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HR∗ Graph Conditions Between Counting Monadic Second-Order
and Second-Order Graph Formulas

Hendrik Radke ∗

Universität Oldenburg
hendrik.radke@uni-oldenburg.de

Abstract: Graph conditions are a means to express structural properties for graph
transformation systems and graph programs in a large variety of application areas.
With HR∗ graph conditions, non-local graph properties like “there exists a path of
arbitrary length” or “the graph is circle-free” can be expressed. We show, by in-
duction over the structure of formulas and conditions, that (1) any node-counting
monadic second-order formula can be expressed by an HR∗ condition and (2) any
HR∗ condition can be expressed by a second-order graph formula.

Keywords: graph transformation, graph conditions, hyperedge replacement, monadic
second-order logic, second-order logic

1 Introduction

Formal methods play an important role for the development of trustworthy systems. Visual mod-
eling techniques help to understand complex systems. It is therefore desirable to combine visual
modeling with formal verification. The approach taken here is to use graphs and graph transfor-
mation rules [EEPT06] to model states and state changes, respectively. Structural properties of
the system are described by graph conditions.

In [HP09, Pen09], nested graph conditions have been discussed as a formalism to describe
structural properties in a visual and intuitive way. Nested graph conditions are expressively
equivalent to first-order graph formulas and can express local properties in the sense of Gaifman
[Gai82]. However, there are many interesting non-local graph properties like the existence of an
arbitrary-length path between two nodes, connectedness or circle-freeness of the graph. Several
logics and languages have been developed to express such non-local properties. In [BCKL06], a
modal logic is described which uses monadic second-order formulas to describe state properties
and temporal modalities to describe behavioural properties. A linear temporal logic is used
in [Ren08], including the monadic second-order quantification over sets of nodes. In [BK10,
BBFK13], a logic is presented that can quantify over subobjects of a categorical object. For the
category of graphs, this logic is as expressive as monadic second-order logic on graphs. The
idea of enhancing nested conditions with variables which are later substituted is also used for the
E-conditions in [PP12]. However, the variables in [PP12] are placeholders for string or integer
attributes, while in this work, variables are placeholders for graphs.

∗ This work is supported by the German Research Foundation (DFG), Grant HA 2936/4-1 (Meta Modeling and Graph
Grammars: Integration of two Paragdigms for the Definition of visual Modeling Languages)
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In [HR10], we introduced graph conditions with variables and showed that they are more
expressive than monadic second-order graph formulas. However, an upper bound on the expres-
siveness of these conditions remained an open question. This paper gives both a tighter lower
and an upper bound for so-called HR∗ conditions. We will show that HR∗ conditions are at least
as expressive as node-counting monadic second order formulas and at most as strong as formulas
in second-order logic on graphs. Figure 1 gives an overview on different languages that can be
used to describe graph properties and compares their respective expressive power.

FO logic

MSO logic

Node-CMSO logic

CMSO logic

SO logic

nested conditions

HR∗ conditions

[HP09]

[HR10]
this paper

this paper

Figure 1: Expressiveness of languages for graph properties: State of the art and contributions.

The paper is organized as follows: In Section 2, we will give the necessary definitions for HR∗

graph conditions, along with some examples. In Section 4, we briefly recall second-order graph
formulas. In Section 5, we show that HR∗ conditions can express every node-counting monadic
second-order formula. In Section 6, the construction of a second-order graph formula from an
HR∗ graph condition is given, step-by-step, along with some examples. We discuss the results in
the concluding Section 7.

2 HR∗ conditions

HR∗ conditions combine the first-order logical framework and graph morphisms from nested
conditions [HP09] with hyperedge replacement to represent context-free structures of arbitrary
size.

Hyperedges relate an arbitrary, fixed number of nodes and are used in HR∗ conditions as
variables, which are later substituted by graphs. We extend the concept of directed, labeled
graphs with hyperedge variables, which can be seen as placeholders for graphs to be added later.

Definition 1 (graph with variables) Let C be a fixed, finite alphabet of set and edge labels and
X a set of variables with a mapping rank: X →N1 defining the rank of each variable.
A graph (with variables) is a system G = (VG,EG,YG,sG, tG,attG, lG, lyG) consisting of finite
sets VG, EG, and YG of nodes (or vertices), edges, and hyperedges, source and target functions
sG, tG : EG → VG, an attachment function attG : YG → V∗G

2, and labeling functions lG : VG ∪
1 N denotes the set of natural numbers, including 0.
2 V∗G denotes sequences of nodes from VG. This also includes hyperedges with zero tentacles.
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EG→ C, lyG : YG→X such that, for all y ∈ YG, |attG(y)| = rank(lyG(y)). We call the set of
all graphs with variables GX . A graph G is empty, denoted /0, iff VG = /0 and YG = /0. Let GH
be the graph G with subgraph H removed (if possible, i.e. if the resulting graph has no dangling
edges).

Example 1 Consider the graphs G,H in Figure 2 over the label alphabet C = {A,B,�} where
the symbol � stands for the invisible edge label and is not drawn and X = {u,v} is a set of
variables that have rank 4 and 2, respectively. The graph G contains five nodes with the labels
A and B, respectively, seven edges with (invisible) label �, and one hyperedge of rank 4 with
label u. Additionally, the graph H contains a node, an edge, and a hyperedge of rank 2 with
label v.

B
1

A
2

B
3

B
4

B
5

u
1

2 3

4

G

↪→g

B
1

A
2

B
3

B
4

B
5

B
6

u
1

2 3

4

v1 2

H

Figure 2: Graph morphisms with variables

Nodes are drawn as circles carrying the node label inside, edges are drawn by arrows pointing
from the source to the target node and the edge label is placed next to the arrow, and hyperedges
are drawn as boxes with attachment nodes where the i-th tentacle has its number i written next
to it and is attached to the i th attachment node and the label of the hyperedge is inscribed in the
box. Nodes with the invisible � label are drawn as points (•). For visibility reasons, we may
abbreviate hyperedges of rank 2 by writing • •x instead of • •x1 2 .

Remark 1 Edges are a special case of hyperedges, as they can be expressed as a hyperedge with
two tentacles. However, our definition of graphs uses both, in order to have an easy distinction
between ”‘terminal”’ edges which cannot be changed and ”‘non-terminal”’ hyperedges which
are variables and can be substituted.

Graph morphisms consist of structure-preserving mappings between the sets of nodes, edges
and hyperedges of graphs.

Definition 2 (graph morphism with variables) A (graph) morphism (with variables) g : G→H
consists of mappings gV : VG→VH , gE : EG→EH , and an injective mapping gY : YG ↪→YH that
preserve sources, targets, attachment nodes and labels, i.e. sH ◦gE = gV ◦ sG, tH ◦gE = gV ◦ tG,
attH = g∗V ◦ attG, lH ◦gV = lG, lH ◦gE = lG, and lyH ◦gY = lyG, where g∗ : A∗ → B∗ is the free
symbolwise extension of g, defined by g∗(a1 . . .ak) = g(a1) . . .g(ak) for k ∈ N and ai ∈ A (i =
1, . . . ,k).

The composition h◦g of g with a graph morphism h : H→M consists of the composed func-
tions hV ◦ gV, hE ◦ gE, and hY ◦ gY. A morphism g is injective (surjective) if gV, gE, and gY are
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injective (surjective), and an isomorphism if it is both injective and surjective. In the latter case
G and H are isomorphic, which is denoted by G∼= H. An injective graph morphism m : G ↪→ H
is an inclusion, written G⊆ H, if VG ⊆ VH , EG ⊆ EH and YG ⊆ YH . For a graph G, the identity
idG : G→ G consists of the identities idGV, idGE, and idGY on GV, GE, and GY, respectively.

Arbitrary graph morphisms are drawn by the usual arrows “→”; the use of “↪→” indicates an
injective graph morphism. The actual mapping of elements is conveyed by indices, if necessary.
For an example, see the graph morphism g in Figure 2.

The hyperedges are replaced by graphs according to a hyperedge replacement system. To
describe how the original graph and the graph which replaces a hyperedge are connected, we
need to map each tentacle of the hyperedge to a node in the latter graph.

Definition 3 (pointed graph with variables) A pointed graph with variables 〈G,pinG〉 is a graph
with variables G together with a sequence pinG = v1 . . .vn of pairwise distinct nodes from G. We
write rank(〈G,pinG〉) for the number n of pinpoints in pinG. For x ∈ X with rank(x) = n,
x• denotes the pointed graph with the nodes v1, . . . ,vn, one hyperedge attached to v1 . . .vn, and
pinpoints v1 . . .vn. Pin(G) denotes the set{v1, . . . ,vn} of pinpoints of 〈G,pinG〉.

Definition 4 (hyperedge replacement system) A hyperedge replacement (HR) system R is a
finite set of replacement pairs of the form x/R where x is a variable and R a pointed graph with
rank(x) = rank(R).

Given a graph G, the application of the replacement pair x/R ∈R to a hyperedge y with label
x proceeds in two steps (see Figure 3): For a set X, let G−X be the graph G with all elements in
X removed, and for a graph H, let G+H be the disjoint union of G and H.

1. Remove the hyperedge y from G, yielding the graph G−{y}.

2. Construct the disjoint union (G−{y})+R and fuse the i th node in attG(y) with the i th

attachment point of R, for i = 1, . . . , rank(y), yielding the graph H.

G directly derives H by x/R∈R applied to y, denoted by G⇒x/R,y H or G⇒R H. A sequence
of direct derivations G⇒R . . .⇒R H is called a derivation from G to H, denoted by G⇒∗R H.
For every variable x, R(x) = {G ∈ GX | x•⇒∗R G} denotes the set of all graphs derivable from
x• by R.

•

• •

•

G−{y} x
1

2 3

4 •

• •

•1

2 3

4

G−{y} R

Figure 3: Application of replacement pair x/R.
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Example 2 The HR system R with the rules given in Backus-Naur form

•
1
•
2

+ ::= •
1
•
2
| •

1
• •

2

+

generates the set of all directed paths from node 1 to node 2.

In HR∗ conditions, we simultaneously substitute all hyperedges by graphs, which are gener-
ated according to a HR system.

Definition 5 (substitution) A substitution induced by a hyperedge replacement system R is a
mapping σ : X → GX with σ(x)∈R(x) for all x in the domain of σ . The set of all substitutions
induced by R is denoted by ΣR . Application of σ to a graph G, denoted G⇒ Gσ , is obtained
by simultaneous substitution of all hyperedges in y ∈ YG by σ(lyG(y)) (see Figure 4).

G−YG
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•

•
•

•

•

•
•

•
••

•
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x 1
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3
4

σ
=⇒ G−YG

•

•

•
•

•

•

•
•

•
••

•

R1

R

R

R2

Figure 4: Substitution of hyperedges.

Now, we can define HR∗ conditions. They allow one to use variables for structures of arbitrary
size, and to “peek into” such variables and formulate properties of the graphs that the variable is
substituted by.

Definition 6 (HR∗ graph condition) A HR∗ (graph) conditions (over R), short condition, con-
sists of a condition with variables and a HR system R.
Conditions with variables are inductively defined as follows.

(1) For a graph P, true is a condition over P.

(2) For an injective morphism a : P ↪→C and a condition c over C, ∃(a,c) is a condition over P.

(2’) For graphs P,C and a condition c over C, ∃(PwC,c) is a condition over P.

(3) For an index set J and conditions (c j) j∈J over P, ¬c1 and ∧ j∈Jc j are conditions over P 3.

HR∗ conditions c over R are denoted by 〈c,R〉, or c if R is clear from the context. A HR∗ con-
dition is finite if every index set J in the condition is finite; we will assume finite conditions in the
following if not explicitly stated otherwise. In particular, the constructions and transformations
througout this paper assume that all input and output HR∗ conditions and logical formulas are
finite.
3 Usually, J is a set of natural numbers from 1 to some number k.
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The following abbreviations are used: ∃a abbreviates ∃(a,true), ∀( ,c) abbreviates ¬∃( ,¬c),
false abbreviates ¬true, and ∨ j∈Jc j abbreviates ¬∧ j∈J ¬c j. The domain of a morphism may
be omitted if no confusion arises: ∃C can replace ∃(P ↪→C) in this case.

Example 3 The following HR∗ condition intuitively expresses “There exists a path from the
image of node 1 to the image of node 2”.

∃(•
1
•
2

+ ) with •
1
•
2

+ ::= •
1
•
2
| •

1
• •

2

+

We now give the formal semantics for HR∗ conditions.

Definition 7 (satisfaction of HR∗ conditions) For an injective morphism p : Pσ ↪→ G, the sat-
isfaction of a condition 〈c,R〉 by a substitution σ ∈ ΣR , written p |=σ c, is inductively defined
as follows.

(1) p satisfies true.

(2) p satisfies ∃(a,c) by σ for a morphism a : P ↪→C if there is a (partial) substitution τ such
that Pσ = Pτ and an injective morphism q : Cτ ↪→ G such that q◦aτ = p and q satisfies cτ

(left diagram), where aτ : Pσ ↪→Cτ is the morphism with aτ(o) = a(o) for all o ∈VP]EP

and aτ(y) = y for all y ∈ YP.
Pσ Cτ∃( , cτ)

G

aτ

p q |==

Pσ Cτ

G

∃( , cτ)

|=p q

⊇
=

(2’) p satisfies ∃(PwC,c) by σ if there are a substitution τ with Pσ = Pτ , an inclusion
Cτ ⊆ Pσ and an injective morphism q : Cτ ↪→ G such that p = q|Pσ and q satisfies cτ

(right diagram), where q|Pσ is the morphism q restricted to Pσ :
q|Pσ (x) = q(x) if x ∈ Pσ and ⊥ otherwise.

(3) p satisfies ¬c by σ if p does not satisfy c by σ . p satisfies ∧i∈I ci by σ if p satisfies all ci

by σ (i ∈ I).

A graph G satisfies a condition c over /0 if the morphism /0 ↪→ G satisfies c. We write G |=σ c
to denote that a graph G satisfies c by σ and G |= c if there is a σ ∈ ΣR such that G |=σ c.

Example 4 The following example shows a HR∗ condition expressing “There is a path from a
node to another, and all nodes on this path have at least three outgoing edges to different nodes”.

∃(•
1

•
2

+︸ ︷︷ ︸
(1)

, ∀(•
1

•
2

+ w •
3︸ ︷︷ ︸

(2)

,∃ •
3

• • •
))︸ ︷︷ ︸

(3)

with •
1
•
2

+ ::= •
1
•
2
| •

1
• •

2

+

In subformula (1), the existence of the path is established. Part (2) quantifies over every node
that is contained in the path, while part (3) ensures that each such node has three outgoing edges
to different nodes.
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Remark 2 The idea of enhancing nested conditions with variables is also used in [PP12] for
E-conditions. In contrast to HR∗ conditions, the variables in E-conditions are not substituted by
graphs, but by labels or attributes, so E-conditions cannot express non-local conditions, but can
work with infinite label alphabets (e.g. natural numbers) and perform calculations on attributes.

3 Semantical variants of HR∗ conditions

HR∗ conditions are well-suited as a graphical formalism to express local and non-local properties
of graphs. While HR∗ conditions borrow the quantors and Boolean operations from logical
formulas, there are some important differences to the latter:

1. In a HR∗ condition, any node or edge o introduced by a condition ∃(P ↪→ P⊕{o},c)
is disjoint with any node in P. In a logical formula, in contrast, every newly-quantified
object may be identified with an already existing object o′, as long as this is not explicitly
forbidden by some sub-formula o 6= o′.

2. As we will see later, with logical formulas, it is easier to express the replacement of a
single hyperedge by some graph, than the substitution of each occurrence of a variable
with the same graph.

To this end, two varitions of the semantics are introduced. The first variation, called A -
satisfiability, makes it possible to identify nodes or edges in HR∗ conditions. The second vari-
ation uses replacement instead of substitution, dropping the restriction that every occurrence of
a variable x in a HR∗ condition has to be substituted by the same (more exactly, an isomorphic)
graph. We show that these variations do not increase the expressiveness of HR∗ conditions. This
result will later be needed to show that HR∗ conditions can be converted into logical formulas.

In logical formulas, distinct variables do not necessarily mean distinct objects: one has to
explicitly state that two variables x,y stand for distinct objects with a formula ¬x .

= y. Nodes and
edges in HR∗ conditions, on the other hand, are distinct by default. This can also be done with a
variant on the semantics of HR∗ conditions, A -satisfaction.

The definition of A -satisfaction is similar to Definition 7, except that all of the morphisms are
allowed to be non-injective. Note that the inclusion in (2’) is not touched by this.

Definition 8 (A -satisfaction of HR∗ conditions) For cases (1), (2), (2’) and (3), A -satisfaction
is defined as for satisfaction with all injective morphisms replaced by arbitrary ones. A graph G
A -satisfies c if morphism /0→ G satisfies 〈c,R〉, denoted G |=A ,σ c; and G |=A c if there is a
σ ∈ ΣR such that G |=A ,σ c.

The consequence of this definition is that nodes and edges in A -satisfiable HR∗ conditions
no longer have a disjoint image in graph G by default, but may be identified. However, one can
still forbid this identification to express any satisfiable HR∗ condition with a A -satisfiable HR∗

condition.

Lemma 1 (from satisfaction to A -satisfaction) For every HR∗ condition c, there is a HR∗
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condition CondA (c) such that for every graph G,

G |= c ⇐⇒ G |=A CondA (c).

For the construction, proof and an example, see Appendix A.
For A -satisfiability, substitution of hyperedges (i.e. all edges with the same label are replaced

by isomorphic graphs) is equivalent to replacement of hyperedges (i.e. edges with the same la-
bel may be replaced by different graphs). It is easy to see that, for every HR∗ condition using
replacement, an equivalent HR∗ condition can be constructed using substitution, simply by giv-
ing each hyperedge a unique label and cloning the rules. To distinguish between satisfaction by
substitution and by replacement, we will use p |=σ c and p |=R c, respectively. Furthermore, cR

denotes replacement of all variables in c according to R, analogous to cσ for σ ∈ ΣR .

Lemma 2 (from substitution to replacement) For every HR∗ condition 〈c,R〉, there is a HR∗

condition 〈c′,R ′〉 such that for all graphs G,

∃σ ∈ ΣR .G |=A ,σ ⇐⇒ ∃r ∈ ΣR ′ .G |=A ,R

For the construction, proof and an example, see Appendix B.

4 Graph formulas

A classic approach to express properties of a graph is to use logical formulas over graphs. The
expressiveness of such formulas depends on the underlying logic. We begin with the definition
of second-order graph formulas, following [vD04]. Second-order formulas can quantify over
individual objects in the underlying universe, as well as over arbitrary relations over the under-
lying universe, allowing one to formulate many interesting graph properties. For a comparative
overview on the power of several graph logics, see [Cou96, CW05, CE12]; our definition of
second-order logic is equivalent to that in [Cou96], except that we also consider node and edge
labels.

Definition 9 (second-order graph formulas) Let C be a set of labels, V1 be a (denumerable)
set of individual (or first-order) variables x0,x1, . . . and V2 a (denumerable) set of relational (or
second-order) variables X0,X1, . . ., together with a function rank: V2 → N−{0} that maps to
each variable in V2 a positive natural number, its rank. We let V = V1 ∪V2 be the set of all
variables.

Second-order graph formulas, short SO formulas, are defined inductively:
inc(x,y,z), labb(x) and x .

= y are SO graph formulas for individual variables x,y,z∈ V1 and labels
b ∈C. For any variable x ∈ V1 and SO formula F , ∃x.F is an SO formula and also a term. Also,
for any variable X ∈ V2 with rank(X) = k and terms t1, . . . , tk, X(t1, . . . , tk) is both an SO formula
and a term. Finally, Boolean expressions over SO formulas c,d are SO formulas: true, ¬F ,
F1∧F2.

For a non-empty graph G, let D×G be the set of all relations over DG = VG∪EG. The seman-
tics G[[F ]](θ) of a SO formula F under assignment θ : V → DG∪D×G is inductively defined as
follows:
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1. G[[inc(e,x,y)]](θ) ⇐⇒ θ(e) ∈ EG, sG(θ(e)) = θ(x), and tG(θ(e)) = θ(y),
G[[labb(x)]](θ) ⇐⇒ θ(x)= lvG(b) or θ(x)= leG(b), and
G[[x .

= y]](θ) ⇐⇒ θ(x) = θ(y).

2. G[[true]](θ) ⇐⇒ true, G[[¬F ]](θ) ⇐⇒ ¬G[[F ]](θ),
G[[F ∧F ′]](θ) ⇐⇒ G[[F ]](θ)∧G[[F ′]](θ), and
G[[∃x.F ]](θ) ⇐⇒ G[[F ]](θ{x/d}) for some d ∈ DG,

where θ{x/d}(y) = d if x = y and θ{x/d}(y) = θ(y) otherwise.

3. G[[∃X .F ]](θ) ⇐⇒ G[[F ]](θ{X/D}) for some d ∈ D×G .
G[[X(t1, . . . , tk)]](θ) ⇐⇒ (G[[t1]](θ), . . . ,G[[tk]](θ)) ∈ θ(X).

4. G[[¬F ]](θ) ⇐⇒ ¬G[[F ]](θ) and G[[F ∧F ′]](θ) ⇐⇒ G[[F ]](θ)∧G[[F ′]](θ).

A non-empty graph G satisfies a SO formula F , denoted by G |= F , iff, for all assignments
θ : V → DG∪D×G , G[[F ]](θ) = true.

Example 5 The SO formula below is true for every graph which has a non-trivial automor-
phism, i.e. an automorphism which is not the identity:

∃X .[βinj(X)∧βtotal(X)∧βsurj(X)∧βntriv(X)∧βpredg(X)]

where the subformulas are defined as follows:
• βinj(X) = ∀x,y,z.(X(x,y)∧X(x,z))⇒ y .

= z∧ (X(x,z)∧X(y,z))⇒ x .
= y

expresses that relation X is injective,

• βtotal(X) = ∀x∃y.X(x,y) expresses that X is total,

• βsurj(X) = ∀x∃y.X(y,x) expresses that X is surjective,

• βntriv(X) = ∃x,y.x 6= y∧X(x,y) expresses that X is non-trivial,

• βpredg(X) = ∀e,x,y,e,x′,y′.(inc(e,x,y)∧ (X(e,e′)∧X(x,x′)∧X(y,y′))⇒ inc(e′,x′,y′) ex-
presses that X preserves edges, i.e. for every pair of nodes x,y connected by an edge and
related to nodes x′,y′ by relation X , x′ and y′ are connected by an edge.

Counting monadic second-order graph formulas are a subclass of second-order graph formulas
and an extension of monadic second-order graph formulas [Cou96]. Like monadic second-order
graph formulas, they allow quantification over individual nodes and edges as well as quantifica-
tion over unary relations, i.e. sets of nodes and edges. Furthermore, they have a special quantifier
that allows one to count modulo natural numbers.

Definition 10 (counting monadic second-order graph formulas) A counting monadic second-
order graph formula, short CMSO formula, is defined as follows. Every SO formula where every
relational variable X has rank(X) = 1 is a CMSO formula, and for every natural number m ∈N
and every CMSO formula F , ∃(m)x.F(x) is a CMSO formula.

For a non-empty graph G,

G[[∃(m)x.F(x)]](θ) ⇐⇒ |{u ∈VG∪EG : G[[F(u)]](θ)}| ≡ 0 (mod m).
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A CMSO formula is a node-CMSO formula if counting is only allowed over nodes, i.e. every
subformula ∃(m)x.F is equivalent to ∃(m)x.node(x)∧F ′, where node(x) = @y,z. inc(x,y,z) states
that x is a node. A CMSO formula is a monadic second-order formula, short MSO formula, if it
contains no subformulas of the form ∃(m)x.F .

Example 6 The node-CMSO formula ∃(2)x.node(x) expresses “The graph has an even number
of nodes”.

5 Expressing node-CMSO formulas with HR∗ conditions

In [HR10], a variant of HR∗ conditions was introduced and shown to be at least as strong as MSO
formulas. We now go one step further and show that HR∗ formulas can also express arbitrary
node-CMSO formulas.

Theorem 1 (node-CMSO formulas to HR∗ conditions) For every node-CMSO formula F, there
is a HR∗ graph condition Cond(F) such that for all graphs G ∈ G , G |= F iff G |= Cond(F).

We use hyperedge replacement to count the nodes: It is easy to construct a grammar which
generates all discrete graphs (i.e. with no edges) with k ∗m nodes, where m is a fixed number
and k ∈N is variable. For all nodes inside the generated subgraph, the property F to be counted
is checked. Also, F must not hold for any node outside of the generated subgraph.

Construction. For a graph P and a formula F , Cond(P,F) is defined as follows. For any MSO
formula, Cond is defined as in [HR10]. Otherwise, i.e. for formulas of the form ∃(m)v.F ,

Cond(P,∃(m)v.F) = ∃( Y ,∀( Y w •v ,Cond(F(v)))∧@( Y •v ,Cond(F(v))))
with Y ::= /0 | Y Dm, where Dm is a discrete graph with m nodes.

Example 7 Take as an example the node-CMSO formula expressing “There is an even number
of nodes”: ∃(2)x.node(x). Using the construction above, this yields ∃(Y ,∀(Y w •

1
,∃(•

1
))∧

@(Y •
2
,∃(•

2
))) with Y ::= /0 | Y ••. Simplification of the HR∗ condition yields ∃(Y ,@(Y •

2
))

with Y ::= /0 | Y ••.

Proof. For MSO formulas, see the proof in [HR10]. For formulas ∃(m)x.φ(x) and every graph
G, assume that G |= φ(x) ⇐⇒ G |= Cond(φ(x)) and let p : /0 ↪→ G.
By the definition of HR∗ satisfaction (Def. 7) and construction 5,
G |= Cond(∃(m)x.φ(x))⇔ p |= Cond(∃(m)x.φ(x))
⇔ p |= ∃( /0 ↪→ Y ,∀(Y w •x ,Cond(φ(x)))∧@(Y ↪→ Y •x ,Cond(φ(x)))).
Performing the substitution of hyperedge Y yields
⇔∃n ∈N.p |= ∃( /0 ↪→ Dn∗m,∀(Dn∗m w •x ,Cond(φ(x)))∧@(Dn∗m ↪→ Dn∗m•x ,Cond(φ(x)))).
We use the semantics of HR∗ conditions again to get
⇔∃n ∈N.∃Dn∗m

qa
↪→G.p = qa ◦a∧

∀ /0
qb
↪→•

x
.qb(•1 )⊆ qa(Dn∗m)∧qb |= Cond(φ(x))σ ∧

@(Dn∗m + •
x

qc
↪→G.qa = qc ◦ c∧qc |= Cond(φ(x))σ )
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and, by the injectivity of the morphisms,
∃n ∈N.∃Dn∗m ↪→G.∀(•

x
⊆ Dn∗m.•x |= Cond(φ(x))σ )

∧@(Dn∗m + •
x
⊆ G.•

x
|= Cond(φ(x))σ ).

Using simple arithmetics and set theory, it is easy to see that
⇔∃n ∈N.|{•

x
⊆VG | •x |= Cond(φ(x))σ}| ≥ n∗m

∧¬(|{•
x
⊆VG | •x |= Cond(φ(x))σ}| ≥ n∗m+1)

⇔∃n ∈N.|{v ∈VG : G |= Cond(φ(v))}|= n∗m
⇔∃n ∈N.|{v ∈VG : G |= φ(v)}|= n∗m.
Using the initial assumption and Definition 10, we get
⇔ |{v ∈VG : G |= φ(v)}| ≡ 0 (mod m)
⇔ G[[∃(m)x.F(x)]](θ) = true

⇔ G |= ∃(m)x.φ(x).

Remark 3 Using node-counting, it is possible to simulate edge-counting. A property P(e) is
valid for a number n ≡ 0 (mod m) edges iff it is valid for n outgoing edges of k nodes. Thus,
one can group the nodes by the number of outgoing edges which fulfill P, and count the nodes
in each group.

As an example, for m = 2, the edge-CMSO formula ∃(2)e.P(e) is valid iff there is an arbitrary
number k0 of nodes with a number l0 ≡ 0 (mod 2) of outgoing edges e which satisfy P(e) and
an even number k1 ≡ 0 (mod 2) of nodes with an odd number l1 ≡ 1 (mod 2) of outgoing edges
e which satisfy P(e). A similar scheme can be used for any m, although it gets quite complicated
for greater values of m.

This scheme can be translated into a HR∗ condition. We already showed that HR∗ condition
can count nodes modulo m. (Outgoing) edges can also be counted modulo m using a HR system
which generates “stars”, i.e. graphs with a node v0 in the middle, from which edges go out to
otherwise isolated nodes, as seen in Figure 5. HR systems for generating stars are described in
more detail in [Hab92]. In our case, however, the star graphs may be “collapsed”, i.e. a node
may have more than one outgoing edge to a single node. This can also be described with a HR
system.

• •
•••

• •
•
•
•
• •

Figure 5: A “star” graph (left) and a “collapsed star” graph, both with 6 edges.

6 Expressing HR∗ conditions with SO formulas

With a lower bound for the expressiveness of HR∗ conditions established, we now turn to the
upper bound and show that every HR∗ condition can be expressed as a SO formula. The main
difficulty here lies in the representation of the replacement process within the formula. The trans-
formation is made somewhat easier by using a slightly changed semantics for HR∗ conditions.
We use replacement instead of substitution and A -satisfiability.
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Since every HR∗ condition can be transformed into an equivalent A -satisfiable one, we can
prove that every HR∗ condition can be expressed as a SO graph formula, which we will now do
step by step.

Theorem 2 (from HR∗ conditions to SO formulas) For every HR∗ graph condition c, there is
a second-order graph formula SO(c) such that for all graphs G ∈ G ,

G |= c ⇐⇒ G |= SO(c).

The construction of SO has to capture several things, which are done by appropriate sub-
constructions:

1. The logical structure of the HR∗ condition has to be preserved. This is trivial, as the
Boolean operators and quantors of HR∗ conditions can be represented by the same opera-
tors in SO formulas.

2. The graph morphisms and graphs in HR∗ conditions have to be translated into an SO
formula. This is done by sub-construction SOgra.

3. The hyperedge replacement system, along with the process of hyperedge replacement,
have to be encoded in SO formulas. Sub-construction SOsys fulfills this task.

4. For HR∗ conditions of the form ∃(P wC,c), we need to represent the sets Pσ and Cτ for
some replacements σ ,τ . This is done by sub-construction SOset.

We use several helper constructions that we will present and prove individually later. Con-
struction SOgra(G,F) is used to represent a graph G as a formula, where F is some nested sub-
formula. SOsys represents the replacement system of the HR∗ condition. Finally, SOset(G,X)
is used to collect all nodes and edges in graph Gσ (i.e. after replacement) inside a set variable X .
This is needed to check whether there is an inclusion Cτ ⊆ Pσ for a HR∗ condition ∃(PwC,c).

Construction. Without loss of generality, P ↪→ C is an inclusion. For a condition c with HR
system R, we let SO(〈c,R〉) = SOsys(R)∧SO(c) and define

(1) SO(true) = true.

(2) SO(∃(P ↪→C,c)) = SOgra(C−P,SO(c)).

(2’) SO(∃(P w C,c)) = SOgra(C,∃XP,XC.SOset(P,XP)∧ SOset(C,XC)∧ XC ⊆ XP ∧ SO(c)),
where XP,XC are fresh second-order variables of rank 1 (i.e. set variables) and the relation
⊆ is constructed in SO logic as usual: XC ⊆ XP = ∀x.x ∈ XC⇒∃y ∈ XP.x

.
= y.

(3) SO(¬c) = ¬SO(c) and SO(
∧

i∈I ci) =
∧

i∈I SO(ci).

The construction is straightforward for HR∗ conditions of the form (1) and (4), as these have
equivalent constructs in SO formulas. For HR∗ conditions of form (2), it suffices to state the exis-
tence of the graph C−P and to translate subcondition c into a SO formula, too. The construction
gets a bit more complicated for case (2’). The SO formula has to state that graph C exists, that

Selected Revised Papers from GCM 2012 12 / 21



ECEASST

the sets XC of nodes and edges in Cτ is a subset of the set XP of nodes and edges in Pσ for some
substitutions τ and σ ,

The transformation SOgra represents a graph with variables as a SO formula. These are needed
to express HR∗ conditions of the form ∃(P ↪→a C,c). Such a HR∗ condition is equivalent to
a SO formula stating that, given P, the graph C−P is present. For example, HR∗ condition
∃( /0 ↪→ •

1
) is equivalent to the SO formula ∃v,e.v 6= e inc(e,v,v), stating that the graph contains

a node v and an edge e (which are, of course, not identical) and e links v to itself.

Lemma 3 For graphs R ∈ GX and G ∈ G ,

G |=A ∃( /0 ↪→ R−YR) ⇐⇒ G |= SOgra(R−YR,true).

The construction is split in three parts for nodes, edges and hyperedges, respectively. The
construction for nodes and edges is quite straightforward: we state the existence of every node
and edge and then specify the node and edge labels and the incidence relation for the edges.
For the hyperedges, we state the existence of each hyperedge label x as a (rank(x))-ary relation,
where the elements represent the attachment points of the tentacles.

Construction. For a set A and SO formula F , let ∃F be the existential closure of F and ∃̇F =
∃F∧

∧a,b∈A
a6=b (¬a .

= b) be the existential closure of F with disjointness check. Define the universal
closure ∀F analogously. For a graph with variables G and a SO formula F , we define

SOnod(G,F) = ∃
∧

v∈VR
lablG(v)(v)∧F

SOedg(G) = ∃
∧

e∈ER
lablG(e)(e)∧ inc(e,sG(e), tG(e))

SOhyp(G) = ∃̇
∧

lyG(y)|y∈YR
. lyG(y)(attG(y)1,...,k)

SOgra(G,F) = SOnod(G,SOedg(G)∧SOhyp(G)∧F)

Remark 4 Note that this representation of hyperedges with SO formulas only works if the
hyperedge has at least one tentacle. This in no problem: it is easy to see that every hyperedge
with zero tentacles in a HR∗ condition can be replaced by a hyperedge with one tentacle. Without
loss of generality, we assume that every HR∗ condition is free of hyperedges with zero tentacles.

Example 8 The two graphs with variables from Example 1, can be encoded SO formulas as
follows:

SOgra(G) = ∃v1,v2,v3,v4,v5. labB(v1)∧ labA(v2)∧ labB(v3)∧ labB(v4)∧ labB(v5)
∧∃e1, . . . ,e7. lab�(e1)∧ . . .∧ lab�(e7)
∧ inc(e1,v1,v3)∧ inc(e2,v1,v5)∧ . . .∧ inc(e7,v5,v4)
∧∃u.u(v5,v1,v3,v4)

SOgra(H) = ∃v1, . . . ,v6. labB(v1)∧ labA(v2)∧ . . .∧ labB(v6)
∧∃e1, . . . ,e8. lab�(e1)∧ . . .∧ lab�(e8)
∧ inc(e1,v1,v3)∧ inc(e2,v1,v3)∧ . . .∧ inc(e8,v5,v4)
∧∃u,v.u(v5,v1,v3,v4)∧ v(v4,v6)
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Proof. Assume G |=A ∃( /0 ↪→a RYR
).

By the semantics of HR∗ conditions, for p : /0→ G, this is equivalent to
⇔ p |=A ∃( /0→a RYR

)
⇔∃q : RYR

→ G.p = q◦a∧q |=A true.
By the definition of morphisms, this equals
⇔∃q : RYR

→ G.∀o ∈ DR.p(o) = q(a(o)),
and because the domain of p and a is the empty graph,
⇔∃R′ ∈ G .RYR

∼= R′∧R′ ⊆ G
which can be expressed as a SO formula
⇔∃R′ ∈ G .∃v∈V′R .(

∧
v∈V′R

(labl(v)(v))∧∃(
∧

e∈E′R
(labl(e)(e))∧ inc(e,s(e), t(e))))

⇔∃R′ ∈ G .SOnod(R′,SOedg(R′)∧SOhyp(R′))
which equals the definition of SOgra:
⇔ G |= SOgra(R′,true).
Since R′ ∼= RYR

,
⇔ G |= SOgra(RYR

,true).

We now turn to the simulation of the hyperedge replacement process itself.

Lemma 4 For a graph S ∈ GX , hyperedge replacement system R and graph G,

G |=A 〈∃( /0→ S),R〉 ⇐⇒ G |= SOgra(S)∧SOsys(R).

The main idea of the construction is to represent hyperedges as relations over nodes. A hy-
peredge with k nodes is represented as a k-ary relation, where the elements represent the nodes
attached to the hyperedge by its k tentacles. In order to keep track of all nodes and edges that
replace each hyperedge in a graph Gσ , we use sets Set(x(v1, . . . ,vk)), i.e. sets which are depen-
dent on a x-labeled hyperedge attached to points v1, . . . ,vk. Let o ∈ Set(x(v1, . . . ,vk)) abbreviate
the second-order k+ 1-ary relation Setx(v1, . . . ,vk,o), which denotes that o is element of a set
dependent on x and v1, . . . ,vk.

Construction. For any replacement pair x/R with rank(x) = k and HR system R, let

SOsys(R) =
∧

x∈X ∃x,Setx .∀v1, . . . ,vk.x(v1, . . . ,vk)⇒
∨

x/R∈R(SOgra(R)
∧SOset(R,Set(x(v1, . . . ,vk))))

where SOset is needed to keep track of the elements in Gσ and will be explained in the following.

Example 9 The HR system from Example 2

R = •
1
•
2

+ ::= •
1
•
2
| •

1
•
3
•
2

+

is transformed into the SO formula

SOsys(R) = ∀v1,v2.+(v1,v2)⇒ (∃e.(inc(e,v1,v2)∧SOset(•
1
•
2
,Set(+(v1,v2))))

∨ (∃v3,e. inc(e,v1,v3)∧+(v3,v2))∧SOset(•
1
•
3
•
2

+ ,Set(+(v1,v2)))
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Proof. From the semantics of HR∗ conditions, it is clear that for p : /0→ G,
G |=A 〈∃( /0→a S),R〉 ⇐⇒ p |=A 〈∃( /0→a S),R〉 ⇔ ∃σ ,q : Sσ ↪→ G.p = q◦a
⇔∃Sσ ,q : Sσ ↪→ G.S⇒∗R Sσ .
We continue by induction over the length of derivations.

Base case. By the definition of derivations,
∃Sσ ∈ G ,q : Sσ → G.S⇒R Sσ ⇐⇒ ∃Sσ ,q : Sσ → G.∃x/R ∈R.S⇒x/R Sσ

⇔∃Sσ ,q : Sσ → G.∃y ∈ YS. ly(y) = x∧Sσ ∼= Sy∪R∧∀i ∈ [k].pinRi = attS(y)i

By Lemma 3, we can reduce this to
⇔∃y ∈ YS. ly(y) = x∧G |= SOgra(Sy∪RPin(R),

∧
i∈[k] pinRi

.
= attS(y)i).

Since k ≥ 1 and vi = pinRi for i ∈ [k], we include the formula for SOgra(y):
⇔ G |= SOgra(S)∧∀i∈[k]vi.x(v1, . . . ,vk)⇒ SOgra(RPin(R),

∧
i∈[k] vi

.
= attS(y)i)).

and by the definition of SOsys, we get
⇔ G |= SOgra(S)∧∀i∈[k]vi.SOrule(x/R).
Since S has only a single hyperedge, x′(v1, . . . ,vrankx′) is false for every x′ 6= x,
⇔ G |= SOgra(S)∧SOsys(R).
Induction hypothesis. For some S′ ∈ GX with S⇒R S′, assume
∃S′,q′ : S′→ G.S′⇒∗R Sσ ⇐⇒ G |= SOgra(S′)∧SOsys(R).
Induction step. Then
∃Sσ ,q : Sσ → G.S⇒∗R Sσ ⇐⇒ ∃Sσ ,q : Sσ → G.∃S′.S⇒R S′⇒∗R Sσ .
By Lemma 3, we can express S′ as a SO formula
⇔∃S′.G |= SOgra(S′)∧

∧
x∈X

∨
x/R∈R ∀vi.SOrule(x/R)

⇔∃S′.G |= SOgra(S′)∧SOsys(R)∧S⇒R S′⇔ G |= SOgra(S)∧SOsys(R).
This completes the inductive proof.

In order to translate HR∗ conditions of the form ∃(P w C,c), we need sets of every object
in Pσ and Cσ , i.e. after the replacement of the hyperedges. This is the role of transformation
SOset(R,X), which ensures that every node and edge in Rσ (after replacement) is member of the
set variable X in the SO formula.

The construction begins by stating that all nodes and edges of graph R are in set X . Then, it
is stated that every node or edge that is part of the set Set(lyR(y)(u1, . . . ,urank(y))) of elements
generated by a hyperedge y in R, is also element in set X . Iteratively, this ensures that set X
contains every node and edge in Rσ .

Construction. For any graph R and unary variable X ,

SOset(R,X) =
∧

o∈DR
o ∈ X ∧

∧
y∈YR
∀v1, . . . ,vk.∀o.o ∈ Set(x(v1, . . . ,vk))⇒ o ∈ X

where x = lyG(y) is the label and k = rank(y) the rank of hyperedge y.

Example 10 For the left-hand graph R from Example 1, SOset yields the formula below. The
vi and ui are nodes, while the ei are edges, and u is the hyperedge.

SOset(R,X) = v1, . . . ,v5,e1, . . . ,e7 ∈ X ∧u(v5,v1,v3,v4)
∧∀v′1, . . . ,v′4,o.o ∈ Set(u(v′1, . . . ,v

′
4))⇒ o ∈ X
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We now have all parts ready to construct a full example of transforming a HR∗ condition into
an SO formula with construction SO, and to prove that SO yields equivalent formulas for A -
satisfiable HR∗ conditions, as stated in Theorem 2: For every HR∗ condition c and for all graphs
G ∈ G , G |=A c ⇐⇒ G |= SO(c).

Example 11 We convert the HR∗ condition from Example 3 into an equivalent SO formula. To
improve readability of the SO formula, the hyperedge label + is replaced by X .

SO
(〈
∃(•

1
•
2

X ), •
1
•
2

X ::= •
1
•
2
| •

1
• •

2

X
〉)

≡ SOsys(•
1
•
2

X ::= •
1
•
2
| •

1
• •

2

X )

∧SO(∃(•
1

•
2

X ))

≡ ∃X .∀v1,v2.(X(v1,v2)⇒ SOgra(•
1
•
2
)∨SOgra(•

1
• •

2

X ))

∧SOgra(•
1

•
2

X )

≡ ∃X .∀v1,v2.(X(v1,v2)⇒∃e. inc(e,v1,v2)∨∃v3,e. inc(e,v1,v3)∧X(v3,v2))

∧SOgra(•
1

•
2

X )

≡ ∃X .∀v1,v2.X(v1,v2)⇒∃e. inc(e,v1,v2)∨∃v3,e. inc(e,v1,v3)∧X(v3,v2)
∧∃v1,v2.X(v1,v2)

The resulting formula expresses “There is a relation X such that for every pair v1,v2 in relation X ,
there is either an edge from v1 to v2 or an edge from v1 to some node v3, which is in turn in
relation X with v2 (i.e. there is a path of arbitrary length from v1 to v2); and the graph has two
nodes v1,v2 in relation X .” This is equivalent to “There is a path between two nodes v1,v2, as
was expressed by the HR∗ condition in Example 3.

Proof of Theorem 2. We proceed by induction over the structure of HR∗ conditions. The proofs
for conditions true, ¬c and

∧
i∈I ci are straightforward. For conditions ∃(a,c), we use the Lem-

mata 3 and 4 to show that graph morphisms and substitution can be simulated by our construc-
tion. For conditions ∃(P w C,c), Lemma 3 is used to show that the inclusion of Cσ in Pσ is
simulated by the constructed formula.
Base case. c = true. Then SO(c) = true⇒ G |=A c⇔ true⇔ SO(c) |= true.
Induction hypothesis. Assume that for HR∗ conditions ci, i ∈N, the theorem holds:
G |=A ci⇔ G |= SO(ci).
Induction step.

1. c = ∃(a,c1) for some a = P ↪→C.
By the definition of HR∗ conditions and the induction hypothesis, we have
G |=A ∃(a,c1)⇔∃σ , p : P ↪→ G,q : Cσ → G.q◦aσ = p∧q |=A ,σ c1
Using constructions SOgra and then SO yields
⇔ G |= SOgra(C−P)∧SOsys(R)∧SO(c1)
(C−P denotes graph C without graph P and has no dangling edges, since C adds only a
single object to P.)
⇔ G |= SO(∃(a,c1)).

2. c = ∃(PwC,c1).
By the definition of HR∗ conditions and the induction hypothesis, we have
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G |=A ∃(PwC,c1)
⇔∃p : P→ G,σ ,b : Cσ → Pσ ,q : Cσ → G.p◦b = q∧q |=A ,σ c1
⇔∃σ .Pσ ⊇Cσ ∧C |=A ,σ c1
⇔∃σ .Pσ ⊇Cσ ∧SO(c1)
We can now use the constructions SOgra and then SO:
⇔ G |= SOgra(C,∃XP,XC.

∧
x∈DP

(x ∈ XP)∧
∧

y∈DC
(y ∈ XC)∧XC ⊆ XP∧SO(c1))

⇔ G |= SOgra(C,∃XP,XC.SOset(P,XP)∧SOset(C,XC)∧XC ⊆ XP∧SO(c1))
⇔ G |= SO(∃(PwC,c1))

3. For c = ¬c1, SO(c) = ¬SO(c1). By the induction hypothesis, we have
G |=A c⇔ G 6|=A c1⇔ G 6|= SO(c1)⇔ G |= SO(c).
For c =

∧
i∈J c j, SO(c) = SO(

∧
i∈J c j).

Using the induction hypothesis, we get:
G |=A

∧
i∈J c j⇔ G |=

∧
i∈J SO(c j)⇔ G |= SO(

∧
i∈J c j).

This completes the inductive proof.
It follows that every (A -satisfiable) HR∗ condition can be transformed into an equivalent

second-order formula. Since, by Lemma 1, every HR∗ condition can be transformed into an A -
satisfiable one with replacement, this is also true for HR∗ conditions. This concludes the proof
of Theorem 2.

7 Conclusion

In this paper, we established a lower and an upper bound on the expressiveness of HR∗ condi-
tions. The relation of HR∗ conditions to other formalisms is shown in Figure 6: HR∗ conditions
extend nested conditions and are situated between node-counting monadic second-order logic
and second-order logic. A rough idea how edge-counting monadic second-order formulas could
be represented as HR∗ conditions is given.

FO logic

MSO logic

Node-CMSO logic

CMSO logic

SO logic

nested conditions

HR∗ conditions

[HP09]

[HR10]

?
this paper

?
?

this paper

Figure 6: Comparison of the expressiveness of several types of logics and conditions.

As a side result, some variants of HR∗ conditions satisfaction definitions were compared. In-
stead of substitution of hyperedges, one may also define HR∗ conditions with replacement of
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hyperedges, without loss or gain of expressive power. Also, (A -)satisfaction with arbitrary mor-
phisms is at least as powerful as satisfaction with injective morphisms (as in the initial definition).

Several questions regarding the expressiveness of HR∗ conditions remain open, as indicated
by question marks in Figure 6. It is still not fully clear how HR∗ conditions relate to count-
ing monadic second-order formulas, which may count over nodes and edges. Furthermore, the
question remains open whether any second-order formula can be expressed as a HR∗ condition.
The author suspects that this is not the case, as quantification over arbitrary relations seems to be
more powerful than the hyperedge replacement used in HR∗ conditions.
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A Proof: Expressiveness of A -satisfiability

In this section, we prove Lemma 1 from Section 3:
For every HR∗ condition c, there is a HR∗ condition CondA (c) such that for every graph G,

G |= c ⇐⇒ G |=A CondA (c).

The construction of transformation CondA is quite straightforward: To any HR∗ condition of
the form ∃(P ↪→C,c), a subcondition noId is added that forbids the identification of nodes and
edges in C.

Construction. For a condition over P, CondA is inductively defined:

(1) CondA (true) = true.

(2) CondA (∃(P ↪→C,c)) = ∃(P→C,CondA (c)∧noId) where

noId := ∀(C w
•
•,@(
•
•→•))∧∀(C w

•
•,@(
•
•→
•
•)).

(2’) CondA (∃(PwC,c)) = ∃(PwC,CondA (c)).

(3) CondA (¬c) = ¬CondA (c) and CondA (
∧

i∈I ci) =
∧

i∈I CondA (ci).

Example 12 The HR∗ condition even = ∃( 2 ,@( 2 •)) with 2 ::= /0 | 2 •• expresses the
property “the graph has an even number of nodes” with satisfaction. With A -satisfaction, the
same condition would express “the graph has any number of nodes (including zero)”, i.e. be
equivalent to true.

Using the construction of CondA , we get

CondA (∃( 2 ,@( 2 •))) = ∃( 2 ,∀( 2 w
•
•,@(
•
• → •))∧∀( 2 w

•
•,@(
•
•→
•
•))

∧@( 2 •,∀( 2 • w
•
•,@(
•
•→•))∧∀( 2 • w

•
•,@(
•
•→
•
•))))

Proof. For conditions true, ∃(P wC,c), ¬c and
∧

i∈I ci, the proof is trivial as CondA does not
change the condition and just “passes on” the construction. For a condition ∃(P ↪→ C,c) and
graph G, we can directly transform the statement that two objects d,d′ must be injective into a
condition that fits our construction:

By Definition 7, we have G |= ∃(P ↪→C,c) ⇐⇒ ∃σ ,q : Cσ ↪→ G.p = q◦aσ ∧q |= cσ .
⇔∃σ ,q : Cσ → G.p = q◦aσ ∧q |= cσ ∧@d,d′ ∈ DC.d 6= d′∧q(d) = q(d′).
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Since q is injective, this is equivalent to
⇔∃σ ,q : Cσ → G.p = q◦aσ ∧q |= cσ

∧@v,v′ ∈ VC.v 6= v′∧q(v) = q(v′)∧@e,e′ ∈ EC.e 6= e′∧q(e) = q(e′)
By the semantics of HR∗ conditions, this yields
⇔∃σ ,q : Cσ → G.p = q◦aσ ∧q |= cσ

∧q |= ∀(C w
• v

• v′ ,@(
• v

• v′→• v = v′ ))∧∀(C w
•
•e′e ,@(

•
•e′e →

•
•e = e′ )),

which, by the definition of noId, equals
⇔∃σ ,q : Cσ → G.p = q◦aσ ∧q |= cσ ∧q |= noId.
By the definitions of CondA and A -satisfiability, this yields
⇔ G |=A CondA (∃(P ↪→C,c)).

B Proof: replacement vs. substitution

In this section, we prove Lemma 2 from Section 3:
For every HR∗ condition 〈c,R〉, there is a HR∗ condition 〈c′,R ′〉 such that for all graphs G,

∃σ ∈ ΣR .G |=A ,σ ⇐⇒ ∃r ∈ ΣR ′ .G |=A ,R

To simulate substitution with replacement we use the following construction idea: For every
HR∗ condition containing several hyperedges with the same label (e.g. ∃( X X )), we add a
subcondition with both hyperedges combined into a “big” hyperedge, attached to all attachment
points the two seperate hyperedges were attached to. The replacement system is supplemented
with rules for the “big” hyperedge performing the replacement steps of both seperate hyperedges
simultaneously.

Construction. Without loss of generality, assume that in the HR∗ conditions, variables are in-
troduced one at a time, i.e. for each subcondition ∃(P→C,c), C is obtained from P by adding
exactly one node, edge or hyperedge. For a graph G, let clone(G,n) be an n-fold copy of G:

clone(G,n) :=〈{(k,v) | k ∈ [n],v ∈ VG},{(k,e) | k ∈ [n],e ∈ EG},{(k,y) | k ∈ [n],y ∈ YG},
sG′ , tG′ ,attG′ , lvG′ , leG′ , lyG′〉 with sG′((k,e)) = (k,sG(e))

and analogous for the other mappings. For a variable x∈X , let x2 be a variable with rank(x2) =
n · rank(x). For improved readability, the tentacles and pinpoints of hyperedges are hidden in the
following construction.
Let Sub2Rep(∃(P+ x → P+ x x ,c)) =
∃(P+ x → P+ x x ,∃(P+ x x w P+ x2 ∧ c)),
where rank(x2) = rank(x) and att( x2 ) = att( x ) ◦ att( x ) , and modify the replacement system
R as follows:

R ′ = R+{x2/clone(R,2) | x/R ∈R}

For every other form of HR∗ condition, Sub2Rep is straightforward: Sub2Rep(true) = true,
Sub2Rep(∃(P→C,c))=∃(P→C,Sub2Rep(c)), Sub2Rep(∃(P w C,c))=∃(P w C,Sub2Rep(c)),
Sub2Rep(

∧
i∈I ci) =

∧
i∈I Sub2Rep(ci), and Sub2Rep(¬c) = ¬Sub2Rep(c).
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Example 13 (substitution simulated by replacement)

The HR∗ condition ∃(•
1

•
2

+
,@(•1 •

2•
3
•
4

+
+ ) with •

1
•
2

+ ::= •
1

•
2
| •

1
• •

2

+ ) is satisfied by

any graph which has a path between two nodes 1 and 2, but no second, disjoint path of the
same length, since both “+” hyperedges are substituted by a path of the same length. Using
replacement instead of substitution, this is equivalent to the HR∗ condition

∃(•
1

•
2

+
,@(•1 •

2•
3

•
4

+
+ ,∃(•1 •

2•
3

•
4

+
+ w

•
1

•
2

•
3

•
4

+2

1 2

3 4
))) with

•
1

•
2

•
3

•
4

+2

1 2

3 4
::=
•
1

•
2

•
3

•
4

|
•1 • •2

•
3

• •
4

+2

1 2

3 4
.

With replacement, the substitution of the two hyperedges by isomorphic graphs is simulated by
combining both hyperedges into a single one, where two isomorphic graphs are generated in
parallel.

Proof. By structural induction over HR∗ conditions. Assume that the proposition holds for c,ci.
Let p : /0→ G. p |=A ,R Sub2Rep(∃(P+ x →a P+ x x ,c))
By the definition of Sub2Rep and A -satisfaction,
⇔ p |=A ,R ∃(P+ x →a P+ x x ,∃(P+ x x w P+ x2 ∧ c))
⇔∃q : (P+ x x )R → G.p = q◦aR ∧q |=A ,R ∃(P+ x x w P+ x2 ∧ c)
⇔∃q : (P+ x x )R → G.p = q◦aR ∧
∃q′ : (P+ x2 )R → G.(P+ x2 )R ⊆ (P+ x x )R ∧q = q′

|(P+ x x )R
∧q′ |=A ,R c

Since P+ x2 contains only one non-substituted variable, and by the hypothesis,
⇔∃q : (P+ x x )R → G.p = q◦aR ∧
∃τ,q′ : (P+ x2 )τ → G.( x2 )τ ⊆ (P+ x x )τ ∧q = q′

|(P+ x x )τ
∧q′ |=A ,τ c.

Since the pinpoints in ( x2 )τ and (P+ x x )τ are identical,
⇔ ( x2 )τ ⊆ (P+ x x )τ ⇔ ( x2 )τ ∼= (P+ x x )τ

and because the rules for x2 generate two identical subgraphs,
⇔∃σ ∈ ΣR ,q : (P+ x x )σ → G.p = q◦aσ ∧

∃τ,q′ : (P+ x2 )τ → G.( x2 )τ ∼= (P+ x x )τ ∧q = q′
|(P+ x x )τ

∧q′ |=A ,τ c.

By the satisfaction of HR∗ conditions,
⇔∃σ ,q : (P+ x x )σ → G.p = q◦b∧q |=A ,τ c
⇔ p |=A ,σ ∃(P+ x → P+ x x ,c).
For all other forms of HR∗ conditions, the proof is trivial.
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