
Electronic Communications of the EASST
Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools

(GraBaTs 2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level
Programs

Karl Azab, Annegret Habel, Karl-Heinz Pennemann and Christian Zuckschwerdt

12 pages

Guest Editors: Albert Zündorf, Daniel Varró
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

ENFORCe: A System for Ensuring Formal Correctness of
High-level Programs

Karl Azab, Annegret Habel, Karl-Heinz Pennemann and Christian Zuckschwerdt

Carl v. Ossietzky Universität Oldenburg, Germany
{azab,habel,pennemann,zuckschwerdt}@informatik.uni-oldenburg.de

Abstract: Graph programs allow a visual description of programs on graphs and
graph-like structures. The correctness of a graph program with respect to a pre- and
a postcondition can be shown in a classical way by constructing a weakest precondi-
tion of the program relative to the postcondition and checking whether the precon-
dition implies the weakest precondition. ENFORCe is a currently developed system
for ensuring formal correctness of graph programs and, moregeneral, high-level
programs by computing weakest preconditions of these programs. In this paper, we
outline the features of the system and present its software framework.

Keywords: high-level programs, correctness, formal verification, weakest precon-
ditions, weak adhesive HLR categories.

1 Introduction

Graph transformation has many application areas in computer science, such as software engi-
neering or the design of concurrent and distributed systems. It is a visual modeling technique
and plays a decisive role in the development of growingly larger and complex systems. How-
ever, the use of visual modeling techniques alone does not guarantee the correctness of a design.
In context of rising standards for trustworthy systems, there is a growing need for the verifica-
tion of graph transformation systems. Therefore, tools supporting formal verification of graph
transformations will increase the attractiveness of this modeling technique and are in this sense
important for its practical application.

There exist several tools specifically concerned with graphtransformation: Engines for plain
transformation, e.g., [Bus04, GBG+06, MP06], general purpose tools with visual editors and
debuggers for transformation systems like [Tae04, SWZ99, BGN+04], and tools concerned with
model checking or analysis of transformation systems properties, e.g., [Tae04, KK06, SV03,
KR06, BBG+06].

Until now, most of these tools focus on transformation systems, instead of rule-based pro-
grams. Programs featuring at least sequential compositionand iteration are Turing-complete and
necessary to model transactions when dealing with an arbitrary number of elements. Moreover,
most tools are specifically concerned with a distinct kind ofstructure, let it be simple labeled,
(typed) attributed graphs or hypergraphs. From a theoretical point of view, weak adhesive HLR
categories [EEPT06] are an important effort to build a unified theory for transformation systems
covering several kinds of structures, e.g., various kinds of (hyper-)graphs, place-transition nets
and algebraic specifications. Unfortunately, there do not exist tools designed to follow that idea,
i.e., whose algorithms will work for more than just a specifickind of structure.

1 / 12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs

In this paper, we will present the main ideas of ENFORCe, a suite of tools for ensuring the
correctness of high-level programs. It is designed for weakadhesive HLR categories, exploiting
the fact that necessary high-level algorithms can be based on a small set of structure-specific
methods. Structurally, ENFORCe consists ofApplications(e.g., user interface),Correctness
ToolsandTransformations(e.g., for proving the correctness of a program),Engines(i.e., specific
data structures and methods) and aCore containing general high-level notions and methods,
connecting these components. We plan to reuse existing engines, like GRAJ. Our efforts aim for
a tool supplementary to existing tools such as [Tae04, KK06, KR06, BBG+06], i.e., in terms of
structures or functionality (see related systems).

The paper is organized as follows. In Section2, we introduce programs for high-level struc-
tures like graphs and algebraic specifications and present amethod for showing correctness for
high-level programs. In Sections3 and4, we present the system requirements and the system
design. In Section5, we give an overview on related systems. A conclusion including further
work is given in Section6.

2 Correctness of Programs

In this section, we give an informal introduction to the mainconcepts of the paper, in particular
into correctness of high-level programs based on all kinds of high-level structures such as graphs,
place-transition nets, and algebraic specifications. The concepts are illustrated by a running
example in the category of graphs. For more details refer to [EEPT06, HPR06].

Assumption. We assume that〈C ,M 〉 is a weak adhesive HLR category with a decidable setM ,
binary coproducts, epi-M -factorization, anM -initial object, i.e., there is an objectI such that,
for every objectG in C , there exists a unique morphism fromI to G in M , and a finite number
of matches for each object, i.e., for every morphisml : K → L in M and every objectG, there
exist only a finite number of morphismsm: L→G such that〈l ,m〉 has a pushout complement.

Example 1 (access control graphs).For illustration, we consider the weak adhesive HLR cate-
gory of all directed labeled graphs. We consider a simple access control for computer systems,
which abstracts authentication and models user and sessionmanagement in a simple way. The
basic items are users , sessions , and computer systems with directed edges between
them. An edge between a user and a system represents that the user has the right to access the
system, i.e., establish a session with the system. Every session is connected to a user and a sys-
tem. The direction of the latter edge differentiates between proposed and established sessions,
i.e., an edge from a session node to a system in the first case and a reversed edge in the latter.
Self-loops may occur in graphs during the execution of programs to select certain elements, but
not beyond. An example of an access control graph is given in Figure1. The complete example
is published in [HPR06].

Figure 1: A state graph of the access control system

Proc. GraBaTs 2006 2 / 12

ECEASST

We use a graphical notion of conditions to specify valid system and program states, as well as
morphism.

Definition 1 (conditions). A condition over an objectP is of the form∃a or ∃(a,c), where
a: P→C is a morphism andc is a condition overC. Moreover, Boolean formulas over condi-
tions [overP] are conditions [overP]. Additionally, ∀(a,c) abbreviates¬∃(a,¬c). A morphism
p: P→ G satisfiesa condition∃a [∃(a,c)] over P if there exists a morphismq: C→ G in M

with q◦ a = p [satisfying c]. An object G satisfiesa condition∃a [∃(a,c)] if all morphisms
p: P→ G in M satisfy the condition. The satisfaction of conditions [over P] is extended onto
Boolean conditions [overP] in the usual way.

In the context of objects, conditions are also calledconstraints, in the context of rules, they
are calledapplication conditions.

Example 2 (access control conditions).The conditionnosession= ∄(/0→) over
the empty graph expresses that a selected user shall not havean established session, and the
conditionnouser= ∄(/0→) means that no user is selected.

Transformation rules form the elementary steps of our computing model.

Definition 2 (rules). A rule consists of aplain rule p= 〈L← K → R〉, shortly denoted by
〈L⇒ R〉, and a pair〈acL,acR〉 of conditions overL andR, respectively.L is called the left-hand
side,R the right-hand side, andK the interface. The conditions acL,acR are called theleft and
right application conditionof p.

L K R

G D H

m m∗(1) (2)

A direct derivation through a plain rulep consists of two pushouts (1) and (2). We write
G⇒p,m,m∗ H, G⇒p H, or shortG⇒ H and say thatm is the matchand m∗ is the comatch
of p in H. A direct derivation G⇒p̂,m,m∗ H through a rule is a direct derivationG⇒p,m,m∗ H
through the underlying plain rule such that the matchm satisfies the left application condition
acL and the comatchm∗ satisfies the right application condition acR.

Example 3 (access control rules).The ruleSelectU selects a user and the ruleLogoutU1 cancels
an established session of a selected user.

SelectU : 〈 ⇒ 〉
LogoutU1: 〈 ⇒ 〉

Sequential composition and iteration give rise to rule-based programs.

Definition 3 (programs). Programsare inductively defined:Skip and every rulep are pro-
grams. Every finite setS of programs is a program. Given programsPandQ, then the sequential
composition(P;Q), the reflexive, transitive closureP∗ and the as long as possible iterationP↓
are programs. Thesemanticsof a programP is a binary relation onC . Programs of the form
(P;(Q;R)) and((P;Q);R) are considered as equal; by convention, both can be written asP;Q;R.

3 / 12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs

Example 4 (access control program).The programLogout = SelectU;LogoutU1↓ selects a
user and closes all of his established sessions.

Definition 4 (correctness). A programP with respect to a pre- and a postcondition iscorrect
if, for all objectsG satisfying the precondition holds:H satisfies the postcondition for every pair
〈G,H〉 in the semantics ofP, there is some pair〈G,H〉 in the semantics ofP, and the programP
terminates forG.

Concerning correctness, we are considering the following strategies:

Correctness by proof. A well-known method for showing the total correctness of a program
with respect to a pre- and a postcondition is to construct a weakest precondition (Wp) of the
program relative to the postcondition and to prove that the precondition implies the weakest
precondition.

program

postcondition

precondition

Wp
Decide

yes/noweakest
precondition

In [HPR06], we consider weakest preconditions for high-level programs similar to the ones for
Dijkstra’s guarded commands and show how to construct weakest preconditions for programs on
weak adhesive HLR categories with a finite number of matches.In case of rules, the construction
of a weakest precondition makes use of two known transformations [HW95, EEHP06, HP05]
from constraints to right application conditions, and fromright to left application conditions,
and additionally, a new transformation from application conditions to constraints [HPR06].

However, this method requires an algorithm for the implication problem for conditions, which
may be able to decide the problem for a suitable class of conditions, and approximate the de-
cision in the general case. Moreover, the construction of weakest preconditions for programs
with iteration relies on invariants, which in the general case requires an approximation or user
intervention.

Example 5 (correctness by proof).Consider the programLogoutUser of Example4 and the
conditions in Example2. One might verify the partial correctness ofLogoutUser with respect
to the preconditionnouserand the postconditionnosession. According to [HPR06], we construct
the weakest liberal precondition Wlp(LogoutUser, nosession) = Wlp((SelectU;LogoutU1↓),
nosession)= Wlp(SelectU, Wlp(LogoutU1↓, nosession)). One has to show that Wlp(LogoutU1↓,
nosession) = Wlp(LogoutU1∗, Wlp(LogoutU1, false)⇒ nosession) = Wlp(LogoutU1∗, ∀(/0→

, ¬Appl(LogoutU1))⇒ nosession) if Wlp (LogoutU1∗, ∄(/0→)⇒
nosession) equivalent to true, hence Wlp(LogoutU, nosession) equivalent to true. Obviously
nouserimplies true, henceLogoutUser is correct with respect to the given conditions. For more
examples, we refer to the long version of [HPR06].

Correctness by transformation. Given a program with pre- and postcondition, a correct
program is derived from the input program by minimal semantical restrictions. The main idea is

Proc. GraBaTs 2006 4 / 12

ECEASST

to insert assertions in form of applications conditions into rules within iterations of the program
to enforce the invariance of postconditions. The construction is based on the integration of
constraints into application conditions of rules. It makesuse of the two known transformations
from constraints to right application conditions (A), and from right to left application conditions
(L) [HW95, HP05].

program
postcondition
precondition

Transformation
correct program

Example 6 (Correctness by transformation).Consider the postconditionnosession. The pro-
gramLogoutUser = SelectU;LogoutU1↓ is transformed into a partial correct programP =
Assert(c);SelectU;〈LogoutU1, 〈ac, true〉〉∗, with constraintc= Wlp(SelectU, (Wlp(P, false)
⇒ nosession)), and application condition ac= L(LogoutU1, A(LogoutU1, (Wlp(P, false)⇒
nosession))), andAssert(c) = 〈〈I ⇒ I〉, 〈c, true〉〉 for any conditionc over theM -initial object
I . As observed in Example5, ((Wlp(P, false)⇒ nosession) is equivalent to true. A subsequent
optimization step may be able to eliminate some superfluous application conditions.

The strategies for ensuring correctness base on certain high-level transformations (see Table1)
such as the transformations from constraints to right application conditions and from right to left
application conditions. In a concrete weak adhesive HLR category, high-level transformations

Symbol Description Reference

A From constraints to application conditions [HW95, HP05]
L From right to left application conditions [HW95, HP05]
C From application conditions to constraints [HPR06]

...

Table 1: High-level transformations

may be applied by using a small set of elementary, structure-specific operations (see Table2)
such as the constructions of pushouts and pushout complements, the set of all epimorphisms
with a given domainG, the composition of two morphisms, and theM -test for morphisms.

3 System Requirements

The software framework should work on high-level programs,i.e., programs on high-level struc-
tures like graphs, place-transition nets, and algebraic specifications. For program specifications,
i.e., programs with pre- and postconditions, there should be tools for correctness by proof and
correctness by transformation. For the correctness strategies we identify a chain of algorithmic
dependencies, see Figure2. In the figure, we exclude standard tools, e.g., checking whether
a given object satisfies a given condition. The dependenciesare organized in three layers; the

5 / 12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs

Symbol Description

PO Construct a pushout alongM -morphisms
POC Construct a pushout complement of two morphisms, if possible
= Check commutativity of two morphisms
◦ Construct the composition of two morphisms
initial Construct morphism from initial object to input object
matches Find allM -matchings of one object in another
epiM Construct an epi-M -factorization of a morphism
epimorphisms Construct all epimorphisms with a given domain (up to iso.)
isM ? [isEpi?] Is the given morphism anM -morphism [epimorphism]?

...

Table 2: Structure-specific operations

correctness strategies (correctness tools) depending on high-level transformations of conditions
that in turn depend on elementary structure-specific operations. For one transformation system
working on graphs and for another on Petri-nets, the structure-specific operations differ but the
algorithms for transformation of conditions and the correctness tools remain the same. From a
software engineering point of view, the components modeling correctness algorithms and weak
adhesive HLR categories should therefore be loosely coupled and have as few dependencies on
each other as possible. This ensures that the system can be easily extended with new weak
adhesive HLR categories and high-level algorithms.

�
�

�
�Correctness

tools�
�

�
�Transformations

#
"

!

Structure-specific
operations

Correctness by proof Correctness by transformation · · ·

AL C · · ·

POC

PO matches

epimorphismsinitial

isM ?

isEpi? epiM

◦ =

· · ·

Figure 2: Levels in ENFORCe

4 System Design

This section describes the basic software components of theENFORCe framework. Basically,
the system consists of five components:Enginesrepresent specific weak adhesive HLR cate-

Proc. GraBaTs 2006 6 / 12

ECEASST

gories, theCore evaluates conditions and connects Engines with the third component,Trans-
formations, that contain algorithms transforming conditions, and theApplicationuses the four
previous components to calculate the correctness results its user has requested. The components
and their static dependencies are illustrated in Figure3 (a).

Core

Correctness tools

Transformations
E

n
g

in
es

Application

Engines

Core

Transformations

Correctness tools

Application

(a) (b)

Figure 3: (a) Static dependencies and (b) runtime data flow

Engines. An Engine is the combination of the structural implementation of a weak adhe-
sive HLR category with a category specific implementation ofthe operations listed in Table2.
E.g.GraphEngine, contains the data structures for directed labeled graphs and graph mor-
phisms as well as the algorithms working exclusively on these structures. As ENFORCe may
have several Engines the Engine component is shown with a shadow. The Core and Transforma-
tions can use different (and new) Engines without having to be modified or updated.

Correctness tools and Transformations. These two components contain algorithms operating
exclusively on weak adhesive HLR categories and can therefore be abstracted from the actual
category in question. An example of algorithms working at this level is the chain of transforma-
tions from constraints to right- to left application conditions to weakest preconditions. Pseudo
code for the transformation from constraints to application conditions is shown in Figure4. Cor-
rectness tools and Transformations works on conditions, explaining their static dependency on
the Core.

Core. The Core consists of two important parts: One contains datastructures for programs
and conditions. It also evaluates conditions with the help of operations in Engines. The other
part channels and controls the communication between Transformations and individual Engines
at runtime. To facilitate communication, the Core providesan interface for Engine plug-ins and
works as a dependency injector, explaining the runtime connection between Transformations and
Engines.

Although of secondary concern, the Core can execute high-level programs. Most necessary
parts are already implemented for other functionality: Data structures modeling programs and
conditions, evaluation of conditions, and the matching andpushout operation in the Engines.

Application . This is the action initiating component of the system. The runtime data flow
between the components is shown in Figure3 (b). The Application contacts the Core with orders

7 / 12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs

to connect the system with an Engine and then uses one of the Correctness tools. The Application
provides the graphical user interface (GUI) and manages input/output for creation, saving and
loading of data structures, e.g., rules, structures and morphisms. To create structures usable by
an Engine, the Application must know the specifics of the datastructures of the Engine. This
static dependency is illustrated in Figure3 (a).

Data: Rule r, Condition c
Result: the transformed result in c

if c is Existential or c is Universalthen
R := r.rightHandSide
P := c.morphism.domain
B := createTupleSet (initial (R), initial (P), false)
if c is Universalthen

j := new Disjunction
foreach (s, p) in Bdo

j += new Existential(s,subroutine (p, c))
end
c := j

else// c is Existential
j := new Conjunction
foreach (s, p) in Bdo

j += new Universal(s,subroutine (p, c))
end
c := j

end
else

foreach c1 in c.childrendo
A(r, c1)

end
end

Algorithm 0 : transformation A

Data: Morphism p, Morphism x, Boolean checku
Result: the set of morphism tuples to a common codomain, in A

A := new Set()
t, q :=pushout (p, x)
E := epimorphisms (t.codomain)
foreach e in Edo

r := compose (q, e)// e o q
if r in M then

u := compose (t, e)// e o t
if not checku or u in M then

A += (u, r)
end

end
end

Algorithm 0 : createTupleSet

Data: Morphism p, Condition c
Result: the transformed result in c

if c is Existential or c is Universalthen
A := createTupleSet (p, c.morphism, true)
if c is Existentialthen

j := new Disjunction
foreach (u, r) in A do

if c is basicthen
j += new Existential(u)

else
j += new Existential(u,subroutine (r,
c.child))

end
end

else// c is Universal
j := new Conjunction
foreach (u, r) in A do

j += new Universal(u,subroutine (r, c.child))
end

end
c := j

else// c is a boolean constraint
foreach c1 in c.childrendo

subroutine (p, c1)
end

end
Algorithm 0 : subroutine

Figure 4: Pseudo code for the transformation A from constraint to right application condition

Our Current Status

ENFORCe is a work in progress. A Java based implementation ofthe Core component is run-
ning. We have a workingGraphEngine based on software from GRAJ [Bus04] and imple-

Proc. GraBaTs 2006 8 / 12

ECEASST

mentations of the Transformations from constraints to right- to left application conditions. Our
plans include an Application with a GUI allowing users to experiment with the functionality
promised by ENFORCe.

5 Related Systems

There are several related systems that may be distinguishedfunctionally and methodically: E.g.,
one may distinguish between (e) transformation engines and(s) tools supporting model checking,
verification or analysis (termination, confluence).

Tool Abbreviation/Synopsis Reference

AGG Attributed Graph Grammar system s [Tae04]
AUGUR 2 analysis of hypergraph transformation system s [KK06]
CHECKVML CHECK Visual Modelling Languages s [SV03]
FUJABA From UML to JAva and BAck s [BGN+04]
GROOVE GRaph based Object-Oriented VErification s [KR06]
PROGRES PROgramming with Graph REwriting System s [SWZ99]
GRAJ GRAph programs in Java e [Bus04]
GRGEN Graph Rewrite GENerator e [GBG+06]
YAM York Abstract Machine e [MP06]

Table 3: A selection of related systems

AGG [Tae04] is a general development environment for attributed graphtransformation sys-
tems written in Java. It consists of a SPO-based transformation engine, graphical editors, a visual
interpreter/debugger and a set of validation tools. AGG supports graph parsing, a transforma-
tion of (basic) constraints into equivalent left application conditions [HW95] and critical pair
analysis, i.e., a test for confluency.

AUGUR 2 [KK06] is a tool for analyzing node-preserving hyperedge transformation systems
by abstraction to so-called Petri graphs: A node in a Petri graph represents multiple hypergraph
nodes, while token represent hyperedges. The system consists of approximating algorithms for
the abstraction of hypergraph transformation system, a coverability as well as a planned reacha-
bility algorithm for deciding Petri graph properties, and abstraction refinement algorithms in the
case of a counterexample.

CHECKVML [SV03] is a tool for model checking dynamic consistency properties of arbitrary
visual modeling languages (e.g., UML, Petri nets) by generating a model-level specification.
Such high-level specifications are translated into a tool independent abstract representation of
transition systems defined by a corresponding meta-model. This intermediate representation is
automatically translated to the input language of the back-end model checker tool SPIN.

The FUJABA TOOL SUITE [BGN+04] is primarily an UML CASE Tool. Implemented as a
plugin within this framework is an approximative invariantchecker [BBG+06] for conjunctions
of negative existential graph conditions for transformation system with basic negative application

9 / 12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs

condition and priorities (SPO with gluing condition). Apart from the priorities, the method
corresponds to the construction of a weakest precondition and the decision of the implication
problem while ignoring the application conditions and the implicit gluing conditions of the rules
(both correct approximations).

GRAJ [Bus04] is a tool for executing graph programs. The system consistsof a virtual ma-
chine, a compiler translating rules into GRAJ machine code and a recently developed graphical
user interface. The virtual machine provides primitives for manipulating graphs and storing the
execution history of a program needed for implementing the non-deterministic behavior of pro-
grams. TheGraphEngine of ENFORCe will make use of GRAJ.

GRGEN [GBG+06] is a generative programming system for graph rewriting. Itconsists of a
compiler for SPO rules specified in a declarative language, atransformation engine called libGr
written in C and a shell-like frontend for the transformation engine called GrShell. GRGEN

is aimed at attributed typed directed multigraphs, supporting various matching conditions and
featuring attribute computation, relabeling and regular graph rewrite sequences comparable to
graph programs.

GROOVE [KR06] is a set of (planned) tools for software model checking of object-oriented
systems. It aims at directed edge-labeled graphs without parallel edges, a structure suitable for
representing binary predicate logic. The GROOVE Simulator, consisting of a user interface and
a SPO-based transformation engine, may be used for state space generation of (finite) trans-
formation systems. The state space is translated to a Kripkestructure for standard CTL model
checking.

PROGRES[SWZ99] is a set of tools as well as a hybrid visual language for attributed graph
transformation. The environment consists of graphical andtextual editors supporting syntax-
directed editing of graphical specifications and incremental parsing of textual language elements,
an interpreter/debugger with built-in constraint checking facilities for transformation specifica-
tions, and a compiler backend that translates graph transformations into C-code and generates a
tcl/tk-based user interface for calling graph transformations and displaying manipulated graphs.

YAM [MP06] defines a stack-based abstract machine language for graph transformation, com-
parable to postscript for graphics. This includes low-level instructions as get node, get node/edge
label, get source/target, add/delete/relabel node edge, to which graph transformations rules get
translated to. The YAM interpreter is written in C, while a compiler for translating graph rules
and programs to YAM code is still under development.

ENFORCe focuses on correctness of high-level programs withapplication conditions. Its
functionality will distinguish it from most tools presented here, e.g., from AGG which is primar-
ily concerned with confluency. Tools concerned with correctness include AUGUR 2, CHECK-
VML, G ROOVEand the FUJABA invariant checker. Due to its approximation technique, AUGUR

2 is restricted to node-preserving hypergraph replacementsystem, while it will be able to check a
certain fragment of monadic second order properties for hypergraphs (see [BCKK04] for details).
GROOVE is a model checker tool and will be able to handle arbitrary edge-labeled graph trans-
formation systems with application conditions once abstraction is added to its features, while the
type of checkable properties depends on the used abstraction. The FUJABA invariant checker
is concerned with story patterns (= graph transformation rules with basic negative application
conditions) and considers a small, decidable fragment of first-order logic. ENFORCe aims at
full first-order properties.

Proc. GraBaTs 2006 10 / 12

ECEASST

6 Conclusion

ENFORCe is a suite of tools for ensuring the correctness of high-level programs. It is designed
for weak adhesive HLR categories, exploiting the fact that necessary high-level algorithms can
be based on a small set of structure-specific methods. Structurally, ENFORCe consists of Ap-
plications (e.g., user interface), Correctness tools (e.g., for correctness by construction), Engines
(i.e., specific data structures and methods for a weak adhesive HLR category) and a Core con-
taining general high-level notions and methods, connecting Engines with the rest of the system.
This separation allows us to include new categories with a minimum of effort and to develop new
Correctness tools and Transformation which instantly workwith any Engine. While developing
more efficient algorithms for a category, the ability to quickly exchange Engines could be useful
for comparing the performance. Further topics could be the following:

(1) Engines for other weak adhesive HLR categories, like thecategories of place-transition
nets, hypergraphs, or typed attributed graphs.

(2) Adapters for other existing transformation engines like YAM or GRGEN. Adapters pro-
vide an interface and complete functionality, if necessary.

(3) Further Correctness tools and Transformations like semantic converters of conditions and
rules, for switching the satisfiability and matching notions from arbitrary morphisms to
M -morphisms and vice versa [HP06], or a tool for proving the conflictfreeness of specifi-
cations.

(4) The construction of a correct program from a specification in form of a pre- and postcon-
dition, e.g., see [LEHS06]).

Acknowledgements: This work is supported by the German Research Foundation (DFG),
grants GRK 1076/1 (Graduate School on Trustworthy SoftwareSystems) and HA 2936/2 (De-
velopment of Correct Graph Transformation Systems).

Bibliography

[BBG+06] B. Becker, D. Beyer, H. Giese, F. Klein, D. Schilling. Symbolic invariant verification
for systems with dynamic structural adaptation. InProc. of the 28th int. conference
on Software engineering (ICSE’06). Pp. 72–81. ACM Press, 2006.

[BCKK04] P. Baldan, A. Corradini, B. König, B. König. Verifying a Behavioural Logic for
Graph Transformation Systems. InProc. of COMETA ’03. ENTCS 104, pp. 5–24.
Elsevier, 2004.

[BGN+04] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P. Wadsack,R. Wagner, L. Wendehals,
A. Zündorf. Tool integration at the meta-model level: the Fujaba approach.Journal
on Software Tools for Technology Transfer (STTT)6(3):203–218, 2004.

[Bus04] G. Busatto. GraJ: A System for Executing Graph Programs in Java. Technical re-
port 3/04, University of Oldenburg, 2004. Available at [Uni].

11 / 12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs

[EEHP06] H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann. Theory of Constraints and Applica-
tion Conditions: From Graphs to High-Level Structures.Fundamenta Informaticae
74:135–166, 2006.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs of Theoretical Computer Science. Springer-Verlag,
Berlin, 2006.

[GBG+06] R. Geiß, V. Batz, D. Grund, S. Hack, A. M. Szalkowski. GrGen: A fast SPO-based
graph rewriting tool. InGraph Transformations (ICGT’06). LNCS 4178, pp. 383–
397. Springer, 2006.

[HP05] A. Habel, K.-H. Pennemann. Nested Constraints and Application Conditions for
High-Level Structures. InFormal Methods in Software and System Modeling.
LNCS 3393, pp. 293–308. Springer, 2005.

[HP06] A. Habel, K.-H. Pennemann. Satisfiability of High-Level Conditions. InGraph
Transformations (ICGT’06). LNCS 4178, pp. 430–444. Springer, 2006.

[HPR06] A. Habel, K.-H. Pennemann, A. Rensink. Weakest Preconditions for High-Level
Programs. InGraph Transformations (ICGT’06). LNCS 4178, pp. 445–460.
Springer, 2006. A long version is available as technical report at [Uni].

[HW95] R. Heckel, A. Wagner. Ensuring Consistency of Conditional Graph Grammars — A
Constructive Approach. InSEGRAGRA’95. ENTCS 2, pp. 95–104. 1995.

[KK06] B. König, V. Kozioura. Augur 2 — A New Version of a Toolfor the Analysis of
Graph Transformation Systems. InProc. Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT’06). ENTCS. Elsevier, 2006. To appear.

[KR06] H. Kastenberg, A. Rensink. Model Checking Dynamic States in GROOVE. InModel
Checking Software (SPIN). LNCS 3925, pp. 299–305. Springer, 2006.

[LEHS06] M. Lohmann, G. Engels, R. Heckel, S. Sauer. Model-Driven Monitoring: An Appli-
cation of Graph Transformation for Design by Contract. InGraph Transformations
(ICGT’06). LNCS 4178. Springer, 2006.

[MP06] G. Manning, D. Plump. The York Abstract Machine. InProc. Graph Transformation
and Visual Modelling Techniques (GT-VMT’06). ENTCS. Elsevier, 2006. To appear.

[SV03] Á. Schmidt, D. Varró. CheckVML: A Tool for Model Checking Visual Modeling
Languages. InProc. UML 2003: 6th International Conference on Unified Modeling
Language. LNCS 2863, pp. 92–95. Springer, 2003.

[SWZ99] A. Schürr, A. J. Winter, A. Zündorf. The PROGRES Approach: Language and En-
vironment. InHandbook of Graph Grammars and Computing by Graph Trans.Vol-
ume 2, pp. 487–550. World Scientific, 1999.

[Tae04] G. Taentzer. AGG: AGraph Transformation Environment for Modeling and Vali-
dation of Software. InProc. Application of Graph Transformations with Industrial
Relevance (AGTIVE’03). LNCS 3062, pp. 446–453. Springer, 2004.

[Uni] http://formale-sprachen.informatik.uni-oldenburg.de/pub/eindex.html.

Proc. GraBaTs 2006 12 / 12

	Introduction
	Correctness of Programs
	System Requirements
	System Design
	Related Systems
	Conclusion

