Ecoremetamodel in our example); the model B, which conforms to the
metamodelMMB (theRDBMSmetamodel in our example); and the name of the QVT transfor-
mation that must be defined between between the metamodelsMMA andMMB (umlToRdbmsin
our example). In the first step, model A is transformed into a model B’, which conforms to the
metamodelMMB by means of the operatorModelGen. This step has been performed in Section
3. In the second step, models B and B’ are merged within the metamodelMMB. This step has
been performed in Section 4. Finally, the merged modelresult is the output of the composite
operator. The definition of theExogenousMergecomposite operator is as follows:

operator ExogenousMerge (A : MMA, B : MMB, T : Transformation) =
<B’, mapA−>B′ > = ModelGen(T, A) (1)
<result, mapA−>B′ , mapA−>B> = Merge (B’, B) (2)

return (result)

The ExogenousMergeoperator is defined independently of any metamodel so that it can be
reused to merge two models that conform to any metamodel. In this example, we have not

9 / 19 Volume 3 (2006)



Exogenous Model Merging by means of Model Management Operators

taken into account the trace models that are generated by theModelGenandMergeoperators.
Nevertheless, another version of the operator could generate traceability models as result of the
ExogenousMergeoperator.

Figure 4: Application of theExogenousMergeoperator to the example in Section 2.

Fig. 4 graphically represents the merging process that is performed by the operatorExoge-
nousMergefor solving the example that is shown in Section 2. In the example, parameter A
corresponds to the UML model and parameter B corresponds to the RDBMS model in Fig. 4.
To be able to apply the operator, the equivalence relation for the RDBMS metamodel and the
transformation function between the UML and the Relational metamodels must be previously
defined by the user.

6 Related Work

Generic model merging approaches take into account the phases that were discussed in [BLN86]
to merge database schemas. These approaches can be differentiated by the mechanism that is
used to perform model comparison.

[AP03] uses MOF identifiers to compare elements in different versions of a same base model.
Although this approach is effective, only versions of a same base model can be compared and
merged.

[BP03, BCE+06] provide a set of model management operators to define equivalence relation-
ships between elements of different models by means of mappings, which are used by a merge
operator later on. In this approach, theMergeoperator receives two models (A and B) and a
mapping model (mapAB) between them as inputs, and it produces the merged model C and two
new mapping models(mapAC and mapBC):<C, mapAC, mapBC> = Merge (A, B, mapAB).

In the AMMA platform [FJ05], the Generic Model Weaver AMW is a tool that permits the
definition of mapping models (called weaving models) between MOF models in the ATLAS

Proc. SeTra 2006 10 / 19



ECEASST

Model Management Architecture. AMW provides a basic weaving metamodel that can be ex-
tended to permit the definition of complex mappings. These mappings are usually defined by
the user, although they may be inferred by means of heuristics, as in [MBR01]. These mapping
models are used, together with the mapped models in a model transformation to perform a model
composition.

In MOMENT, mapping models are introduced as trace models that are generated by model
management operators. This is because operators do not have to rely on them to be applied
to a set of models. In MOMENT, mappings between the elements of two models are defined
between the elements of their corresponding metamodels by means of checkonly QVT Relations.
This permits a clearer specification of composite operators. Trace models are produced by the
application of a simple operator to a set of models and keep information about the manipulation
task that has been performed to a model.

[KPP06] proposes several domain-specific languages to define model comparison and model
merging over metamodels. The model comparison language enhances the definition of equiva-
lence relationships between elements of a metamodel that can be applied over the elements of the
corresponding models afterwards. In this language, a differentiation between matching and con-
formance is provided. While a matching mapping indicates when two elements are equivalent, a
conformance mapping indicates when two elements are equivalent and consistent to be merged.
In this approach, when an equivalence relationship based on names is used, two elements do not
conform to each other if they have different types, for instance. In our approach, we use the QVT
Relations language to perform model comparison and model transformation. This feature aims
at decreasing the learning curve of our framework since there is only one language, which has
been specified as an standard. The QVT Relation language does not provide such a differentia-
tion between conformance and matching. Since two elements that do not conform to each other
are usually interpreted as an error, we collapse the conformance and matching conditions in a
relation. However, a transformation with conformance relations could be defined for a specific
metamodel. Then, this transformation could be specialized with user-defined checkonly relations
for defining equivalence relationships.

7 Conclusions

Model merging plays a relevant role in the maintenance and evolution of model-based software.
Systems of this kind are usually represented by models that conform to different metamodels.
Thus, two kinds of merging processes arise by considering the amount of metamodels that are
involved: endogenous merging and exogenous merging. In an endogenous merging process, the
models that are merged conform to the same metamodel. In an exogenous merging process, the
models that are merged conform to different metamodels.

The MOMENT framework is a model management framework that provides operators to ma-
nipulate models on top of a MOF architecture, such asMergefor model merging andModelGen
for model transformations. In our approach, model management operators are defined indepen-
dently of any metamodel, keeping a generic infrastructure, but they might be customized by an
expert user with domain-specific knowledge by means of standard languages, such as OCL and
QVT.

11 / 19 Volume 3 (2006)



Exogenous Model Merging by means of Model Management Operators

In this paper, we have presented how model transformations are supported in MOMENT
through the QVT Relations language and how model transformations play an important role
in a model merging process. We have used the standard QVT Relations for this purpose instead
of providing new languages for model comparison and model merging. To study the aforemen-
tioned kinds of model merging, we have described a solution for an endogenous model merging
process by using model transformations through theMergeoperator. Finally, we have provided
a generic solution for exogenous model merging by reusing model transformations and endoge-
nous model merging.

Acknowledgements:
This work was supported by the Spanish Government under the National Program for Re-

search, Development and Innovation, DYNAMICA Project TIC 2003-07804-C05-01.
We are grateful to Abel Ǵomez, Pascual Queralt, Joaquı́n Oriente and Luis Hoyos for their

effort in the development of the MOMENT Framework.

Bibliography

[AP03] M. Alanen, I. Porres. Difference and Union of Models. In Stevens et al. (eds.),
UML 2003 - The Unified Modeling Language. Model Languages and Applications.
6th International Conference, San Francisco, CA, USA, October 2003, Proceedings.
LNCS 2863, pp. 2–17. Springer, 2003.

[BBM03] F. Budinsky, S. A. Brodsky, E. Merks.Eclipse Modeling Framework. Pearson Educa-
tion, 2003.

[BCE+06] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, M. Sabetzadeh. A man-
ifesto for model merging. InGaMMa ’06: Proceedings of the 2006 international
workshop on Global integrated model management. Pp. 5–12. ACM Press, New York,
NY, USA, 2006.

[BCR05] A. Boronat, J. A. Carśı, I. Ramos. Automatic Support for Traceability in a Generic
Model Management Framework. In Hartman and Kreische (eds.),Model Driven Ar-
chitecture - Foundations and Applications, First European Conference, ECMDA-FA
2005, Nuremberg, Germany, November 7-10, 2005. Lecture Notes in Computer Sci-
ence 3748, pp. 316–330. Springer, 2005.

[BCRL06] A. Boronat, J. A. Carśı, I. Ramos, P. Letelier. Formal Model Merging Applied to
Class Diagram Integration.Electr. Notes Theor. Comput. Sci., 2006.

[BDK92] P. Buneman, S. B. Davidson, A. Kosky. Theoretical Aspects of Schema Merging. In
Extending Database Technology. Pp. 152–167. 1992.

[Beh00] R. Behrens. A Grammar Based Model for XML Schema Integration.Lecture Notes
in Computer Science1832:172, 2000.

Proc. SeTra 2006 12 / 19



ECEASST

[Ber03] P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. In
Proceedings of the 1st Biennial Conference on Innovative Data Systems Research
(CIDR). 2003.

[BHP00] P. A. Bernstein, A. Y. Halevy, R. A. Pottinger. A vision for management of complex
models.SIGMOD Record (ACM Special Interest Group on Management of Data)
29(4):55–63, 2000.

[BLN86] C. Batini, M. Lenzerini, S. B. Navathe. A comparative analysis of methodologies for
database schema integration.ACM Comput. Surv.18(4):323–364, 1986.

[BP03] P. A. Bernstein, R. A. Pottinger. Merging Models Based on Given Correspondences.
In Proceedings of the 29th VLDB Conference. Berlin, 2003.
http://www.cs.washington.edu/homes/rap/publications/pottinger-bernstein-vldb03.
pdf

[FJ05] M. D. D. Fabro, F. Jouault. Model Transformation and Weaving in the AMMA Plat-
form. InPre-proceedings of the Generative and Transformational Techniques in Soft-
ware Engineering (GTTSE’05), Workshop. Pp. 71–77. Centro de Ciências e Tecnolo-
gias de Computaao, Departemento de Informatica, Universidade do Minho, Braga,
Portugal, 2005.

[HM05] P. Haase, B. Motik. A mapping system for the integration of OWL-DL ontologies.
In IHIS ’05: Proceedings of the first international workshop on Interoperability of
heterogeneous information systems. Pp. 9–16. ACM Press, New York, NY, USA,
2005.

[KPP06] D. S. Kolovos, R. F. Paige, F. A. Polack. Model comparison: a foundation for model
composition and model transformation testing. InGaMMa ’06: Proceedings of the
2006 international workshop on Global integrated model management. Pp. 13–20.
ACM Press, New York, NY, USA, 2006.

[MBR01] J. Madhavan, P. A. Bernstein, E. Rahm. Generic Schema Matching Using Cupid. In
Proc. VLDB 2001. Pp. 49–58. 2001.
http://www.research.microsoft.com/research/db/ModelMgt/CupidVLDB01.pdf

[Men02] T. Mens. A State-of-the-Art Survey on Software Merging.IEEE Transactions on Soft-
ware Engineering28(5):449–462, 2002.

[OMG04] OMG, Object Management Group. Meta Object Facility (MOF) 2.0 Core Specifica-
tion (ptc/04-10-15). 2004.
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[OMG05] OMG, Object Management Group. MOF 2.0 QVT final adopted specification (ptc/05-
11-01). 2005.
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01

13 / 19 Volume 3 (2006)

http://www.cs.washington.edu/homes/rap/publications/pottinger-bernstein-vldb03.pdf
http://www.cs.washington.edu/homes/rap/publications/pottinger-bernstein-vldb03.pdf
http://www.research.microsoft.com/research/db/ModelMgt/CupidVLDB01.pdf
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01


Exogenous Model Merging by means of Model Management Operators

[OWK03] D. Ohst, M. Welle, U. Kelter. Differences between versions of UML diagrams. In
ESEC/FSE-11: Proceedings of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international symposium on Foundations of
software engineering. Pp. 227–236. ACM Press, New York, NY, USA, 2003.

[SGS+04] G. Straw, G. Georg, E. Song, S. Ghosh, R. B. France, J. M. Bieman. Model Compo-
sition Directives. InUML. Pp. 84–97. 2004.

Proc. SeTra 2006 14 / 19



ECEASST

A RDBMS Metamodel

Figure 5: RDBMS metamodel.

B An Ecore to RDBMS Transformation by means of the QVT Re-
lations Language

transformation umlToRdbms(ecoreDomain:ecore, rdbmsDomain:rdbms){
key Schema{name};
key Table{schema,name};
key Column{owner,name};
key ForeignKey{owner,name};

top relation PackageToSchema{
packageName: String;
checkonly domain ecoreDomain p:EPackage{

name=packageName
};
enforce domain rdbmsDomain s:Schema{

name=packageName
};

}//end PackageToSchema

top relation ClassToTable{
className: String;

15 / 19 Volume 3 (2006)



Exogenous Model Merging by means of Model Management Operators

checkonly domain ecoreDomain c: EClass{
ePackage = p:EPackage{},
name=className

};
enforce domain rdbmsDomain t: Table{

schema = s:Schema{},
name = className,
column = cl:Column{

name = className + ’tid’,
type = ’NUMBER’

},
key = k:Key{

name = className + ’pk’,
column=cl

}
};
when{

PackageToSchema(p, s);
}
where{

AttributeToColumn(c, t, className);
}

}//end ClassToTable

relation AttributeToColumn
{

checkonly domain ecoreDomain c:EClass{};
checkonly domain rdbmsDomain t:Table{};

primitive domain prefix:String;
where{

PrimitiveAttributeToColumn(c, t, prefix);
SuperAttributeToColumn(c, t, prefix);

}
}//end AttributeToColumn

relation PrimitiveAttributeToColumn
{

attributeName, columnName, sqltype: String;
checkonly domain ecoreDomain c:EClass{

eAttributes = a:EAttribute{}
};
checkonly domain rdbmsDomain t:Table{};
primitive domain prefix:String;
where{

Proc. SeTra 2006 16 / 19



ECEASST

PrimitiveAttributeToColumneAttributes(a,t,prefix);
}

}//end PrimitiveAttributeToColumn

relation PrimitiveAttributeToColumneAttributes
{

attributeName, columnName, ecoreTypeName, sqltype: String;
checkonly domain ecoreDomain a:EAttribute{

name = attributeName,
eType = ecoretype: EDataType{

name = ecoreTypeName
}

};
checkonly domain rdbmsDomain t:Table{};
enforce domain rdbmsDomain cl:Column{

name = (
if (prefix = ”) then

attributeName
else

prefix + ’ ’ + attributeName
endif

),
type = PrimitiveTypeToSqlType(ecoreTypeName),
owner = t

};
primitive domain prefix:String;
when{

IsPrimitiveDatatype(ecoreTypeName);
}

}//end relation

relation SuperAttributeToColumn
{
checkonly domain ecoreDomain c: EClass{

eSuperTypes = sc:EClass{}
};
checkonly domain rdbmsDomain t:Table{};

primitive domain prefix: String;
where{

AttributeToColumn(sc, t, prefix);
}

}

top relation AssocToFKey
{

17 / 19 Volume 3 (2006)



Exogenous Model Merging by means of Model Management Operators

srcTbl, destTbl: Table;
pKey: Key;
referenceName, sourceClassName, targetClassName: String;

checkonly domain ecoreDomain ref: EReference{
name = referenceName,
eContainingClass = sc:EClass{

name = sourceClassName
},
eType = tc:EClass{

name = targetClassName
}

};
enforce domain rdbmsDomain fk:ForeignKey{

name = sourceClassName + ’’ + referenceName + ’’ + targetClassName,
owner = srcTbl,
column = fkc:Column{

name = sourceClassName + ’’ + referenceName + ’’ + targetClassName +
’ tid’,

type = ’NUMBER’,
owner = srcTbl

},
refersTo = ObtainReferredPrimaryKey(destTbl)

};
when{

ClassToTable(sc, srcTbl);
ClassToTable(tc, destTbl);

}
}

function ObtainReferredPrimaryKey(table: Table):Key
{

table.key
}

function IsPrimitiveDatatype(datatype: String):Bool
{

((datatype = ’EInt’) or (datatype = ’EBoolean’) or (datatype = ’EString’) or (datatype
= ’EDate’))

}

function PrimitiveTypeToSqlType(primitiveType:String):String
{

if (primitiveType=’EInt’)
then ’NUMBER’

else if (primitiveType=’EBoolean’)

Proc. SeTra 2006 18 / 19



ECEASST

then ’BOOLEAN’
else

’VARCHAR’
endif

endif
}

function IsDirectedReference(ref:EReference):Bool
{

(ref.eOpposite -> size() = 0)
}

}

19 / 19 Volume 3 (2006)


	Introduction
	Exogenous Model Merging Scenario
	The QVT Relations Language and the ModelGen Operator
	The Merge Operator
	The equivalence relation
	The conflict resolution strategy
	The Merge operator

	Exogenous Model Merging in MOMENT
	Related Work
	Conclusions
	RDBMS Metamodel
	An Ecore to RDBMS Transformation by means of the QVT Relations Language

