
Electronic Communications of the EASST
Volume 55 (2012)

Proceedings of the
XII Spanish Conference on Programming and Computer

Languages
(PROLE 2012)

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic
Computations

Pedro J. Morcillo, Ginés Moreno, Jaime Penabad and Carlos Vázquez

17 pages

Guest Editors: Marı́a-del-Mar Gallardo
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic
Computations

Pedro J. Morcillo1, Ginés Moreno1, Jaime Penabad1 and Carlos Vázquez1

1 PedroJ.Morcillo@alu.uclm.es Gines.Moreno@uclm.es
Jaime.Penabad@uclm.es Carlos.Vazquez@alu.uclm.es

Faculty of Computer Science Engineering
University of Castilla-La Mancha

02071 Albacete (Spain)

Abstract: Classically, most programming languages use in a predefined way the
notion of “string” as an standard data structure for a comfortable management of
arbitrary sequences of characters. However, in this paper we assign a different role
to this concept: here we are concerned with fuzzy logic programming, a some-
how recent paradigm trying to introduce fuzzy logic into logic programming. In
this setting, the mathematical concept of multi-adjoint lattice has been successfully
exploited into the so-called Multi-adjoint Logic Programming approach, MALP in
brief, for modeling flexible notions of truth-degrees beyond the simpler case of true
and false. Our main goal points out not only our formal proof verifying that string-
based lattices accomplish with the so-called multi-adjoint property (as well as its
Cartesian product with similar structures), but also its correspondence with interest-
ing debugging tasks into the FLOPER system (from “Fuzzy LOgic Programming
Environment for Research”) developed in our research group.

Keywords: Cartesian Product of Multi-adjoint Lattices; Fuzzy (Multi-adjoint) Logic
Programming; Declarative Debugging

1 Introduction

In essence, the notion of multi-adjoint lattice considers a carrier set L (whose elements ver-
ify a concrete ordering ≤) equipped with a set of connectives like implications, conjunctions,
disjunctions and other hybrid operators (not always belonging to an standard taxonomy) with
the particularity that for each implication symbol there exists its adjoint conjunction used for
modeling the modus ponens inference rule in a fuzzy logic setting. For instance, some adjoint
pairs -i.e. conjunctors and implications- in the lattice ([0,1],≤) are presented in the following
paragraph (from now on, this lattice will be called V along this paper), where labels L, G and P

mean respectively Łukasiewicz logic, Gödel intuitionistic logic and product logic (with different
capabilities for modeling pessimist, optimist and realistic scenarios, respectively):

1 / 17 Volume 55 (2012)

mailto:PedroJ.Morcillo@alu.uclm.es
mailto:Gines.Moreno@uclm.es
mailto:Jaime.Penabad@uclm.es
mailto:Carlos.Vazquez@alu.uclm.es

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations

&P(x,y) , x∗ y ←P (x,y) , min(1,x/y) Product

&G(x,y) , min(x,y) ←G (x,y) ,

{
1 if y≤ x
x otherwise

Gödel

&L(x,y) , max(0,x+ y−1) ←L (x,y) , min{x− y+1,1} Łukasiewicz

Moreover, in the MALP framework [MOV04], each program has its own associated multi-adjoint
lattice and each program rule (whose syntax, described in detail in Section 3, extends very sig-
nificantly a Prolog clause1) is “weighted” with an element of L, whereas the components in
its body are linked with connectives of the lattice. For instance, in the following propositional
MALP program (where obviously @aver refers to the classical average operator):

p ←P @aver(q,r) with 0.9
q ← with 0.8
r ← with 0.6

the last two rules directly assign truth values 0.8 and 0.6 to propositional symbols q and r, re-
spectively, and the execution of p using the first rule, simply consists in evaluating the expression
“&P(0.9,@aver(0.8,0.6))”, which returns the final truth degree 0.63.

In the following section we describe the shape of the elements, ordering relation and behaviour
of the connectives of new multi-adjoint lattices obtained by applying the Cartesian product to pre-
vious ones. The main application of such structures into the MALP framework is that it is very
easy to attach to program rules and fuzzy connectives “labels” related not only with truth de-
grees, but also with “augmented information” very useful for designing further debugging tasks
devoted to “document” proof procedures. Our work is inspired by [RR08, RR09], where authors
use the so-called qualification domain of weights W for counting the number of computational
steps performed along derivations: however, our proposed technique surpass such approach by
providing deeper details on the nature of every fuzzy-logic evaluation step.

As far as we know, there exists only another fuzzy system called RFuzzy [MCS11] (a sequel
of Fuzzy Prolog [GMV04]) implemented in Prolog and equipped too with debugging/tracing
capabilities. However, these techniques have been developed in an ad hoc way, in contrast with
the high level approach offered by FLOPER, which simply relies on the use of lattices associated
to fuzzy programs2.

In Section 3 we present the syntax and procedural semantics of the MALP framework, which
exploits multi-adjoint lattices for modeling richer notions of truth degrees to be managed by
fuzzy programs. Next, we present the FLOPER tool recently equipped with a graphical inter-
face as shown in Figure 1 [MMPV10b, MMPV11b, MMPV11a] (please, visit the web page
http://dectau.uclm.es/floper/), which currently is successfully used for compiling
(to standard Prolog code), executing and debugging MALP programs in a safe way and it is ready
for being extended in the near future with powerful transformation and optimization techniques
designed in our research group in the recent past [JMP05, GM08, JMM+11].

1 We assume familiarity with pure Logic Programming [Llo87, JA07] and its most popular language Prolog.
2 It is important to note that in [MCS11, GMV04], a fixed, unique lattice is used for modeling truth degrees.

Proc. PROLE 2012 2 / 17

ECEASST

Figure 1: Screen-shot of a work session with FLOPER.

After describing some guidelines for easily managing multi-adjoint lattices expressed by means
of Prolog clauses into the FLOPER system, in Section 4 we propose a sophisticated kind of lat-
tices based on the Cartesian product of previous lattices (based on strings) capable for taking into
account details on declarative traces, such as the sequence of computations (regarding program
rules, fuzzy connectives and primitive operators) needed for evaluating a given goal. Finally, in
Section 5 we give our conclusions and provide some lines for future work.

2 String-based Multi-adjoint Lattices and Cartesian Product

In this section we focus on the theoretical results which guarantee that a lattice based on strings
is also a multi-adjoint lattice, as well as its Cartesian product with any other multi-adjoint lattice
(this kind of sophisticated lattices can be associated to MALP programs in order to report at exe-
cution time, a detailed description of the computational steps performed for reaching solutions).
We start this section with the formal definition of multi-adjoint lattice.

Definition 1 Let (L,≤) be a lattice. A multi-adjoint lattice is a tuple (L,≤,←1,&1, . . . ,←n

,&n) such that:

i) (L,≤) is a complete lattice, namely, ∀S⊂ L,S 6= /0,∃ in f (S),sup(S)3.

3 Then, it is a bounded lattice, i.e. it has bottom and top elements, denoted by ⊥ and >, respectively.

3 / 17 Volume 55 (2012)

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations

ii) (&i,←i) is an adjoint pair in (L,≤), i.e.:

1) &i is non-decreasing in both arguments, for all i, i = 1, . . . ,n.

2) ←i is non-decreasing in the first argument and non-increasing in the second one.

3) x≤ (y←i z) if and only if (x&iz)≤ y, for any x,y,z ∈ L (adjoint property).

iii) >&iv = v&i>= v for all v ∈ L, i = 1, . . . ,n, where >= sup(L).

This last condition, called adjoint property, is the most important feature of the framework.
From now, we are going to focus on the classical notion of Cartesian product applied on these
structures, which necessarily returns objects inheriting the required properties of such lattices.

Theorem 1 If L1, . . . ,Ln are multi-adjoint lattices, then its Cartesian product L = L1×·· ·×Ln

is also a multi-adjoint lattice.

Proof. In order to simplify our sketch but without loss of generality, we only consider two
multi-adjoint lattices (L1,≤1,&1,←1) and (L2,≤2,&2,←2), each one equipped with just a sin-
gle adjoint pair. L = L1× L2 has lattice structure with an order induced in the product from
(L1,≤1) and (L2,≤2) as follows: (x1,y1) ≤ (x2,y2)⇔ x1 ≤1 x2, y1 ≤2 y2. Moreover, being
>1 = sup(L1), ⊥1 = in f (L1), >2 = sup(L2) and ⊥2 = in f (L2), we have that (>1,>2) = sup(L)
and (⊥1,⊥2) = in f (L), which implies that the Cartesian product L is a bounded lattice if both
L1 and L2 are also bounded lattices.

Analogously, L1×L2 is a complete lattice if L1 and L2 verify too the same property.
Finally, from the adjoint pairs (&1,←1) and (&2,←2) in L1 and L2, respectively, it is possible

to define the following connectives in L: (x1,y1)&(x2,y2) , (x1&1x2,y1&2y2) and (x1,y1)←
(x2,y2) , (x1←1 x2,y1←2 y2), for which it is easy to justify that they conform an adjoint pair
in L1×L2 (thus satisfying, in particular, the adjoint property).

In a similar way, it is also possible to define new connectives (conjunctions, disjunctions, etc.)
in the Cartesian product L1×L2 from the corresponding pairs of operators defined in both lattices
L1 and L2.

Moreover, if we are interested in knowing more detailed data about the set of program rules
and connective definitions evaluated for obtaining each solution then it will be mandatory to
use a new lattice S based on strings or labels (i.e., sequences of characters) for generating the
Cartesian product V ×S . In order to achieve our purposes, we firstly must show not only that
S is a multi-adjoint lattice, but also that the concatenation operation of strings, usually called
append in many programming languages, plays the role of an adjoint conjunction in such lattice
(this last condition is required by practical aspects which are explained in Section 4).

When trying to solve both problems, we have analyzed several alternatives for establishing
ordering relations among the elements of S , such as the classical lexicographic ordering typ-
ically used for sorting words in dictionaries, or those ones based on prefixes, sub-strings, etc.,
(for instance ’ab’ and ’bc’ are respectively a prefix and a sub-string of ’abcd’). Unfortunately we
have observed that it is never possible to prove that append acts as a t-norm.

However, we have recently conceived an alternative, second way for granting that S is really
a multi-adjoint lattice, which definitely solves our problems. The clever point is to “view” each

Proc. PROLE 2012 4 / 17

ECEASST

string as a natural number by associating to each character its corresponding ASCII code. So, it
is possible to establish a bijective mapping [] with N.

Let be A = {a0, . . . ,an−1} a set, called alphabet, whose elements are symbols. A string s over
A is a finite sequence of elements of this set, that is, s = a1 . . .am, where ai ∈ A, i = 1, . . . ,m. The
set of all strings over A, denoted by S, is defined as S = ∪k∈NAk. The definition of S guarantees
its numerable character, that is, S contains a (numerable) infinite number of strings like a1 . . .am

formed by elements of A. Although the mentioned numerable character is obtained from well
known results of set theory, in Theorem 2 we will justify it by formalizing a bijection (and its
reverse function) from S to N which will be relevant in the multi-adjoint scope.

Each element of Ak is a string of k elements (with length k) that can be viewed as words; in
this case, S could be interpreted as the set of all words with finite length. This interpretation is
attractive since each formal language with alphabet A is the set of formulae constructed with ele-
ments or words of S that are, also, constrained to the syntactic rules established by that language.
Any language with alphabet A would be, accordingly, a subset of S.

Moreover, in set S we define the concatenation, denoted by ·, as the internal operation

Ap×Aq→ Ap+q

(s, t) 7→ s · t

such that, given s = a1 . . .ap, t = b1 . . .bq, then s · t = a1 . . .apb1 . . .bq.
Let be the primitive functions cod : A→ Im(cod) and asc : Im(cod)→ A, such that cod(ai) = i

and asc(i) = ai. It is trivial to proof that cod is the inverse of function asc and reciprocally.
Symbol ′′ represents the empty (with length 0) string. We define the map [] : S→ N through
rules R1 and R2:

R1 : [′′] = 0
R2 : [a1 . . .am] = (cod(a1)+1)nm−1 + · · ·+(cod(am)+1)n0

where ai ∈ A,∀i, and a1 . . .am ∈ S. Rule R2 can be rewritten as:

R∗2 : [s.a] = [s]n+ cod(a)+1

where s.a indicates a string obtained after adding the symbol a at the end of string s, s.a =
a1 . . .am.a = a1 . . .ama.

In order to illustrate this mapping, consider the alphabet {a,b,c} and the string s = cab, where
[cab] = (cod(c)+1)32 +(cod(a)+1)3+(cod(b)+1) = 3∗9+1∗3+2 = 32.

Theorem 2 The map [], defined by R1 and R2 (or R∗2), is bijective.

Proof. Indeed, it is map since each string s ∈ S is associated with a unique natural number. In
order to proof the bijective character of [], we will demonstrate that its inverse function is the
map <>: N→ S, defined as:

< 0 >=′′

< m >=< b(m−1)/nc> .asc((m−1)%n)

5 / 17 Volume 55 (2012)

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations

where bc : R→N is the floor function, so b(m−1)/nc is the floor of the quotient, and (m−1)%n
is the remainder modulo n (number of elements of A) of the integer m−1.

We will see that compositions (<> ◦[]) : S→ S and ([]◦<>) : N→N coincide with the iden-
tity map (idS and idN, respectively), which justifies that [] is the inverse of <>, and reciprocally.
Firstly, we prove that (<> ◦[])(s) = s,∀s ∈ S.

1. (<> ◦[])(′′) =< [′′]>=< 0 >=′′

2. (<> ◦[])(s.a) =
< [s.a]>=< [s]n+ cod(a)+1 >=
< b([s]n+ cod(a)+1−1)/nc> .asc(([s]n+ cod(a)+1−1)%n) =
< b([s]n+ cod(a))/nc> .asc(([s]n+ cod(a))%n) =
< b[s]n/nc> .asc(cod(a)%n) =< b[s]c> .asc(cod(a)) =
< [s]> .a

Hence, < [s.a] >=< [s] > .a, that is, if s = a1 . . .am, then < [a1 . . .ama] >=< [a1 . . .am] > .a =
· · ·=< [′′]> .a1.am.a = s.a = idS(s.a), where idS : S→ S is the identity map of S.

Secondly, we will demonstrate that ([]◦<>)(j) = j,∀ j ∈ N:

1. ([]◦<>)(0) = [< 0 >] = [′′] = 0

Since j can be expressed as xn+ y, where x,y ∈ N,0 < y≤ n, if j > 0, we have

2. ([]◦<>)(j) =
([]◦<>)(xn+ y) = [< xn+ y >] =
[< b(xn+ y−1)/nc> .asc((xn+ y−1)%n)] =
[< b(xn+ y−1)/nc>]n+ cod(asc((xn+ y−1)%n))+1 =
[< bxn/nc>]n+ cod(asc(y−1))+1 =
[< x >]n+(y−1)+1 =
[< x >]n+ y

Therefore, [< xn+ y >] = [< x >]n+ y,0 < y ≤ n. That is, j can be expressed as j = y1nm−1 +
· · ·+ym−1n1 +y, with y1, . . . ,ym−1 ∈ {1, . . . ,n}, so [< j >] = [< y1nm−1 + · · ·+ym−1n1 +y >] =
[< y1nm−2 + · · ·+ ym−1n0 >]n+ y = · · ·= [< 0 >]n+ y1nm−1 + · · ·+ ym−1n1 + y = j.

Consequently, if [] is the inverse function of <> (and reciprocally) both are bijective func-
tions, which proves our desired result.

In Example 1 we illustrate these maps with a reduced alphabet, while Example 2 works in a
real-world setting, giving an idea of the usefulness of this approach.

Example 1 Consider the alphabet A = {a,b,c}. Then, the string associated to the number
32 is < 32 >=< b31/3c > .asc(32%3) =< 10 > .asc(1) =< b9/3c > .asc(9%3).b =< 3 >
.asc(0).b =< b2/3c> .asc(2%3).a.b =< 0 > .asc(2).a.b =′′ .c.a.b = cab

Example 2 Consider the following strings (using the ASCII code as alphabet): s = sea and
t = son. We will apply the append operation on them and obtain its associated number.

Proc. PROLE 2012 6 / 17

ECEASST

• [s] =
[sea] = (cod(s)−1)1282 +(cod(e)−1)128+(cod(a)−1) =
(115−1)1282 +(101−1)128+(97−1) =
1880672

• [t] =
[son] = (cod(s)−1)1282 +(cod(o)−1)128+(cod(n)−1) =
(115−1)1282 +(111−1)128+(110−1) =
1881965

• [s · t] =
[season] = (cod(s)−1)1285+(cod(e)−1)1284+(cod(a)−1)1283+(cod(s)−1)1282+
(cod(o)−1)128+(cod(n)−1) =
(115−1)1285 +(101−1)1284 +(97−1)1283 +(115−1)1282 +(111−1)128+109 =
3944056928109

Starting from the reverse usual order (N,≤), we define an ordering relation in S that compares
strings s, t ∈ S by

s≤ t ⇐⇒ [s]≤ [t]

so the supreme element of S is the empty string, ′′. The application of append over strings
sea and son from the Example 2, which is s · t = season, is less than both s and t, that is (by
the definition of S), [s · t] ≤ [s] and [s · t] ≤ [t]. As a result of Theorem 2, we have that S is
bijective with N. Therefore, the completion (see [MMPV12]) of S, which is S = S∪{in f (S)},
is bijective with the completion of N, (N∪{in f (N)}), expressed also as W [RR08, RR09]. So,
since (W ,≤) = (N∪{in f (N)},≤) is a multi-adjoint lattice, then S inherits the same property4.
After showing that S is a multi-adjoint lattice via the mapping bijection established with the
multi-adjoint lattice W , and before illustrating the benefits that the Cartesian product V ×S ,
among others, might play in several software engineering tasks, it is mandatory to explain in the
following two sections some details of the MALP language and its associated FLOPER tool.

3 Multi-adjoint Logic Programming and FLOPER

This section summarizes the main features of multi-adjoint logic programming as illustrated
in Figures 2 and 3 (see [MOV04, JMP09] for a complete formulation of this framework). We
work with a first order language, L , containing variables, constants, function symbols, pred-
icate symbols, and several (arbitrary) connectives to increase language expressiveness: impli-
cation connectives (denoted by ←1,←2, . . .); conjunctive connectives (∧1,∧2, . . .) adjoint con-
junctions (&1,&2, . . .), disjunctive connectives (∨1,∨2, . . .), and hybrid operators called “aggre-
gators” (usually denoted by @1,@2, . . .). Although these connectives are binary operators, we
usually generalize them as functions with an arbitrary number of arguments. So, we often write
@(x1, . . . ,xn) instead of @(x1, . . . ,@(xn−1,xn), . . .). By definition, the truth function for an n-
ary connective [[@]] : Ln → L is required to be monotonous and fulfills [[@]](>, . . . ,>) = >,
[[@]](⊥, . . . ,⊥) =⊥.
4 It is easy to prove that &append is really an adjoint conjunction in lattice S .

7 / 17 Volume 55 (2012)

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations

Multi-adjoint logic program:

P =

R1 : 〈p(X) ←P &G(q(X),@aver(r(X),s(X))) ;0.9〉
R2 : 〈q(a) ← ;0.8〉
R3 : 〈r(X) ← ;0.7〉
R4 : 〈s(X) ← ;0.5〉

Admissible derivation:

〈p(X); id〉 →AS1
R1

〈&P(0.9,&G(q(X1),@aver(r(X1),s(X1))));{X/X1}〉 →AS2
R2

〈&P(0.9,&G(0.8,@aver(r(a),s(a))));{X/a,X1/a}〉 →AS2
R3

〈&P(0.9,&G(0.8,@aver(0.7,s(a))));{X/a,X1/a,X2/a}〉 →AS2
R4

〈&P(0.9,&G(0.8,@aver(0.7,0.5)));{X/a,X1/a,X2/a,X3/a}〉

Interpretive derivation:

〈&P(0.9,&G(0.8,@aver(0.7,0.5)));{X/a}〉 →IS

〈&P(0.9,&G(0.8,0.6));{X/a}〉 →IS

〈&P(0.9,0.6);{X/a}〉 →IS

〈0.54;{X/a}〉 p(a) has truth degree 0.54

Figure 2: MALP program P with admissible/interpretive derivations for goal p(X).

Additionally, our language L contains the values of a multi-adjoint lattice
(L,≤,←1,&1, . . . ,←n,&n), equipped with a collection of adjoint pairs (←i,&i) as detailed in
previous sections. In general, L may be the carrier of any complete bounded lattice where a
L-expression is a well-formed expression composed by values and connectives of L, as well as
variable symbols and primitive operators (i.e., arithmetic symbols such as ∗,+,min, etc.). In
what follows, we assume that the truth function of any connective @ in L is given by its corre-
sponding connective definition, that is, an equation of the form @(x1, . . . ,xn), E, where E is a
L-expression not containing variable symbols apart from x1, . . . ,xn. See for instance, the classical
set of adjoint pairs (conjunctors and implications of Łukasiewicz logic, Gödel intuitionistic logic
and product logic) in ([0,1],≤) defined at the beginning of this paper in Section 1.

A rule is a formula H ←i B, where H is an atomic formula (usually called the head) and B
(which is called the body) is a formula built from atomic formulas B1, . . . ,Bn — n ≥ 0 —, truth
values of L, conjunctions, disjunctions and other connectives. A goal is a body submitted as a
query to the system. Roughly speaking, a multi-adjoint logic program is a set of pairs 〈R;v〉 (we
often write “R with v”), where R is a rule and v is a truth degree (a value of L) expressing the
confidence of a programmer in the truth of rule R. By abuse of language, we sometimes refer a
tuple 〈R;v〉 as a “rule”.

The procedural semantics of the multi–adjoint logic language L can be thought of as an op-
erational phase (based on admissible steps) followed by an interpretive one. In the following,

Proc. PROLE 2012 8 / 17

ECEASST

C [A] denotes a formula where A is a sub-expression which occurs in the –possibly empty– con-
text C []. Moreover, C [A/A′] means the replacement of A by A′ in context C [], whereas V ar(s)
refers to the set of distinct variables occurring in the syntactic object s, and θ [V ar(s)] denotes
the substitution obtained from θ by restricting its domain to V ar(s).

Definition 2 (Admissible Step) Let Q be a goal and let σ be a substitution. The pair 〈Q;σ〉 is
a state and we denote by E the set of states. Given a program P , an admissible computation is
formalized as a state transition system, whose transition relation→AS ⊆ (E ×E) is the smallest
relation satisfying the following admissible rules (where we always consider that A is the selected
atom in Q and mgu(E) denotes the most general unifier of an equation set E):

1) 〈Q[A];σ〉 →AS 〈(Q[A/v&iB])θ ;σθ〉, if θ = mgu({H = A}) and 〈H←iB;v〉 in P .
2) 〈Q[A];σ〉 →AS 〈(Q[A/v])θ ;σθ〉, if θ = mgu({H = A}) and 〈H←;v〉 in P .

As usual, rules are taken renamed apart. We shall use the symbols→AS1 and→AS2 to distinguish
between computation steps performed by applying one of the specific admissible rules. Also, the
application of a rule on a step will be annotated as a superscript of the→AS symbol.

Definition 3 Let P be a program, Q a goal and id the empty substitution. An admissible
derivation is a sequence 〈Q; id〉→AS · · ·→AS〈Q′;θ〉. When Q′ is a formula not containing atoms
(i.e., a L-expression), the pair 〈Q′;σ〉, where σ = θ [V ar(Q)], is called an admissible computed
answer (a.c.a.) for that derivation.

If we exploit all atoms of a given goal, by applying admissible steps as much as needed during
the operational phase, then it becomes a formula with no atoms (a L-expression) which can be
then directly interpreted w.r.t. lattice L as follows.

Definition 4 (Interpretive Step) Let P be a program, Q a goal and σ a substitution. Assume
that [[@]] is the truth function of connective @ in the lattice (L,≤) associated to P , such that, for
values r1, . . . ,rn,rn+1 ∈ L, we have that [[@]](r1, . . . ,rn) = rn+1. Then, we formalize the notion of
interpretive computation as a state transition system, whose transition relation→IS ⊆ (E ×E) is
defined as the least one satisfying: 〈Q[@(r1, . . . ,rn)];σ〉 →IS 〈Q[@(r1, . . . ,rn)/rn+1];σ〉. An
interpretive derivation is a sequence 〈Q;σ〉→IS · · ·→IS〈Q′;σ〉. If Q′ = r ∈ L, being (L,≤) the
lattice associated to P , then 〈r;σ〉 is called a fuzzy computed answer (f.c.a.) for that derivation.

From now on, we proceed with more practical aspects regarding multi-adjoint lattices and im-
plementation issues. The parser of our FLOPER tool [MM08, MMPV10a, MMPV11b] has been
implemented by using the Prolog language. Once the application is loaded inside a Prolog inter-
preter, it shows a menu which includes options for loading/compiling, parsing, listing and saving
MALP programs, as well as for executing/debugging fuzzy goals. Moreover, in [MMPV10b] we
explain that FLOPER has been recently equipped with new options, called “lat” and “show”,
for allowing the possibility of respectively changing and displaying the multi-adjoint lattice as-
sociated to a given program.

A very easy way to model truth-degree lattices for being included into the FLOPER tool is
also described in [MMPV10b], according the following guidelines. All relevant components of
each lattice are encapsulated inside a Prolog file which must necessarily contain the definitions

9 / 17 Volume 55 (2012)

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations

Figure 3: A work session with FLOPER mirroring Figure 2.

of a minimal set of predicates defining the set of valid elements (including special mentions to
the “top” and “bottom” ones), the full or partial ordering established among them, as well
as the repertoire of fuzzy connectives which can be used for their subsequent manipulation. In
order to simplify our explanation, assume that file “bool.pl” refers to the simplest notion of (a
binary) adjoint lattice, thus implementing the following set of predicates:
• member/1 which is satisfied when being called with a parameter representing a valid truth

degree. For instance, in the Boolean case, this predicate can be simply modeled by the Prolog
facts member(0). and member(1).
• bot/1 and top/1 obviously answer with the top and bottom element of the lattice, respec-

tively. Both are implemented into “bool.pl” as bot(0). and top(1).
• leq/2 models the ordering relation among all the possible pairs of truth degrees, and obvi-

ously it is only satisfied when it is invoked with two elements verifying that the first parameter is
equal or smaller than the second one. So, in our example it suffices with including into “bool.pl”
the facts leq(0,X). and leq(X,1).
• Finally, if we have some fuzzy connectives of the form &label1 (conjunction), ∨label2 (dis-

junction) or @label3 (aggregation) with arities n1, n2 and n3 respectively, we must provide clauses
defining the connective predicates “and label1/(n1+1)”, “or label2/(n2+1)” and
“agr label3/(n3+1)”, where the extra argument of each predicate is intended to contain the
result achieved after the evaluation of the proper connective. For instance, in the Boolean case,
the following two facts model in a very easy way the behaviour of the classical conjunction
operation: and bool(0, ,0). and bool(1,X,X).

Proc. PROLE 2012 10 / 17

ECEASST

member(X) :- number(X),0=<X,X=<1. bot(0).
leq(X,Y) :- X=<Y. top(1).

and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).
and_godel(X,Y,Z):- pri_min(X,Y,Z).
and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).
or_godel(X,Y,Z) :- pri_max(X,Y,Z).
or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),

pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).
agr_aver2(X,Y,Z):- or_godel(X,Y,Z1),or_luka(X,Y,Z2),

agr_aver(Z1,Z2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).
pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).
pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Figure 4: Prolog code for representing the multi-adjoint lattice V .

The reader can easily check that the use of lattice “bool.pl” when working with MALP programs
whose rules have the form: “H ←bool &bool(B1, . . . ,Bn) with 1”, being H and Bi typical atoms,
successfully mimics the behaviour of classical Prolog programs where clauses accomplish with
the shape “H :− B1, . . . ,Bn”. As a novelty in the fuzzy setting, when evaluating goals according
to the procedural semantics described in Section 3, each output will contain the corresponding
Prolog’s substitution (i.e., the crisp notion of computed answer obtained by means of classical
SLD-resolution) together with the maximum truth degree 1.

As shown in Figure 4, it is also possible to describe by means of Prolog clauses the more
flexible lattice V for working with truth degrees in the infinite space of the real numbers between
0 and 1, allowing too the possibility of using conjunction and disjunction operators recasted from
the three typical fuzzy logics proposals described before, as well as two useful descriptions for
the hybrid aggregator average.

4 Declarative Traces via Cartesian Product of Lattices

As detailed in [MMPV10b, MMPV11b], our parser has been implemented by using the classical
DCG’s (Definite Clause Grammars) resource of the Prolog language, since it is a convenient
notation for expressing grammar rules. As already commented in the previous section, once the
application is loaded inside any Prolog interpreter, it shows a menu which includes options for
loading, parsing, listing and saving fuzzy programs, as well as for executing fuzzy goals. All
these actions are based in the translation of the fuzzy code into standard Prolog code. The key
point is to extend each atom with an extra argument, called truth variable of the form “ TVi”,
which is intended to contain the truth degree obtained after the subsequent evaluation of the
atom. For instance, the first clause in our target program is translated into:

11 / 17 Volume 55 (2012)

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations

p(X,_TV0) :- q(X,_TV1), r(X,_TV2),s(X,_TV3),agr_aver(_TV2,_TV3,_TV4),
and_godel(_TV1,_TV4,_TV5),and_prod(0.9,_TV5,_TV0).

Moreover, the second clause in our target program in Figure 2, becomes into the pure Prolog fact
“q(a,0.8)” while a fuzzy goal like “p(X)”, is translated into the pure Prolog goal: “p(X,
Truth degree)” (note that the last truth degree variable is not anonymous now) for which the
Prolog interpreter returns the desired fuzzy computed answer [Truth degree= 0.54,X= a].
The previous set of options suffices for running fuzzy programs (the “run” choice also uses
the clauses contained in “num.pl”, which represent the default lattice) where all internal compu-
tations (including compiling and executing) are pure Prolog derivations whereas inputs (fuzzy
programs and goals) and outputs (fuzzy computed answers) have always a fuzzy taste, thus pro-
ducing the illusion on the final user of being working with a purely fuzzy logic programming
tool.

member(info(X,Y)):-number(X),0=<X,X=<1,atom(Y). top(info(1,’’)).

and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-
pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),
pri_app(Dat1,’&PROD.’,Dat2),pri_app(Dat2,DatPROD,Z2).

pri_prod(X,Y,Z,’#PROD.’):-Z is X * Y.

pri_app(X,Y,Z) :-name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).

append([],X,X). append([X|Xs],Y,[X|Zs]):-append(Xs,Y,Zs).
.....

Figure 5: Lattice modeled in Prolog for representing the Cartesian product V ×S .

On the other hand, in the previous section we have explained that FLOPER is equipped with two
new options, called “lat” and “show”, for allowing the possibility of respectively changing
and displaying the multi-adjoint lattice associated to a given program. Assume now that, instead
of computing the average of two truth degrees, we prefer to compute the average between the
results achieved after applying to both elements the disjunctions operators described by Gödel
and Łukasiewicz, that is: @aver2(x1,x2), @aver(∨G(x1,x2),∨L(x1,x2)). See the corresponding
Prolog clause modeling such definition listed in Figure 4. Now, by selecting again the “run”
option, the system would display the new solution: [Truth degree= 0.72,X= a].

In what follows, we plan to exploit a much more powerful lattice to cope with more involved
debugging details based on declarative traces beyond the simpler task described in [RR08, RR09]
of counting the number of program rules used during the query-answering procedure (some
guidelines can be found in our precedent works [MMPV11b, MMPV11a]). The elements of our
intended lattice must contain two components, thus belonging to the Cartesian product V ×S
seen in Section 2, in order capture not only truth degrees, but also “labels” collecting informa-
tion about the program rules, fuzzy connectives and primitive operators used for solving goals
when executing programs. In order to be loaded into FLOPER, we need to define again the
new lattice as a Prolog program, whose elements will be expressed now as data terms of the

Proc. PROLE 2012 12 / 17

ECEASST

form “info(Fuzzy Truth Degree, Label)” as shown in Figure 5 (we simply show an
incomplete but representative set of predicates).

Here, we see that when implementing for instance the conjunction operator of the Product
Logic, in the second component of our extended notion of “truth degree”, we have appended the
labels of its arguments with the label ’&PROD.’ (see clauses defining and prod, pri app
and append). Of course, in the fuzzy program to be run, we must also take into account the use
of labels associated to the program rules. For instance, the set of rules in our example (where we
use the complex version of average, i.e., @aver2 in the first rule) must have the form:

p(X) <prod &godel(q(X),@aver2(r(X),s(X))) with info(0.9,’RULE1.’).
q(a) with info(0.8,’RULE2.’).
r(X) with info(0.7,’RULE3.’).
s(X) with info(0.5,’RULE4.’).

Figure 6: Derivation for solving p(X) by using lattice V ×S .

〈p(X); id〉 →AS1
R1

〈&P(info(0.9,‘RULE1.’),&G(q(X1),@aver2(r(X1),s(X1))));{X/X1}〉 →AS2
R2

〈&P(info(0.9,‘RULE1.’),&G(info(0.8,‘RULE2.’),@aver2(r(a),s(a)))));{X/a}〉 →AS2
R3

〈&P(info(0.9,‘RULE1.’),&G(info(0.8,‘RULE2.’),

@aver2(info(0.7,‘RULE3.’),s(a)))));{X/a}〉 →AS2
R4

〈&P(info(0.9,‘RULE1.’),&G(info(0.8,‘RULE2.’),

@aver2(info(0.7,‘RULE3.’), info(0.5,‘RULE4.’))));{X/a}〉 →IS

〈&P(info(0.9,‘RULE1.’),&G(info(0.8,‘RULE2.’), info(0.85,∗)));{X/a}〉 →IS

〈&P(info(0.9,‘RULE1.’), info(0.8,∗∗));{X/a}〉 →IS

〈info(0.72,‘RULE1.RULE2.RULE3.RULE4.@AVER2.|GODEL.#MAX.|LUKA.
#ADD.#MIN.@AVER.#ADD.#DIV.&GODEL.#MIN.&PROD.#PROD.’);{X/a}〉.

where we have used the following symbols with their corresponding meanings:
∗ ‘RULE3.RULE4.@AVER2.|GODEL.#MAX.|LUKA.#ADD.#MIN.@AVER.#ADD.#DIV.’
∗∗ ‘RULE2.RULE3.RULE4.@AVER2.|GODEL.#MAX.|LUKA.#ADD.#MIN.@AVER.#ADD.

#DIV.&GODEL.#MIN.’

Now the reader can easily check that, after executing goal p(X), we obtain the desired fuzzy
computed answer which includes a nice declarative trace collecting the exact sequence of
“program-rules, fuzzy-connectives and primitive-operators” evaluated till finding the final so-
lution, which has the following shape by using FLOPER:

>> run.

13 / 17 Volume 55 (2012)

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations

Figure 7: Evaluation tree depicted by FLOPER associated to derivation shown in Figure 6.

[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.
@AVER2.|GODEL.#MAX.|LUKA.
#ADD.#MIN.@AVER.#ADD.#DIV.
&GODEL.#MIN.&PROD.#PROD.), X=a]

Figures 6 and 7 show the complete derivation built to reach the desired fuzzy computed answer
according the procedural semantics described in Section 3. In this fuzzy computed answer we
obtain both the truth value (i.e., 0.72) and substitution (that is, X = a) associated to our goal, but
also the sequence of program rules exploited when applying admissible steps (RULE1, RULE2,

Proc. PROLE 2012 14 / 17

ECEASST

RULE3 and RULE4, in this order) as well as the list of fuzzy connectives evaluated during
the interpretive phase, also detailing the set of primitive operators (of the form #label) that
they call: in our case, note that we have firstly evaluated aggregator @AVER2 (which calls to
connectives |GODEL - defined in terms of the primitive operator #MAX -, |LUKA - which invokes
the arithmetic operations #ADD and #MIN - and @AVER - expressed with the use of the primitive
operators #ADD and #DIV -), then we need to evaluate the conjunction &GODEL (solved again
via the arithmetic symbol #MIN) and the final exploited connective is &PROD (described in terms
of the primitive operator #PROD).

5 Conclusions and Future Work

This paper has been mainly concerned with theoretical and practical issues focusing into the
MALP framework (which could be seen as a very enriched fuzzy extension of Prolog), regarding
the use of a string-based multi-adjoint lattice called S . In a more precise way, we have proved
and illustrated that the Cartesian product of S with any other multi-adjoint lattice, is useful to
obtain a new, more powerful lattice which can be used for obtaining, at a very low costs, declara-
tive traces on fuzzy computed answers when executing MALP programs inside the FLOPER tool
developed in our research group. We nowadays continue exploring new uses of such kind of so-
phisticated lattices in other domains. For instance, we advance in [ALM11, ALM12a, ALM12b]
that the Cartesian product of V with a lattice modeling lists with a similar shape to S , is very
useful for coding with MALP rules a fuzzy variant of the well-known XPath language for the
flexible management of XML documents retrieved from the web (our first real-world applica-
tion using the FLOPER tool -see Figure 8- can be freely downloaded and tested on-line from
http://dectau.uclm.es/fuzzyXPath/).

Figure 8: An on-line session with the FuzzyXPath application developed with FLOPER

15 / 17 Volume 55 (2012)

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations

Bibliography

[ALM11] J. Almendros-Jiménez, A. Luna, G. Moreno. A Flexible XPath-based Query Lan-
guage Implemented with Fuzzy Logic Programming. In Bassiliades et al. (eds.),
Proceedings of 5th International Symposium on Rules: Research Based, Industry
Focused, RuleML’11. Barcelona, Spain, July 19–21. Pp. 186–193. Springer Ver-
lag, Lecture Notes in Computer Science 6826, 2011.

[ALM12a] J. M. Almendros-Jiménez, A. Luna, G. Moreno. Fuzzy Logic Programming for
Implementing a Flexible XPath-based Query Language. Electr. Notes Theor. Com-
put. Sci. 282:3–18, 2012.

[ALM12b] J. Almendros-Jiménez, A. Luna, G. Moreno. A XPath Debugger Based on Fuzzy
Chance Degrees. In Herrero et al. (eds.), Proceedings of Confederated Inter-
national OTM 2012 Workshops, ODBASE’12, Rome, Italy, September 10-14.
Pp. 669–672. Springer Verlag, Lecture Notes in Computer Science 7567, 2012.

[GM08] J. Guerrero, G. Moreno. Optimizing Fuzzy Logic Programs by Unfolding, Aggre-
gation and Folding. Electronic Notes in Theoretical Computer Science, Elsevier
219:19–34, 2008.

[GMV04] S. Guadarrama, S. Muñoz, C. Vaucheret. Fuzzy Prolog: A New Approach Using
Soft Constraints Propagation. Fuzzy Sets and Systems, Elsevier 144(1):127–150,
2004.

[JA07] P. Julián, M. Alpuente. Programación Lógica. Teorı́a y Práctica. Pearson Edu-
cación, S.A., Madrid, 2007.

[JMM+11] P. Julián, J. Medina, P. Morcillo, G. Moreno, M. Ojeda-Aciego. A Static Pre-
process for Improving Fuzzy Thresholded Tabulation. In Cabestany et al. (eds.),
Advances in Computational Intelligence - Proc of the 11th International Work-
Conference on Artificial Neural Networks, IWANN’11, Torremolinos, Spain, June
8-10. Pp. 429–436. Springer Verlag, Lecture Notes in Computer Science 6692,
2011.

[JMP05] P. Julián, G. Moreno, J. Penabad. On Fuzzy Unfolding. A Multi-adjoint Approach.
Fuzzy Sets and Systems, Elsevier 154:16–33, 2005.

[JMP09] P. Julián, G. Moreno, J. Penabad. On the Declarative Semantics of Multi-Adjoint
Logic Programs. In Cabestany et al. (eds.), Proceedings of the 10th International
Work-Conference on Artificial Neural Networks, IWANN’09, Salamanca, Spain,
June 10-12. Pp. 253–260. Springer, Lecture Notes in Computer Science 5517,
2009.

[Llo87] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Sec-
ond edition.

Proc. PROLE 2012 16 / 17

ECEASST

[MCS11] S. Muñoz-Hernández, V. P. Ceruelo, H. Strass. RFuzzy: Syntax, semantics and
implementation details of a simple and expressive fuzzy tool over Prolog. Inf. Sci.
181(10):1951–1970, 2011.

[MM08] P. J. Morcillo, G. Moreno. Programming with Fuzzy Logic Rules by Using the
FLOPER Tool. In Bassiliades et al. (eds.), Proc. of “Rule Representation, In-
terchange and Reasoning on the Web”International Symposium, RuleML’08, Or-
lando, FL, USA, October 30-31. Pp. 119–126. Springer Verlag, Lecture Notes in
Computer Science 5321, 2008.

[MMPV10a] P. J. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Modeling Interpretive Steps
into the FLOPER Environment. In Proceedings of the 2010 International Con-
ference on Artificial Intelligence, ICAI’10, July 12-15, 2010, Las Vegas Nevada,
USA, Volume 2 (ISBN 1-60132-148-1), CSREA Press. Pp. 16–22. 2010.

[MMPV10b] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. A Practical Management of
Fuzzy Truth Degrees using FLOPER. In Dean et al. (eds.), Proceedings of 4th
Intl Symposium on Rule Interchange and Applications, RuleML’10. Washington,
USA, October 21–23. Pp. 119–126. Springer Verlag, Lecture Notes in Computer
Science 6403, 2010.

[MMPV11a] P. J. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Declarative Traces into Fuzzy
Computed Answers. In Bassiliades et al. (eds.), Proceedings of 5th International
Symposium on Rules: Research Based, Industry Focused, RuleML’11. Barcelona,
Spain, July 19-21. Pp. 170–185. Springer Verlag, Lecture Notes in Computer Sci-
ence 6826, 2011.

[MMPV11b] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Fuzzy Computed Answers Col-
lecting Proof Information. In Cabestany et al. (eds.), Advances in Computational
Intelligence. Proceedings of the 11th International Work-Conference on Artifi-
cial Neural Networks, IWANN’11, Torremolinos, Spain, June 8-10. Pp. 445–452.
Springer Verlag, Lecture Notes in Computer Science 6692, 2011.

[MMPV12] P. J. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Dedekind-MacNeille comple-
tion and Cartesian product of multi-adjoint lattices. Int. J. Comput. Math. 89(13-
14):1742–1752, 2012.

[MOV04] J. Medina, M. Ojeda-Aciego, P. Vojtáš. Similarity-based Unification: a multi-
adjoint approach. Fuzzy Sets and Systems 146:43–62, 2004.

[RR08] M. Rodrı́guez-Artalejo, C. A. Romero-Dı́az. Quantitative logic programming re-
visited. In Garrigue and Hermenegildo (eds.), Functional and Logic Programming
(FLOPS’08). Pp. 272–288. Springer, Lecture Notes in Computer Science 4989,
2008.

[RR09] M. Rodrı́guez-Artalejo, C. A. Romero-Dı́az. Qualified Logic Programming with
Bivalued Predicates. Electronic Notes Theoretical Computer Science, Elsevier
248:67–82, August 2009.

17 / 17 Volume 55 (2012)

	Introduction
	String-based Multi-adjoint Lattices and Cartesian Product
	Multi-adjoint Logic Programming and FLOPER
	Declarative Traces via Cartesian Product of Lattices
	Conclusions and Future Work

