
Electronic Communications of the EASST
Volume 55 (2012)

Proceedings of the
XII Spanish Conference on Programming and Computer

Languages
(PROLE 2012)

Tabling with Support for Relational Features in a
Deductive Database

Fernando Sáenz-Pérez

16 pages

Guest Editors: Marı́a-del-Mar Gallardo
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Tabling with Support for Relational Features in a
Deductive Database

Fernando Sáenz-Pérez1∗

Grupo de programación declarativa (GPD),
Dept. Ingenierı́a del Software e Inteligencia Artificial,

Universidad Complutense de Madrid, Spain1

Abstract: Tabling has been acknowledged as a useful technique in the logic pro-
gramming arena for enhancing both performance and declarative properties of pro-
grams. As well, deductive database implementations benefit from this technique for
implementing query solving engines. In this paper, we show how unusual opera-
tions in deductive systems can be integrated with tabling. Such operations come
from relational database systems in the form of null-related (outer) joins, duplicate
support and duplicate elimination. The proposal has been implemented as a proof
of concept rather than an efficient system in the Datalog Educational System (DES)
using Prolog as a development language and its dynamic database.

Keywords: Tabling, Outer Joins, Duplicates, Relational databases, Deductive databases,
DES

1 Introduction

Tabling is a useful implementation technique embodied in several current logic programming
systems, such as B-Prolog [ZS03], Ciao [GCH+08], Mercury [SS06], XSB [SW10], and Yap
Prolog [RSC05], to name just a few. This technique walks by two orthogonal axes: performance
and declarative properties of programs. Tabling enhances the former because repeated computa-
tions are avoided since previous results are stored and reused. The latter axis is improved because
order of goals and clauses are not relevant for termination purposes. In fact, tabled computations
in the context of finite predicates and bounded term depths are terminating, a property which is
not ensured in top-down SLD computations.

Deductive database implementations with Datalog as query language have benefited from
tabling [RU93, SSW94a, SP11] as an appropriate technique providing performance and a frame-
work to implement query meaning. Terminating queries is a common requirement for database
users. Also, the set oriented answer approach of a tabled system is preferred to the SLD one
answer at a time.

However, “relational” database systems embed features which are not usually present alto-
gether in deductive systems. These include duplicates, which were introduced to account for
bags of data (multisets) instead of sets. Also, the need for representing absent or unknown in-
formation delivered the introduction of null values and outer join operators ranging over such

∗ This author has been partially supported by the Spanish projects STAMP (TIN2008-06622-C03-01), Prometidos-
CM (S2009TIC-1465) and GPD (UCM-BSCH-GR35/10-A-910502)

1 / 16 Volume 55 (2012)

Tabling and Support for Relational Features in a Deductive Database

values. Finally, aggregate functions allow to compute summarized data in terms of (multi)sets
and considering null occurrences. So, these systems are not relational anymore as they depart
from the original relational model, where these features are not considered. In addition, the in-
troduction by major vendors of some of these features in databases are claimed as error sources
and unnecessary [Dat09], but it is a fact that they are widely used by database practitioners.
However, this is rather a debate out of the scope of this paper.

Thus, the aim of this paper is to show how such features can be supported altogether in a
tabled deductive system with Datalog as a query language. To this end, we base our presen-
tation on the grounds of DES (Datalog Educational System) [SP11], a system implemented in
Prolog which runs on different platforms (both Prolog and OS’s), which allows to easily test
new engine implementations. This work extends [SP12b] by describing how tabling is imple-
mented and introducing (tabled) duplicates in the context of a deductive system dealing with
nulls. Supported Prolog platforms along time include Ciao, GNU Prolog, SICStus Prolog and
SWI-Prolog. Because it was thought to be as platform independent as possible, tabling in par-
ticular was implemented as no supported platform provided it (Ciao recently added this feature).
Also, proprietary systems as SICStus Prolog do not provide open sources to modify parts of the
system, as it would be the case for implementing tabling.

The very first motivation for including such features in this system came for the need to support
SQL as a query language in a deductive database. In DES, both Datalog and SQL are supported,
and SQL statements are compiled to Datalog programs and eventually solved by the deductive
inference engine. So, embodying nulls, outer joins and duplicates became a need. However,
as the system was intended for educational purposes since its inception, it is not targeted at
performance and also lacks features such as concurrency, security and others that a practical
database system must enjoy.

Next section introduces DES whereas Section 3 describes its basic implementation of tabling
stemmed from [Die87]. Section 4 explains the tabled support for nulls and outer join opera-
tions, and Section 5 do the same for duplicates. Section 6 gives some hints for performance
improvement. Finally, Section 7 draws some conclusions and points out some future work.

2 Datalog Educational System

The Datalog Educational System (DES) [SP11] is a free, open-source, multiplatform, portable,
in-memory, Prolog-based implementation of a deductive database system. DES 3.0 [SP12a] is
the next shortcoming release, which enjoys Datalog and SQL query languages, full recursive
evaluation with tabling, types, integrity constraints, stratified negation [Ull88], persistency, full-
fledged arithmetic, ODBC connections and novel approaches to Datalog and SQL declarative
debugging [CGS08, CGS11], test case generation for SQL views [CGS10], null value support,
outer join and aggregate predicates and functions [SP11].

DES implements Datalog with stratified negation as described in [Ull88] with safety checks
[Ull88, ZCF+97] and source-to-source program transformations for rule simplification, safety
and compilation. Evaluation of queries is ensured to be terminating as long as no infinite predi-
cates/operators are considered and since only atomic domains are supported (currently, only the
infix operator “is” represents an infinite relation).

Proc. PROLE 2012 2 / 16

ECEASST

A reasonable set (for education purposes) of SQL following ISO standard SQL:1999 is sup-
ported (further revisions of the standard cope with issues such as XML, triggers, and cursors,
which are outside of the scope of DES). SQL row-returning statements are compiled to and ex-
ecuted as Datalog programs (basics can be found in [Ull88]), and relational metadata for DDL
statements are kept. Submitting such a query amounts to 1) parse it, 2) compile to a Datalog
program including the relation answer/n with as many arguments as expected from the SQL
statement, 3) assert this program, and 4) submit the Datalog query answer(X1, . . . ,Xn), where
Xi : i ∈ {1, . . . ,n} are n fresh variables. After its execution, this Datalog program is removed.
On the contrary, if a data definition statement for a view is submitted, its translated program
and metadata do persist. This allows Datalog programs to seamlessly use views created at the
SQL side (also tables since predicates are used to implement them). The other way round is also
possible if types are declared for predicates.

There are available some usual built-in comparison operators (=, \=, >, . . .). When being
solved, all these operators demand ground (variable-free) arguments (i.e., no constraints are al-
lowed up to now) but equality, which performs unification. In addition, arithmetic expressions
are allowed via the infix operator is, which relates a variable/number with an arithmetic expres-
sion. The result of evaluating this expression is assigned/compared to the variable. The predicate
not/1 implements stratified negation. Other built-ins include outer joins and aggregates.

3 Tabling-based Query Solving

The computational model of DES follows a top-down-driven bottom-up fixpoint computation
with tabling, which follows the ideas found in [SD91, Die87, TS86]. In its current form, it can be
seen as an extension of the work in [Die87] in the sense that, in addition, it deals with a modified
algorithm for negation, undefined (although incomplete) information, nulls and aggregates. Also,
instead of translating each tabled predicate for including fixpoint and memoization management
as in [Die87], Datalog rules are stored as dynamic predicates and other predicates explicitly deal
with fixpoint computation as shown next.

3.1 Tabling

DES uses an extension table (following the nomenclature in [Die87], but also known as extension
table) which stores answers to goals previously computed, as well as their calls. For the ease of
the introduction, we assume an extension table (ET implemented with predicate et/1) and a
call table (CT, implemented with predicate called/1) to extensionally store answers and calls,
respectively. Also, annotations for completed computations and its handling, which prevents
some unnecessary computations, are omitted. Answers may be positive or negative, that is, if a
call to a positive goal G succeeds, then, the fact G is added as an answer to the extension table;
if a negated goal not(G) succeeds, then the fact not(G) is added. Negative facts are deduced
when a negative goal is proven by means of negation as failure (closed world assumption (CWA)
[Ull88]). Both positive and negative facts cannot occur in a stratifiable program [Ull88]. Calls
are also added to the call table whenever they are solved. This allows to detect whether a call has
been previously solved and the computed results in the extension table (if any) can be reused.

3 / 16 Volume 55 (2012)

Tabling and Support for Relational Features in a Deductive Database

So, repeated answers are not kept in the extension table.
First occurrence during computation of a tabled goal is known as a generator whilst further

occurrences of subsumed goals are known as consumers. A generator is responsible of building
all the different answers which will be used by its consumers eventually.

The algorithm implementing this idea (following ET algorithm in [Die87]) is depicted next:

% Already called. Call table with an entry for the current call
memo(G) :-

build(G,Q), % Build in Q the same call with fresh variables
called(Q), % Look for a unifiable call in CT for the current call
subsumes(Q,G), % Test whether CT call subsumes the current call
!, %
et_lookup(G). % If so, use the results in extension table (ET)

% New call. Call table without an entry for the current call
memo(G) :-

assertz(called(G)), % Assert the current call to CT
((et_lookup(G)) % First call returns all previous answers in ET
;
(solve_goal(G), % Solve the current call using applicable rules
build(G,Q), % Build in Q the same call with fresh variables
no_subsumed_by_et(Q), % Test whether there is no entry in ET for Q
et_assert(G), % If so, assert the current result in ET
et_changed)). % Flag the change

First clause tests whether there is a previous call that subsumes the current call. For this,
build constructs a term which is a copy up to variable renaming (i.e., implemented with
copy term; more on this later when dealing with nulls). Predicate subsumes/2 on the left
of Figure 1 implements term subsumption, where a general term subsumes a specific term st
if grounding of st variables (as, e.g., via numbervars) makes them unifiable. There are two
possibilities: 1) There is such a previous call subsuming the current one: then, use the result
in the extension table, if any. To this end, predicate et lookup/1 is implemented as a simple
call to the predicate et/1 (et lookup(G) :- et(G).) It is possible that there is no such
a result (for instance, when computing the goal p in the program p :- p) and no more tuples
can be deduced. 2) Otherwise, process the new call. Second clause of memo stores the new call
in CT and then, returns all previous answers in ET (from a previous fixpoint iteration). Next,
it solves the goal with the program rules (recursively applying this algorithm). Once the goal
has been solved (if succeeded), it stores the computed answer if there is no any previous answer
subsuming the current one (note that, via recursion, we can deliver new answers for the same
call). Subsumption is now checked with predicate no subsumed by et/1, shown on the right
of Figure 1. The whole process is known as a memoization process and will also be referred to
as the memo function.

subsumes(General,Specific) :- no_subsumed_by_et(Q,G) :-
\+ \+ (make_ground(Specific), \+ ((et_lookup(Q),

General=Specific). subsumes(Q,G))).

Figure 1: Predicates subsumes and no subsumed by et

Proc. PROLE 2012 4 / 16

ECEASST

3.2 Fixpoint Computation

The memo function is insufficient in itself for computing all possible answers to a goal since
incomplete information is used from the goals in its defining rules (as these goals can be mutually
recursive). Therefore, it is needed to ensure that all the possible information is deduced by
finding a fixpoint of this function, which is implemented as shown next (following ET ∗ [Die87]):

solve_star(Q,St) :-
repeat,
(remove_calls, % Clear CT
et_not_changed, % Flag ET as not changed
solve(Q,St), % Solve the call to Q using memoization at stratum St
fail % Request all alternatives
;
no_change, % If no more alternatives, start a new iteration
!, fail). % Otherwise, fail and exit

First, the call table is emptied to try to obtain new answers for a given call, preserving the
previous computed answers. Then, the memo function is applied (via predicate solve/2), pos-
sibly providing new answers. If the extension table remains the same as before after this last
memo function application, we are done. Otherwise, the memo function is reapplied as many
times as needed until no changes are found in the extension table. Upon exiting, the extension
table contains the meaning of the query (plus perhaps other meanings for the relations used in
the computation of the given query).

Predicate solve is defined as a straight call to the memo function but for built-ins (that are
left apart from the memoization process as would otherwise be a resource waste) and conjunctive
goals (which recursively calls itself).

3.3 Dependency Graph and Stratification

Each time a database changes, a predicate dependency graph (PDG) is built [ZCF+97]. This
graph shows the dependencies between predicates in the program. Each node in this graph is
a program predicate symbol and there are as many nodes as such symbols. Arcs come from
each predicate in a rule body (antecedent) to its rule predicate. Arcs are labeled as either neg-
ative, if the antecedent node occurs negated, or positive otherwise. This dependency graph is
used to looking for a stratification for the program [ZCF+97]. A stratification collects predi-
cates into numbered strata (1 . . .N) so that, given the function strata(p) which assigns a strata
number to predicate p, then for a positive arc p←q, strata(p) ≤ strata(q), and for a negative
arc p ¬←q, strata(p) < strata(q). A cycle in this graph containing a negative arc amounts to a
non-stratifiable program.

A naı̈ve bottom-up computation would solve all of the predicates in stratum 1, then 2, and so
on, until the meaning of the whole program is found. However, the implementation of DES only
resort to compute by stratum when a negative dependency occurs in the predicate dependency
graph, restricted to the query, as shown next:

solve_stratified(Query) :-
sub_pdg(Query,(_Nodes,Arcs)),
(neg_dependencies(Arcs) -> solve_star(Query,1)
;

5 / 16 Volume 55 (2012)

Tabling and Support for Relational Features in a Deductive Database

strata(St), sort_by_strata(St,Arcs,Preds),
build_queries(Preds,Query,Queries), solve_star_list(Queries)).

Here, predicate sub pdg/2 gets the current PDG restricted to the query. Predicate neg dep-
endencies/1 tests whether there are negative dependencies in the subgraph. Predicate stra-
ta/1 gets the current stratification. Predicates in the sub-PDG are sorted w.r.t. this stratifi-
cation with sort by strata/2. Then build queries build a list of queries for sorted
predicates (an atom with fresh variables for each predicate) appended to the input query. The
call to solve star list/1 solves each of these queries in order by successively calling
solve star/2 with each query and its corresponding stratum number.

4 Nulls and Outer Joins

Unknownness has been handled in relational databases long time ago because its ubiquitous
presence in real-world applications. Despite its claimed dangers due to unclean semantics (see,
e.g., the discussion in [Dat09]), null values to represent unknowns have been widely used. Also,
interest in including nulls in logic programming has been stated some time ago [TG94].

Supporting nulls conducts to also provide built-ins to handle them, as outer join operations.
DES includes the common outer join operations in relational databases, providing the very same
semantics for outer join operators ranging over null values, which are described next.

4.1 Null Semantics

A null value represents unknown data. To include such values into relational database systems
(RDBMS’s), a new logical value is added for unknown results, leading to a three-valued logic
(3VL, for true, false and unknown). Any comparison operator (=, <, . . .) relating at least
a null value should return the unknown logic value [Dat09]. Although a 3VL is assumed for
RDBMS’s (Oracle, DB2, SQL Server, MySQL, . . .), the fact is that the implemented logic does
not account for the unknown logic value as it is represented by the null value [Dat09].

However, as we are interested in allowing outer join operations and we rely on a logic engine
with 2VL (two-valued logic), we restrict to this, so that any comparison relating at least a null
value returns false instead of unknown. Truth tables for usual logical operators (not, and
and or) remain thus as for 2VL. Regarding comparison operators, two (distinct) null values
are not (known to be) equal, and are (not known to be) distinct. Thus, neither null = null
(syntactic equality) nor null \= null (syntactic disequality) hold. Further, for the same
null value, the equality should succeed, as in the conjunctive query X=null,X=X. Evaluation
of a given expression including at least one null value always returns the same concrete null
value. Thus, two expressions are considered equal if they are syntactically equal. This covers,
for instance, that the following query succeeds: X=null,X+1=X+1.

4.2 Null Representation

Nulls are internally represented with the term ’$NULL’(Id), where Id is a unique integer
which does not occur in any other null. This representation is similar to that also suggested

Proc. PROLE 2012 6 / 16

ECEASST

in other systems [SWSJ09], but, as a difference, DES considers null as a first class citizen and
its internal representation is hidden from the user. Therefore, asserting or consulting a rule as
p(null) is directly allowed. Since the null value in this rule receives a unique identifier, the
conjunctive query p(X),X=X succeeds, since X stands for the same unknown value (note that
this is in contrast to the flaw in SQL, where SELECT * FROM p WHERE x=x discards tuples
with a null in x).

Any explicit null occurring in either a program or a query is replaced by its internal represen-
tation during parsing. Internal representations are also allowed to be written for implementors
purposes, but irrespective of the user-provided identifier (which can also be a variable), it is
replaced by a unique identifier. Also, when building a new fresh call in predicate build/2
(cf. Section 3.1), not only variables have to be fresh, but also any occurrence of a null value.
Therefore, this predicate also includes a null provider for such occurrences, where concrete null
identifiers are replaced by variable identifiers, as $NULL(V)), where V is a variable. A null
provider argument in a rule means that each tuple generated by that rule (and therefore added
to the extension table) gets a unique null for that argument eventually. However, along fixpoint
iterations, the non-ground null representation is the one to be stored in the extension table. Only
once the fixpoint has been reached, nulls are grounded for the answer to be shown to the user.
This is in contrast to asserting or consulting a rule containing a null argument, as p(null),
where the rule is stored as p($NULL(N)), where N is a concrete number. Users are precluded
from using null generators, which are only available as a result of preprocessing, but it will be
needed along the tabled computations of outer joins.

4.3 Outer Join Built-ins

Three outer join operations are provided, following well-known relational database query lan-
guages (SQL and extended relational algebra): left (lj/3), right (rj/3) and full (fj/3) outer
joins. A left outer join lj(L,R,C) computes the cross-product of two relations L and R that
satisfy a third relation C, extended with some special tuples including nulls as explained next.
Tuples in L which have no counterpart in R w.r.t. C are included in the result, so that the values
corresponding to columns of R are set to null. The right outer join rj(L,R,C) is equivalent
to lj(R,L,C) (it is only provided as a syntactic sugar), and the full outer join fj(L,R,C) is
equivalent to lj(L,R,C) ∪ rj(L,R,C). In addition, both L and R can take the form of such
constructions in order to allow more neat, nested applications of outer joins.

Outer joins are non-monotonic metapredicates which may deliver incorrect results in a bottom-
up computation. Let’s consider an iterative, bottom-up computation of the fixpoint for the left
outer join lj(L,R,C). In a given cycle of the fixpoint computation for this outer join, a tuple
l in L might not find a matching tuple in R because this relation might not be completely com-
puted, so that a tuple t with nulls in place of the arguments of R would be added to the current
interpretation for the result of the left outer join. However, a further cycle may develop new
tuples for R that do match with l. Therefore, the incorrectly added tuple t should be removed
(non-monotonicity). So, in order to prevent speculative computations and removing entries from
the extension table which are not longer true due to new entries added along fixpoint iterations,
the meaning of involved relations in an outer join are required to be computed already before
computing the meaning of the outer join. This can be achieved by taking advantage of the strati-

7 / 16 Volume 55 (2012)

Tabling and Support for Relational Features in a Deductive Database

fication idea: relations in an outer join are collected into a lower stratum as if they were negative
atoms. That way, before computing an outer join built-in, its arguments are already computed
because they belong to a lower stratum (cf. Section 3.3).

4.4 Outer Join Transformations

This section introduces a source-to-source transformation (in a preprocessing phase) for solving
the left outer join (other outer joins are analogous), rather than resorting to write (Prolog-)specific
code for this. As it is well-known, a single left or right outer join suffices to express others.

A new predicate $pi is introduced as an argument of the built-in, void predicate lj/1, which
does nothing, but is handy to specify a predicate classification in strata. So, the predicate $pi
is to be set in a deeper strata than the predicate of the rule in which it occurs, say of predicate
p, because the negative arc $pi ¬←p is added to the dependency graph. The call lj($pi) is
solved by predicate solve/2 as a built-in, with a straight call to $pi (no entries are added to the
extension table for lj/1). Next, predicate $pi is defined to compute the outer join. All of the
facts in the meaning of $pi come from two sources: the facts in L joined with those of R that
meet O, and the facts in L joined with nulls that do not meet O. Next example shows how these
data are collected for solving the outer join v(X,Y) :- lj(s(X,U),t(V,Y),U>V):

v(X,Y) :- lj(’$p0’(X,U,V,Y)).
’$p0’(A,B,’$NULL’(C),’$NULL’(D)) :- s(A,B), not(’$p1’(A,B,E,F)).
’$p0’(A,B,C,D) :- ’$p1’(A,B,C,D).
’$p1’(A,B,C,D) :- s(A,B), t(C,D), B > C.

Predicate $p0 is source of the facts either provided by the positive case (a straight call to $p1
from the second rule of $p0), or by the negative case (a negated call to $p1 in the first rule of
$p0). This negated call oughts $p1 to be in a lower strata than $p0. Therefore, before com-
puting $p0, the meaning of $p1 is completely available. Predicate $p1 contains the (possible)
hard stuff to be computed since it contains the Cartesian product of two relations, followed by
the condition. Despite its arrangement, which may yield to think of a bad computational behav-
ior (compute all tuples from s, then all from t, and finally filter results), the top-down driven
computation looks for a tuple from s, then a tuple from t, and only adds a new tuple to the
extension table of ’$p1’ if the condition B > C holds. Indeed, this is quite similar to the RDB
implementations of join operations (modulo indexing). The first rule for ’$p0’ builds the null
values for the arguments of the right relation R for which no tuples are found meeting condition
O, i.e., So, it is a null provider, as it contains specifications with the form $NULL(V), where V is
a variable. If there are more than one tuple in L that does not match with R, each one is therefore
joined with a non-ground null tuple. If the null ground representation was instead considered,
then the same null tuples will be appended to the result, breaking the assessment that null values
should all be unique.

Notice that this transformation includes floundering [BD98] in the first rule for ’$p0’: the
call to not(’$p1’(A,B,E,F)), where variables E and F are not range restricted. However,
floundering in this concrete case poses no problem as the call to $p1 is completely computed
before it is used by any other call and no other negated call occurs in the program. Note that the
other call in the program to $p1 is for the positive case where all of its arguments become ground.
In particular, the negated call will use those results and the corresponding negative entries will be

Proc. PROLE 2012 8 / 16

ECEASST

added to the extension table. Such negated entries are not be reused by any other (negated) calls
in the program because they belong to system-generated predicates. Safety checking takes such
floundering into account, avoiding error messages. Other works treat the floundering problem in
a more general use of negation (see, e.g., constructive negation [LAC99] and also tabled query
evaluation [Dam96]), where non-ground negated calls are possibly involved in recursive calls,
which we do not consider in our setting.

Other deductive systems, such as DLV [LPF+06], might benefit from including outer joins
as well. In this case, floundering programs are not allowed, but for true negation (CWA is not
assumed; instead, negative data are explicitly declared). Fortunately, as pointed out in [Ull88],
programs as above can be transformed into non-floundering programs, where all calls to negated
goals are ensured to be ground. Next program shows this transformation, where non-relevant
variables are dropped and unfolding is applied:
v(X,Y) :- ’$p0’(X,U,V,Y).
’$p0’(A,B,’$NULL’(C),’$NULL’(D)) :- s(A,B), not(’$p1’(B)).
’$p0’(A,B,C,D) :- s(A,B), t(C,D), B > C.
’$p1’(B) :- s(A,B), t(C,D), B > C.

However, comparing this version to the example, even when the number of relations does not
increase, extra computation has to be done in the second clause of $p0. So, although it seems
possible to compute outer joins in DLV with this technique, nulls should be natively supported;
otherwise it couldn’t be applied because there is no provision to get unique identifiers for null
values in this system (DLV does not feature a general-purpose programming language, but a
deductive language).

XSB [SSW94b] is another system which supports non-ground semantics allowing floundering
programs with the use of the special negation sk not/1, which automatically produces a similar
translation as explained before [SWSJ09]. To write outer joins in this system, in particular it is
needed to generate unique identifier integer numbers for the null values and declare as tabled the
predicates involved in the computation of the outer join. The following program implements the
outer join example in XSB:
:- table(’$p0’/4), table(’$p1’/4), table(s/2), table(t/2).
main(Vs) :- findall(v(X,Y),v(X,Y),Vs).
v(X,Y) :- ’$p0’(X,U,V,Y).
’$p0’(A,B,’$NULL’(C),’$NULL’(D)) :-

get_id(C), get_id(D), s(A,B), sk_not(’$p1’(A,B,E,F)).
’$p0’(A,B,C,D) :- ’$p1’(A,B,C,D).
’$p1’(A,B,C,D) :- s(A,B), t(C,D), B > C.
:- dynamic id/1.
id(0).
get_id(X) :- id(X), retractall(id(X)), Y is X+1, assertz(id(Y)).

Here, the main entry point (predicate main/1) returns a list of deduced facts via the metapred-
icate findall, which collects all answers to the goal v(X,Y). Predicate get id returns a
new integer each time it is called, therefore allowing to uniquely identify nulls.

5 Duplicates

Allowing tables to contain duplicate rows and queries returning also duplicates is a common
feature in current RDBMS’s. However, the introduction of duplicates is claimed to suffer some

9 / 16 Volume 55 (2012)

Tabling and Support for Relational Features in a Deductive Database

other issues: Duplicates in a table are repeated rows in a relation and, from a logical viewpoint,
have no sense because repeated rows mean the same1. Another issue with duplicates is that
equivalent-intended statements can deliver a different number of duplicate rows [Dat09]. As
well, they preclude query optimizations and make optimizers much more complicated than if
were if no duplicates were allowed. Nonetheless, duplicates are useful in a number of situations,
for instance, when considering aggregates.

Noticeably, whilst in relational databases they are assumed, they are not usual in deductive
databases (mainly because of the claimed issues), where they are removed by default. However,
there are deductive systems supporting duplicates as LDL++, but duplicates are removed from
recursive rules. As a main difference, DES also allows recursive rules to be generators of dupli-
cates in a similar way as in SQL recursive statements. Since duplicates are not removed from
derived relations, each rule is understood as a possible, distinct duplicate generator. When dupli-
cates are disabled, they are discarded along computation, i.e., subsumed answers are not added
to the extension table. Next subsection shows how this behavior is supported in a tabled system.

5.1 Duplicates and Tabling

An alternative for supporting duplicates in extensional predicates it to distinguish each rule in
the program, so that two repeated rules are not considered to be equivalent w.r.t. subsumption.
To this end, we can add a unique rule identifier to each rule in the program, as in the program
1:p(a), 2:p(a), 3:p(b). Then, an entry in the extension table will contain tuples of the
form (Atom, RuleId), where Atom is the answer and RuleId the rule identifier that generated
that answer. In this example, the entries obtained for the call p(X) are: {(p(a),1), (p(a),2),
(p(b),3)}. So, the first and second answers do not subsume each other and the usual behavior
for answer subsumption can be kept. From a user viewpoint, rule identification is of no use (as
in relational databases), so that they are hidden when displaying answers and listing rules.

As an example of a recursive predicate, let’s consider the rules {p(a), p(a), p(X):-p(X)}
(two facts and a recursive rule, respectively). Its intended meaning is the multiset containing the
tuple p(a) four times, where two tuples correspond to the extensional rules for p and the other
two to the single intensional rule for p. This intensional rule generates one tuple for each exten-
sional rule. By adding the rule p(X) :- p(X) once more, the meaning of p would contain
p(a) ten times, i.e., it contains: two tuples from the two facts, and four tuples for each recursive
rule. The first recursive rule is source of four tuples because of the two facts and the two tuples
from the second recursive rule (analogously for the second recursive rule). In fact, this mimics
SLD resolution by collecting all possible answers coming from different sources, therefore prun-
ing infinite computation paths, i.e., all possible computation paths are considered, stopping when
a (recursive) node already used in the computation is reached. Figure 2 shows the tabling tree
for the query p(X) and the annotated program 1.p(a), 2.p(a), 3.p(X) :- p(X), and
4.p(X) :- p(X). Infinite computations are elided in this case because the rule with identifier
3 is neither reused for solving its body nor the body of rule 4 as this rule is a descendant of 3
(analogously for rule 4).

The idea above about uniquely identifying each rule can be applied to recursive predicates

1 Citing Codd: “If something is true, saying it twice doesn’t make it any more true.”

Proc. PROLE 2012 10 / 16

ECEASST

p(X)

1.p(a) 2.p(a) 3.p(X):-p(X) 4.p(X):-p(X)

1.p(a) 2.p(a) 4.p(X):-p(X) 1.p(a) 2.p(a) 3.p(X):-p(X)

1.p(a) 2.p(a) 1.p(a) 2.p(a)

Figure 2: Tabling tree for the query p(X)

as well. One possible solution is to keep track of the computation path by annotating the rules
which have been used to deduce a given atom. So, each entry in the extension table can be
identified by a chain of such rule identifiers. Each deduced atom is associated with a pair (Id,
IdChain), where Id is the identifier of the rule which is the generator of the atom, and IdChain
is the list of as many pairs as goals in rule Id. So, all rule identifiers in the computation path up
to the tabling tree leaf are stored. Referring to Figure 2, the following are the entries stored in
the extension table after computation, from left to right: (p(a), (1,[])), (p(a), (2,[])), (p(a),
(3,[(1,[])])), . . . , (p(a), (4,[(3,[(2,[])])])).

To implement this, two additional parameters to predicate memo/1 are added: D for selecting
whether or not duplicate answers for a relation are requested (all, distinct, resp.) or elim-
inate duplicates for a given set of arguments (distinct(Vs,Ps)), and Id as the identifier
pair as described above. Its new prototype is memo(+G,+D,-Id). These two parameters are
passed to et lookup (which is further explained in Subsection 5.3) in the first clause of this
predicate and also to no subsumed by et(Q,D,(G,Id)), which is modified as follows:

% no_subsumed_by_et(+Query,+Distinct,+(Goal,IdGoal))
no_subsumed_by_et(Q,all,(_G,_IdG)) :- % No entry matching Q

\+ et_lookup(Q,all,_IdQ), !.
no_subsumed_by_et(Q,all,(G,IdG)) :- % Existing entries matching Q

nr_id(IdG), % Check that IdG is not cyclic
\+ (et_lookup(Q,all,IdQ), my_subsumes((Q,IdQ),(G,IdG))).

no_subsumed_by_et(Q,_D,(G,_IdG)) :- % For distinct answers
\+ (et_lookup(Q,all,_IdQ), my_subsumes(Q,G)).

5.2 Duplicates and Nulls

When duplicates are disabled, a null value is considered as a single constant in answers, so that
repeated entries are removed. For example, if an answer contains two occurrences of p(null),
only one is shown. This follows the SQL criterium when applying the clause DISTINCT in
a SELECT statement. If duplicates are enabled, each null is considered as a different constant
identified by its internal numeric representation. Thus, in this example, the user would obtain
two tuples. However, tabling computes both tuples in both cases. By enabling development

11 / 16 Volume 55 (2012)

Tabling and Support for Relational Features in a Deductive Database

listings, which in particular shows null internal representations, in the former case both tuples
are listed.

5.3 Duplicate Elimination

When duplicates are enabled, duplicate elimination is provided with the built-in distinct/1,
which applies to a positive atom. In this case, duplicate elimination policy for an atom A consists
of discarding all duplicates for A and all of its descendants in the tabling tree. To implement
this policy, function memo is added with a parameter indicating whether duplicates are discarded
(distinct) or not (all). When a distinct(G) call is to be solved with predicate solve, a
call to this function is called with this parameter, which is passed to subsequent descendant calls
to the memo function in the same subtree. Because there can be other calls to A not involved in
a duplicate elimination path, all its answers are computed by the generator, and consumers in-
volved in duplicate elimination are responsible of using non-repeated entries. So, each consumer
uses the modified predicate et lookup, as shown next, including a new second parameter se-
lecting whether or not all duplicate answers are requested:

% et_lookup(+Goal,+Distinct,-Id)
et_lookup(G,all,IdG) :- et(G,IdG).
et_lookup(G,distinct,IdG) :-

findall((G,IdG),et(G,IdG),GIdGs), setof(G,IdGˆmember((G,IdG),GIdGs),Gs),
member(G,Gs), once(member((G,IdG),GIdGs)).

This predicate is called from predicate memo/3 in two scenarios: First, for consumers that get
all entries in the extension table for a subsumed call (first clause of memo) or from a previous
fixpoint iteration (first call in second clause of memo), both with the value distinct for the
second argument of et lookup. In this first case and when distinct answers are required,
second clause of et lookup is applied. Second case is for generators (second call in second
clause of memo), where all answers are required and this predicate is called with second argument
with all. For providing distinct entries in ET, first all entries matching the input goal are
collected with findall, along with their identifiers. Next, setof filters duplicated goals.
Each possible answer G is selected with member via backtracking. One class representant is
finally selected with the only one solution call to member in last line. Its identifier of this
representant is the one returned.

5.4 Duplicates and Projection

Aforementioned handling of duplicate elimination is not enough to deal with correlated SQL
queries. Compiling such a SQL query to Datalog may involve a distinct operator for a projection
(a subset) of the arguments in a relation as, for instance:

CREATE TABLE t(a int, b int); CREATE TABLE s(a int, b int);
CREATE VIEW v(a) AS SELECT a FROM t WHERE a IN
(SELECT DISTINCT a FROM s WHERE t.b<s.b);

A possible Datalog program for this view follows:

v(A) :- t(A,B), distinct(v_1(A,B)).
v_1(A,B) :- s(A,C), B < C.

Proc. PROLE 2012 12 / 16

ECEASST

But this is not a correct equivalent formulation because distinct/1 applies to different
tuples from v_1 instead of different values for a, and b must be passed to v_1 to filter results.
So, a new built-in distinct(Arguments,Relation) is needed, which computes different
results for the list of relation arguments for the relation. The first Datalog rule would be rewritten
as v(A) :- t(A,B), distinct([A],v 1(A,B)).

Solving this new built-in is via the call memo(G,distinct(Vs,Ps),Id), where G is to
be computed for returning only distinct tuples of variables Vs, which correspond to argument
positions Ps. These positions are kept to account projection positions as any variable in Vsmight
become ground before solving this call. no_subsumed_by_et/3 is modified accordingly by
adding the next clause, which deals with duplicate elimination when duplicates are enabled.

no_subsumed_by_et(Q,distinct(_Vs,Ps),(G,_IdG)) :-
\+ (functor(Q,F,A), functor(FQ,F,A),

get_ith_arg_list(Ps,Q,QAs), get_ith_arg_list(Ps,FQ,QAs),
et(FQ,_Id),get_ith_arg_list(Ps,G,GAs),my_subsumes(QAs,GAs)).

As well, predicate et_lookup/3 is added with the following clause:

et_lookup(G,distinct(Vs,_SG),IdG) :-
findall((G,IdG),et(G,IdG),GIdGs), term_variables(G,GVs),
set_diff(GVs,Vs,EVs),
build_ex_quantifier(EVs,my_member((G,IdG),GIdGs),QG),
setof(Vs,IdGˆQG,Vss), my_member(Vs,Vss), once(my_member((G,IdG),GIdGs)).

Although similar to the second clause of this predicate in previous section, this clause adds
handling of unprojected variables by building existential quantifiers over them, so that setof/3
returns distinct tuples for projected variables.

5.5 Duplicates in Aggregates

Aggregates are supported in DES in several flavors [SP11], both as functions and predicates, but
for the sake of this paper, we restrict the presentation to a simplified aggregate predicates. An ag-
gregate predicate returns its result in its last argument position, as in sum(p(X),X,R), which
binds R to the cumulative sum of values for X, provided by relation p. Duplicate elimination
versions are also available, such as sum distinct/3.

Solving rules involving aggregates via successive fixpoint iterations might lead to incorrect
entries to be added to the extension table because in a given iteration it is not ensured that all
the meaning of the aggregated relation is computed. A straightforward approach to solve them
is analogous to negation: new negative arcs are added to the dependency graph in order to place
such relation in a stratum lower than the predicate of the rule in which it occurs. So, the rule
s(R) :- sum(p(X),X,R) implies an arc s ¬←p, which in turn also implies the constraint
strata(p)< strata(s) for the stratification.

Then, when solving an aggregate in a given fixpoint iteration, all the tuples of its aggregated
relation are known, so that duplicate elimination is simply performed by applying setof instead
of bagof to groups from entries in the extension table. A simplified version implementing this
is shown next:

13 / 16 Volume 55 (2012)

Tabling and Support for Relational Features in a Deductive Database

compute_distinct_aggregate_pred(Aggr) :-
Aggr =.. [F,R,V,O], R =.. [_P|Args], get_arg_position(V,Args,I),
nf_setof(N, CRˆIdsˆ(et(CR,Ids),\+ \+ (CR=R),

arg(I,CR,N),N\=’$NULL’(_Id)), Ns),
compute_aggregate(F,Ns,O).

Here, nf setof is the non-failing version of setof (it returns an empty list instead of
failure), and collects all values for the argument to which the aggregate is applied (X in the
example above). As in relational databases, null arguments are omitted from this set.

6 Enhancing Performance

Several performance penalties can be found in the current implementation of the deductive
database system DES. Next, we list them and propose some ways for overcoming:

• Prolog-based implementation. Instead of resorting to a compiler generating native code,
we have used a Prolog system because it is much more adequate for rapid prototyping
than low-level languages as, e.g., C++. Indeed, the higher abstraction level of Prolog w.r.t.
third generation languages is a definitive advantage to quickly get results. However, one
can find speed-ups in such languages which are orders of magnitude better. Even Java
programs compiled to byte code, reveal better performance, as, e.g., the classic queens
benchmark if compared to a CLP(FD) implementation.

• Interpreted vs. compiled Prolog code. We assert Datalog rules in a dynamic Prolog
database. Most Prolog systems distinguish between asserted and compiled (consulted)
programs. Whereas the former use the dynamic database, the latter compile to some sort
of WAM code including first-argument indexing. This makes consulted programs perform
better than asserted programs. So, following [Die87], we could implement query solving
in the definition of Datalog predicates and queries. Then, predicates would be compiled
instead of asserted and therefore more efficient.

• Indexing. Despite the last issue and its improvement, there remains dynamic data in the
call and extension tables. On the one hand, such dynamic data suffers from the same issue
as above, and, on the other hand, accessing such data structures with a sequential index is
not enough for large amounts of data (assuming that we could automatically do it as the
Prolog compiler does with compiled predicates). Better index structures should be taken
into account, such as balanced trees or, better, tries, as implemented in the XSB system.

• Query solving. Identifying particular query solving cases and applying specifically-suited
code can provide better performance. For instance, there is no need to find a fixpoint
for extensional database predicates. It suffices with a single linear fetching to deduce
the meaning, as it is common to do in fixpoint computations (e.g., abstract-interpretation-
based static analysis). This can be extended to non-recursive predicates, where only one
iteration should be needed. Also, computations which are known to be complete during
fixpoint can be annotated as such, so that next calls to them can be directly resolved with
the extension table.

Proc. PROLE 2012 14 / 16

ECEASST

7 Conclusions

This paper has shown how some widespread-used features in relational databases, namely nulls,
outer joins and duplicates, can be included altogether into a tabled deductive database system.
Since this system compiles SQL statements to Datalog programs, it was a need to embody such
features coming from relational database systems into the concrete deductive inference engine
DES. Because this system is not geared towards performance, this implementation should be
seen as a proof of concept. Some hints have been provided for the porting to other deductive
systems and future work may include to use other external efficient engines such as XSB.

Bibliography

[BD98] G. Brewka, J. Dix. Knowledge Representation with Logic Programming. In Dix et al.
(eds.), Proceedings of LPKR’97. LNAI 1471, pp. 1–51. Springer-Verlag, 1998.

[CGS08] R. Caballero, Y. Garcı́a-Ruiz, F. Sáenz-Pérez. A Theoretical Framework for the
Declarative Debugging of Datalog Programs. In International Workshop on Seman-
tics in Data and Knowledge Bases. LNCS 4925, pp. 143–159. Springer, 2008.

[CGS10] R. Caballero, Y. Garcı́a-Ruiz, F. Sáenz-Pérez. Applying Constraint Logic Program-
ming to SQL Test Case Generation. In Proc. International Symposium on Functional
and Logic Programming (FLOPS’10). LNCS 6009. 2010.

[CGS11] R. Caballero, Y. Garcı́a-Ruiz, F. Sáenz-Pérez. Algorithmic Debugging of SQL Views.
In Ershov Informatics Conference (PSI’11). LNCS. Springer, 2011. In Press.

[Dam96] C. Damásio. Paraconsistent Extended Logic Programming with Constraints,. PhD
thesis, Dept. de Informâtica, Universidade Nova de Lisboa, 1996.

[Dat09] C. J. Date. SQL and relational theory: how to write accurate SQL code. O’Reilly,
Sebastopol, CA, 2009.

[Die87] S. W. Dietrich. Extension Tables: Memo Relations in Logic Programming. In IEEE
Symp. on Logic Programming. Pp. 264–272. 1987.

[GCH+08] P. C. de Guzmán, M. Carro, M. V. Hermenegildo, C. Silva, R. Rocha. An improved
continuation call-based implementation of tabling. PADL’08, pp. 197–213, 2008.

[LAC99] J. Y. Liu, L. Adams, W. Chen. Constructive negation under the well-founded seman-
tics. JLP 38(3):295–330, 1999.

[LPF+06] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello. The DLV
system for knowledge representation and reasoning. ACM Tran. on Computational
Logic 7(3):499–562, 2006.

[RSC05] R. Rocha, F. M. A. Silva, V. S. Costa. Dynamic Mixed-Strategy Evaluation of Tabled
Logic Programs. In Gabbrielli and Gupta (eds.), ICLP. LNCS 3668, pp. 250–264.
Springer, 2005.

15 / 16 Volume 55 (2012)

Tabling and Support for Relational Features in a Deductive Database

[RU93] R. Ramakrishnan, J. Ullman. A survey of research on Deductive Databases. JLP
23(2):125–149, 1993.

[SP11] F. Sáenz-Pérez. DES: A Deductive Database System. Electronic Notes on Theoretical
Computer Science 271:63–78, March 2011.

[SP12a] F. Sáenz-Pérez. Datalog Educational System. May 2012. http://des.sourceforge.net/.

[SP12b] F. Sáenz-Pérez. Outer Joins in a Deductive Database System. Electronic Notes in
Theoretical Computer Science 282:73 – 88, 2012.

[SD91] C. Shih, S. Dietrich. Extension Table Evaluation of Datalog Programs with Negation.
In Proc. of the IEEE International Phoenix Conference on Computers and Commu-
nications. Volume AZ, pp. 792–798. Scottsdale, March 1991.

[SS06] Z. Somogyi, K. Sagonas. Tabling in mercury: Design and implementation. In In
Proceedings of Practical Aspects of Declarative Programming (PADL’06). Pp. 150–
167. Springer-Verlag, 2006.

[SSW94a] K. Sagonas, T. Swift, D. S. Warren. XSB as an Efficient Deductive Database Engine.
In In Proceedings of the ACM SIGMOD International Conference on the Manage-
ment of Data. Pp. 442–453. ACM Press, 1994.

[SSW94b] K. Sagonas, T. Swift, D. S. Warren. XSB as an efficient deductive database engine.
In SIGMOD’94: Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data. Pp. 442–453. ACM, New York, NY, USA, 1994.

[SW10] T. Swift, D. S. Warren. XSB: Extending Prolog with Tabled Logic Programming.
CoRR abs/1012.5123, 2010. Submitted to TPLP.

[SWSJ09] T. Swift, D. Warren, K. Sagonas, J. Freire et al. The XSB System Version 3.2. Volume
2: Libraries, Interfaces and Packages. 2009.

[TG94] B. Traylor, M. Gelfond. Representing Null Values in Logic Programming. In
LFCS’94. Pp. 341–352. 1994.

[TS86] H. Tamaki, T. Sato. OLDT Resolution with Tabulation. In Third International Con-
ference on Logic Programming. Pp. 84–98. 1986.

[Ull88] J. D. Ullman. Database and Knowledge-Base Systems, Vols. I (Classical Database
Systems) and II (The New Technologies). Computer Science Press, 1988.

[ZCF+97] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, R. Zicari.
Advanced Database Systems. Morgan Kaufmann, 1997.

[ZS03] N.-F. Zhou, T. Sato. Efficient fixpoint computation in linear tabling. PPDP’03,
pp. 275–283. ACM, New York, NY, USA, 2003.

Proc. PROLE 2012 16 / 16

http://des.sourceforge.net/

	Introduction
	Datalog Educational System
	Tabling-based Query Solving
	Tabling
	Fixpoint Computation
	Dependency Graph and Stratification

	Nulls and Outer Joins
	Null Semantics
	Null Representation
	Outer Join Built-ins
	Outer Join Transformations

	Duplicates
	Duplicates and Tabling
	Duplicates and Nulls
	Duplicate Elimination
	Duplicates and Projection
	Duplicates in Aggregates

	Enhancing Performance
	Conclusions

