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Abstract: Many decision problems in the famous and challenging complexity class
NP are graph problems and can be adequately specified by polynomial graph trans-
formation units. In this paper, we propose to model the reductions in NP by means of
a special type of polynomial graph transformation units, too. Moreover, we present
some first ideas how the semantic requirements of reductions including their cor-
rectness can be proved in a systematic way.
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1 Introduction

Many famous NP-complete problems involve graphs. Examples of this kind are the problems
of finding a clique, a Hamiltonian cycle, a vertex cover, an independent set, etc. Whereas the
complexity class NP as well as the notion of reductions between NP problems are usually defined
by means of polynomial Turing machines on the general level, explicit problems and reductions
are described on some higher level for easier reading and understanding.

Since the algorithms solving decision problems or modeling reductions are often composed
of graph transformation steps, polynomial graph transformation units [KKR08, KK12] serve as
visual, rule-based and formal descriptions for these algorithms. Consequently, graph transfor-
mation units may be helpful not only for specifying and understanding decision problems and
reductions but also for obtaining correctness proofs in a systematic way. Graph transformation
units contain graph transformation rules for modeling the graph transformation steps in an ele-
gant, formal, visual and intuitive way. Moreover, the control conditions of graph transformation
units restrict the set of all derivations induced by the rules to those which solve the problem.
Finally, the initial and terminal graph class expressions of graph transformation units allow to
specify the input and output types of the algorithms.

In [KK11], it has already been shown that polynomial graph transformation units are a formal
computational model for decision problems in NP. To underline the usefulness of this result, we
model in this paper the problems of finding a clique, an independent set, a vertex cover and a
Hamiltonian cycle as graph transformation units. Moreover, we extend [KK11] by considering
also reductions in NP. A reduction from a graph transformation unit to a graph transformation
unit transforms the initial graphs of the first unit to the initial graphs of the second unit. Polyno-
mial graph transformation units with stepwise control serve as a computational model for such
reductions in NP if they are deadlock-free and correct. The correctness can be split into forward
and backward correctness. To stress this, we present reduction units from the clique problem
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to the independent set problem and - more sophisticated - from the vertex cover problem to the
Hamiltonian cycle problem.

Moreover, we make a first step towards a proof scheme for the correctness of reductions. We
show that forward correctness is obtained by induction on the length of computations provided
that there are certain auxiliary reductions compatible with the computation steps. We illustrate
the principle for the presented examples.

The aim of this paper is to show that graph transformation units provide a uniform, systematic,
and high-level framework for the specification of decision problems as well as of reductions
between them which is more intuitive than but as formal as Turing machines. Moreover, the
paper illustrates how the presented approach may serve as a foundation of a proof scheme for
correctness of reductions.

The paper is organized as follows. In Section 2, polynomial graph transformation units with
stepwise control are presented. Section 3 shows how graph transformation units can be used as a
computational model for the decision problems in NP. Section 4 proposes graph transformation
units for modeling reductions in NP. Section 5 deals with correctness of reductions. The paper
ends with the conclusion.

2 Polynomial Graph Transformation Units with Stepwise Control

In this section, we briefly recall graph transformation units as far as they are needed in the fol-
lowing sections. We emphasize especially the use of stepwise control conditions in polynomial
graph transformation units as they are essential for our approach to reductions in NP.

Graphs. Let A be a set of labels including a special label ∗. A directed edge-labeled graph
over A is a system G = (V,E,s, t, l) where V is a finite set of nodes, E is a finite set of edges,
s, t : E → V are mappings assigning a source s(e) and a target t(e) to every edge in E, and
l : E → A is a mapping assigning a label to every edge in E. The sum of the number of nodes
and the number of edges is the size of G, denoted by size(G). The components V , E, s, t, and l
of G are also denoted by VG, EG, sG, tG, and lG, respectively. The set of all directed edge-labeled
graphs over A is denoted by G . An edge e with s(e) = t(e) is called a loop. A loop with label a
is called an a-loop. A node with an a-loop is called an a-node. An edge e with l(e) = ∗ is called
unlabeled and the label ∗ is omitted in drawings. We call a graph G = (V,E,s, t, l) simple if for
all e1,e2 ∈ E, e1 6= e2 implies s(e1) 6= s(e2) or t(e1) 6= t(e2). A pair (e,e′) of edges in a simple
graph is considered as an undirected edge if s(e) = t(e′) and t(e) = s(e′).

Let G,H ∈ G . G is called a subgraph of H, denoted by G⊆H, if VG ⊆VH , EG ⊆ EH , sG(e) =
sH(e), tG(e) = tH(e), and lG(e) = lH(e) for all e ∈ EG. A graph morphism g : G→ H is a pair
of mappings gV : VG → VH and gE : EG → EH that are structure-preserving, i.e., gV (sG(e)) =
sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all e ∈ EG. For a graph morphism
g : G→ H, the image g(G)⊆ H of G in H is called a match of G in H. An injective match of G
in H is a match where the underlying graph morphism g : G→ H is injective.

Let G = (V,E,s, t, l) and G′ = (V ′,E ′,s′, t ′, l′) be graphs in G . Then the graph G+G′ = (V ]
V ′,E]E ′,s′′, t ′′, l′′)1 with s′′(e) = s(e), t ′′(e) = t(e), l′′(e) = l(e) for all e∈ E and s′′(e′) = s′(e′),

1 ] denotes the disjoint union of sets.
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t ′′(e′) = t ′(e′), l′′(e′) = l′(e′) for all e′ ∈ E ′ is called the disjoint union of G and G′.

Rules and their application. A rule r = (L ⊇ K ⊆ R) consists of three graphs L,K,R ∈ G
such that K is a subgraph of L and R. The components L, K, and R of r are called left-hand side,
gluing graph, and right-hand side, respectively.

The application of r = (L ⊇ K ⊆ R) to a graph G = (V,E,s, t, l) yields a directly derived
graph H and consists of the following three steps. (1) An injective match g(L) of L in G is
chosen subject to the dangling condition: sG(e) = v or tG(e) = v for some e ∈ EG−gE(EL) and
v ∈ gV (VL) implies v ∈ gV (VK). (2) Now the nodes of gV (VL−VK) and the edges of gE(EL−EK)
are removed yielding the intermediate graph Z ⊆ G. (3) Let d : K → Z be the restriction of g
to K and Z. Then H is constructed as the componentwise disjoint union for nodes and edges of
Z and R−K where all edges e ∈ EZ +(ER−EK) keep their labels and their sources and targets
except for sR(e) = v ∈VK or tR(e) = v ∈VK which is replaced by dV (v).

The application of a rule r to a graph G is denoted by G=⇒
r

H, and called a direct derivation.
The subscript r may be omitted if it is clear from the context. The sequential composition of
direct derivations d = G0=⇒

r1
G1=⇒

r2
· · ·=⇒

rn
Gn (n ∈ N) is called a derivation from G0 to Gn. As

usual, the derivation from G0 to Gn can also be denoted by G0
n

=⇒
P

Gn where {r1, . . . ,rn} ⊆ P,

or just by G0
∗

=⇒
P

Gn. The sequential composition of two derivations G0
∗

=⇒
P

G′, G′ ∗=⇒
P

G′′ is a

derivation G0
∗

=⇒
P

G′′. The subscript P may be omitted if it is clear from the context. The string

r1 · · ·rn is the application sequence of the derivation d. The notion of a direct derivation fits into
the double-pushout approach (e.g. [CEH+97]).

A rule with a negative application condition consists of four graphs N,L,K,R ∈ G such that
N⊇ L⊇K⊆R. The application of such a rule to a graph G is defined as above with the additional
condition that the graph morphism g cannot be extended to some morphism g′ : N→G of which
g is the restriction to L. By R we denote the class of rules consisting of rules (N ⊇ L ⊇ K ⊆ R)
with a negative application condition. Negative application conditions are studied in [HHT96].

In the following we consider only alphabets in which equality of labels can be checked in
polynomial time. Given a finite set of rules and a graph G, the number of matches is bounded
by a polynomial in the size of G because the sizes of left-hand sides and of the negative contexts
of rules are bounded by a constant. Given a match, the check, whether the dangling condition
holds, and the construction of the directly derived graph is linear in the size of G. Therefore,
under the mentioned assumption polynomial time is needed to find a match and to construct a
direct derivation, and there is a polynomial number of choices at most. Moreover, the difference
of the size of the resulting graph and the host graph is bounded by a constant (cf. [KK12]).

Graph class expressions. A graph class expression may be any syntactic entity X that speci-
fies a class of graphs SEM(X)⊆ G . A typical example is a forbidden structure. Let F be a set of
graphs; then SEM(forbidden(F )) consists of all graphs G such that for each F ∈F there is no
injective match of F in G. Furthermore, we use the expressions all, simple&unlabeled&looped
and gr(N). The first expression specifies G . The second expression specifies all graphs that
are simple, unlabeled, and have an unlabeled loop at each node. The third expression speci-
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fies the set SEM(gr(N)) = {gr(k) | k ∈ N} where gr(k) consists of a single node with k succ-
loops. The expression simple&unlabeled&looped + gr(N) denotes all graphs G+G′ such that
G ∈ SEM(simple&unlabeled&looped) and G′ ∈ SEM(gr(N)). A graph class expression X is
polynomial if for each G ∈ G it can be checked in polynomial time whether G ∈ SEM(X). All
graph class expressions above are polynomial. In the following, the class of graph class expres-
sions is denoted by E and we assume that E consists of polynomial graph class expressions,
only.

Stepwise control conditions. A stepwise control condition directly guides the derivation pro-
cess, i.e. it provides for each derivation step the next permitted rule application steps. More
formally, a stepwise control condition C = (S,J,F,choice) consists of a finite set of control states
S, two subsets J,F ⊆ S of initial and final control states resp. and a choice function choice with
choice(G,s)⊆ G ×S for G ∈ G and s ∈ S. We denote the class of stepwise control conditions by
C .

Stepwise control conditions can be often defined w.r.t. control conditions where a control con-
dition is any expression that specifies a binary relation on graphs. Examples of control conditions
are the basic control conditions r! and try(r) where r is a rule. The expression r! means to apply
r as long as possible. The expression try(r) means that if r is applicable to the current graph
then apply r once. In the following, Try&Alap denotes the class in which each control condition
is either a basic control condition or it is the sequential composition of basic control conditions,
i.e., it has the form c1; · · · ;cn (n≥ 1) where for i = 1, . . . ,n ci is a basic control condition.

For each control condition c ∈ Try&Alap the corresponding stepwise control condition stw(c)
is equal to (Sc,Jc,Fc,choicec) where Sc is defined recursively as Sc = {b; lambda, lambda} if
c = b and Sc = {c; lambda}∪Sd if c = b;d for some basic control condition b and d ∈ Try&Alap.
(Hence, every state is either equal to lambda or has the form b;s′ where s′ is a state and b is a
basic control condition.) Moreover, Jc = {c; lambda} and Fc = {lambda}. For each G∈G , each
s ∈ Sc and each rule r occurring in c the choice function is given by choicec(G, lambda) = /0 and

choicec(G,r!;s) =

{
{(G′,r!;s) | G =⇒

r
G′} if ∃G′ ∈ G : G=⇒

r
G′

{(G,s)} otherwise

choicec(G, try(r);s) =

{
{(G′,s) | G =⇒

r
G′} if ∃G′ ∈ G : G=⇒

r
G′

{(G,s)} otherwise
In examples, each stepwise control condition stw(c) will be abbreviated by c.
A configuration of a stepwise control condition C = (S,J,F,choice) is a pair (G,s) with G∈ G

and s ∈ S. (G,s) ` (G′,s′) is a computational step if (G′,s′) ∈ choice(G,s). A computation is a
sequence of computational steps (G0,s0) ` (G1,s1) ` · · · ` (Gn,sn) (also denoted by (G0,s0) `n

(Gn,sn)). Obviously, each computation induces an underlying derivation

G0=⇒G1=⇒·· ·=⇒Gn.

The semantics SEM(C) is given by the set of derivations induced by all computations (G0,s0) `n

(Gn,sn) with s0 ∈ J and sn ∈ F .
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Graph transformation units. A graph transformation unit is a system gtu=(I,P,C,T ), where
I,T ∈ E are graph class expressions to specify the initial and the terminal graphs respectively,
P ⊆R is a finite set of rules, and C ∈ C is a stepwise control condition. Every graph transfor-
mation unit gtu specifies a binary relation SEM(gtu) ⊆ SEM(I)× SEM(T ) that contains a pair
(G,H) of graphs if and only if there is a derivation G ∗

=⇒
P

H ∈ SEM(C). For each G ∈ SEM(I)

gtu(G) denotes the set {H ∈ G | (G,H) ∈ SEM(gtu)}.
Let gtu = (I,P,C,T ) be a transformation unit with a stepwise control condition

C = (S,J,F,choice).

A configuration (G,s) is initial if G ∈ SEM(I) and s ∈ J. It is terminal if G ∈ SEM(T ) and
s ∈ F. A permitted computation is a sequence of computational steps (G0,s0) ` (G1,s1) ` · · · `
(Gn,sn) if (G0,s0) is an initial configuration. The induced derivation of a permitted computation
is called permitted derivation. Note that the 0-derivation G 0

=⇒ G is always permitted if G ∈
SEM(I). A permitted computation is successful if (Gn,sn) is a terminal configuration. The
induced derivation of a successful computation is called successful derivation.

Polynomial graph transformation units. A gtu is polynomial if the following holds: (1) there
is a polynomial p such that for each initial graph G ∈ SEM(I) and each permitted derivation
G n
=⇒G′, n ≤ p(size(G)), where size(G) is the sum of the number of nodes and the number

of edges of G. (2) the membership problems of SEM(I) and SEM(T ) are polynomial. (3) to
compute a next configuration via the choice function takes polynomial time. Please note that for
all graph class expressions and all stepwise control conditions used in this paper, the second and
the third condition are satisfied (each next configuration is picked up nondeterministically based
on a fixed rule set).

3 Decision Problems of NP as Graph Transformation Units

In the following, it is recalled how polynomial graph transformation units can be used as a
computation model for decision problems in the complexity class NP (cf. [KK11]).

3.1 Decision Problems of NP

A decision problem is a mapping D : Σ∗→ BOOL, where Σ is some finite alphabet. D is in the
complexity class NP if there exists a nondeterministic Turing machine TM and a polynomial p
such that for each input w ∈ Σ∗ the following holds. (1) there is a computation of TM starting in
the initial state with input w and ending in an accepting state if and only if D(w) = true and (2)
no computation of TM starting with input w is longer than p(|w|) (cf., e.g., [HMU07]).

Very often, inputs of decision problems are not strings but they are composed of different data
types such as graphs and natural numbers. Describing these instances as words in Σ∗ would be
very hard to read for human beings. Hence, in the literature, they are usually defined directly. For
the same reason, the algorithms solving the decision problems are generally not given as Turing
machines but as some higher level algorithmic description, and — based on the Church-Turing
thesis — it is assumed that they can be computed by some Turing machine.
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3.2 Characterizing NP by Graph Transformation

Whenever inputs of decision problems are graphs, polynomial graph transformation units serve
as an intuitive computational model for NP-problems. More explicitly, a polynomial graph trans-
formation unit gtu= (I,P,C,T ) solves a graph transformational decision problem D : SEM(I)→
BOOL in the following way. Whenever there is a successful derivation G ∗

=⇒G′ in gtu, the result
of the decision problem applied to G is true. Otherwise, it is false. Let NPGT denote the class of
all graph transformational decision problems solvable by some polynomial graph transformation
unit. The following statement is shown in [KK11].

Observation 1 NPGT = NP.

This means that for each decision problem D : Σ∗→ BOOL there is a polynomial graph trans-
formation unit gtu that solves DG : Σ∗G → BOOL with DG (wG ) = D(w) for each w ∈ Σ∗ where
wG denotes the string graph representing w and Σ∗G denotes the set of all string graphs over
Σ. Conversely, let D : SEM(I)→ BOOL be a graph transformational decision problem solved
by some polynomial graph transformation unit gtu = (I,P,C,T ). Then there is a polynomial
nondeterministic Turing machine that solves DStr : Σ∗→ BOOL with DStr(GStr) = D(G) for all
G ∈ SEM(I) where GStr ∈ Σ∗ is an appropriate string representation of G.

To illustrate how decision problems can be modeled as graph transformation units, we present
the decision problem clique of NP as a graph transformation unit.

3.3 Example: Cliques

The decision problem clique has as input an undirected unlabeled graph G and a natural number
k. The result of clique(G,k) returns true if G contains a clique of size k, i.e., a complete subgraph
with k nodes. Otherwise it returns false. For technical simplicity we assume that k is less than or
equal to the number of nodes in G.

The problem clique can be modeled by the transformation unit CLIQUE in Figure 1. Each
initial graph of CLIQUE is the disjoint union of two graphs. The first is an undirected simple
unlabeled graph G in which each node is equipped with a (directed) loop. The second one is
the graph gr(k) for some k ∈ N consisting of a single node with k succ-loops (i.e., k loops each
labeled with succ). It is worth noting that the unary encoding of k is possible because clique is
strongly NP-complete.

The rule select is applied at first as long as possible selecting in each application a node of G
while removing a succ-loop. Afterwards the rule test(CLIQUE) is applied once if possible. Its
application inserts a bad-edge if the selected nodes do not form a clique. The resulting graph
is accepted if it does not contain a bad-edge. The state transitions of control condition select!
; try(test(CLIQUE)) of CLIQUE are visualized in Figure ?? where the nodes represent control
states and the edges visualize the choice function. An edge label r means that the rule r is
applicable to the current graph and a negated rule means that it is not applicable.

The choice function of the control condition select! ; try(test(CLIQUE)) is defined as

• choice(G,select!; try(test); lambda) =

- {(G′,select!; try(test); lambda) | G=⇒
select

G′} if ∃G′ ∈ G : G=⇒
select

G′
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CLIQUE
initial: simple&unlabeled&looped + gr(N)
rules:

select: 1 2

succ
⊇ 1 2 ⊆ 1

s
2

test(CLIQUE):1

s
2

s

⊇

1

s
2

s
⊇ 1

s
2

s
⊆ 1

s
2

s
bad

control: select! ; try(test(CLIQUE))

terminal: forbidden( bad )

Figure 1: A graph transformation unit for clique

- {(G, try(test); lambda)} otherwise

• choice(G, try(test); lambda) =

- {(G′, lambda) | G=⇒
test

G′} if ∃G′ ∈ G : G=⇒
test

G′

- {(G, lambda)} otherwise

• choice(G, lambda) = /0

select!; try(test(CLIQUE)); lambda select

¬select

try(test(CLIQUE)); lambda

test(CLIQUE)¬test(CLIQUE)

lambda

Figure 2: State Transition diagram of select! ; try(test(CLIQUE))

Each permitted derivation consists of at most k + 1 rule applications. Hence, according to
the considerations of Section 2 concerning polynomial graph transformation units, we get that
CLIQUE is polynomial.

The semantic relation SEM(CLIQUE) consists of all pairs (G+gr(k),H +gr(0)) such that G
is simple, unlabeled and looped, and H is obtained from G by inserting an s-loop at each node of
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a k-clique. Hence, (G+ gr(k),H + gr(0)) ∈ SEM(CLIQUE) if clique(G,k) = true. Otherwise,
there is no Ĥ ∈ G such that (G + gr(k), Ĥ) ∈ SEM(CLIQUE). This means that CLIQUE is
correct.

4 Reductions in NP as Graph Transformation Units

In this section, we show how reductions in NP can be modeled by polynomial graph transforma-
tion units in a systematic way.

4.1 Reductions in NP

For i = 1,2, let Di : Σ∗ → BOOL be decision problems. A (polynomial) reduction from D1 to
D2 is a function translate : Σ∗ → Σ∗ such that (1) for each w ∈ Σ∗, D1(w) = D2(translate(w))
and (2) translate can be computed by a polynomial Turing machine. Strictly speaking, translate
does not need to be a function from Σ∗→ Σ∗. It suffices to require that it associates a nonempty
set red(w) with each string w such that D1(w) = D2(w′) for each w′ ∈ red(w). Hence, the
polynomial Turing machine does not need to be deterministic but for each input w all computed
outputs must belong to red(w). This assures that if D1(w) yields true, then D2(w′) yields true
for each computed output w′, and vice versa. It is worth noting that such a Turing machine can
be easily converted into a deterministic one by ignoring at each state all but one possibilities to
proceed. The set of all reductions is denoted by RED. As mentioned before, Turing machines
are hard to read and that is why reductions are usually described on a higher level.

4.2 Characterizing Reductions in NP via Graph Transformation

Whenever reductions involve graphs, polynomial graph transformation units are a natural means
to specify them. More precisely, a polynomial graph transformation unit red = (I1,P,C, I2) mod-
els a reduction from D1 : SEM(I1)→ BOOL to D2 : SEM(I2)→ BOOL if red is deadlock-free
and correct. Deadlock-freeness means that every permitted derivation that is not prolongable is
successful. Correctness means that D1(G) = D2(H) for each G∈ SEM(I1) and each H ∈ red(G).
In this case, red is called a reduction unit. Please note that since graph transformation is highly
nondeterministic reduction units are not required to be functional, i.e., for every G ∈ SEM(I1),
there may be more than one H in red(G). If D1 and D2 are given as graph transformation units
gtu1 = (I1,P1,C1,T1) and gtu2 = (I2,P2,C2,T2), then the correctness of red is implied by its for-
ward and backward correctness defined as follows.

1. Forward correctness: If there is a successful derivation from G ∈ SEM(I1) in gtu1, then
there is a successful derivation from H in gtu2, for all H ∈ red(G).

2. Backward correctness: If there is a successful derivation from H in gtu2, where H ∈ red(G)
for some G ∈ SEM(I1), then there is a successful derivation from G in gtu1.

Let REDGT be the set of all reductions given as graph transformation units. Then it can be
shown that REDGT corresponds to RED. This means that for every reduction translate : Σ∗→ Σ∗

from D to D′ in RED, there is a reduction unit red from DG to D′G in REDGT where DG and D′G

Selected Revised Papers from GCM 2012 8 / 17



ECEASST

are the decision problems in NPGT corresponding to D and D′, respectively. Conversely, let red
be a reduction unit from a graph transformational decision problem D to a graph transformational
decision problem D′. Then there is a reduction translate from DStr to D′Str in RED where DStr

and D′Str are the decision problems in NP corresponding to D and D′, respectively. The proof is
very similar to the proof of the correspondence of NPGT and NP (cf. [KK11]) and hence omitted.

Observation 2 REDGT = RED.

The first point of the following proposition presents a sufficient condition for deadlock-freeness.
The second point relates deadlock-freeness to the example class of stepwise control conditions
presented in Section 2. It makes use of the fact that every permitted computation that cannot be
prolonged ends in a final state (which is not true in general). Hence to show deadlock-freeness,
it is sufficient to show that all those computations end in a terminal graph.

Proposition 1 Let gtu = (I,P,C,T ) be a polynomial graph transformation unit with

C = (S,J,F,choice).

1. Then gtu is deadlock-free, if for each permitted computation (G0,s0) ` · · · ` (Gn,sn) of
gtu with (Gn,sn) /∈ SEM(T )×F , choice(Gn,sn) 6= /0.

2. If C = stw(c) for some c ∈ Try&Alap, then gtu is deadlock-free if for each permitted
computation (G0,s0) ` · · · ` (Gn,sn) of gtu sn = lambda implies Gn ∈ SEM(T ).

A deadlock-free graph transformation unit is functional if for every initial graph G every suc-
cessful derivation from G yields the same terminal graph (up to isomorphism). The next propo-
sition relates the functionality to control conditions. It states that if the control condition of a
deadlock-free unit is based on expressions of the form r! only and the rule applications of each r
are locally confluent, then the unit is functional. Clearly, in forward correctness proofs of func-
tional reduction units only one derivation has to be checked for each initial graph of the first
unit.

Proposition 2 Let gtu = (I,P,C,T ) be a deadlock-free polynomial graph transformation unit
such that C = stw(c) where c is of the form r1!; · · · ;rn! with {r1, . . . ,rn} ⊆ P. Then gtu is func-
tional if for all G,G1,G2 ∈ G where G1 and G2 are not isomorphic: G=⇒

r
G1 and G=⇒

r
G2

implies that there is a graph G3 ∈ G such that G1=⇒
r

G3 and G2=⇒
r

G3.

4.3 Example 1: From Cliques to Independent Sets

The graph transformation unit CLIQUE-to-INDEP in Figure 3 models a reduction from clique
to indep. The decision problem indep gets as inputs a graph G and a natural number k. It returns
true if and only if G has an independent set of size k, i.e., a set M of k nodes such that no
two nodes of M are adjacent in G. The decision problem indep can be modeled by the graph
transformation unit

INDEP = (ICLIQUE,{select, test(INDEP)},select!; try(test(INDEP)),TCLIQUE)
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CLIQUE-to-INDEP
initial: simple&unlabeled&looped + gr(N)
rules:

complement: 1 2 ⊇ 1 2 ⊆ 1 2
d

⊇
1 2

remove: 1 2 ⊇ 1 2 ⊆ 1 2

relabel: 1 2
d

⊇ 1 2 ⊆ 1 2

control: complement! ; remove! ; relabel!
terminal: simple&unlabeled&looped + gr(N)

Figure 3: A graph transformation unit for the reduction from clique to indep

where test(INDEP) is the rule 1

s
2

s
⊇ 1

s
2

s
⊆ 1

s
2

s
bad

.
The rule complement of the unit CLIQUE-to-INDEP inserts a d-edge between all pairs of

distinct nodes provided that they are not connected via an undirected edge in the initial graph.
The rule remove deletes all original undirected edges and, finally, the rule relabel turns each
d-edge into an unlabeled edge.

Since every derivation that cannot be prolonged reaches a terminal graph and since the rule
applications of each rule are locally confluent, we get by Propositions 1 and 2 that the unit
CLIQUE-to-INDEP is functional. The following observation concerns the successful deriva-
tions of CLIQUE-to-INDEP and can be shown by induction. It states that CLIQUE-to-INDEP
generates for each initial graph G+gr(k) the graph H +gr(k) where H is the complement graph
of G.

Observation 3 Let G ∈ G . Then G ∗
=⇒H is a successful derivation of CLIQUE-to-INDEP if

and only if H is obtained from G by inserting an unlabeled undirected edge between each pair
of nodes that is not connected via an unlabeled undirected edge and by deleting all original
unlabeled undirected edges.

In every successful derivation, each of the three rules is applied at most n2 times where n is the
number of nodes of the initial graph. Hence, taking into account the considerations of Section 2
we get that CLIQUE-to-INDEP is polynomial.

4.4 Example 2: From Vertex Covers to Hamiltonian Cycles

In the following, a more sophisticated example of a reduction is presented.
Let VC be the graph transformation unit

(ICLIQUE,{select, test(VC)},select!; try(test(VC)),TCLIQUE)
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HC
initial: simple&unlabeled&looped
rules:

start: 1 2 ⊇ 1 2 ⊆ 1

start

2

run

p

run: 1

run

2 ⊇ 1

run

2 ⊆ 1 2

run

p

stop: 1

run

2

start

⊇ 1 2 ⊆ 1 2p

control: start;run!;stop
terminal: forbidden( , start )

Figure 4: A graph transformation unit for Hamiltonian cycles

where test(VC) is the rule 1 2 ⊇ 1 2 ⊆ 1 2
bad

. This unit VC is the
graph transformational version of the decision problem vc with a graph G and a natural number
k as inputs. It returns true if and only if G has a vertex cover of size k, i.e., a set of k nodes so
that every edge is incident to at least one of these nodes.

The graph transformation unit HC in Figure 4 models the decision problem hc the input of
which is a graph G. It returns true if and only if G has a Hamiltonian cycle, i.e., a cycle that
visits every node exactly once.

The following unit VC-to-HC models a reduction from VC to HC. It is based on the construc-
tion presented in [GJ79].

VC-to-HC
initial: simple&unlabeled&looped + gr(N)
rules: {r1, . . . ,r11}
control: r1! ; r2 ; r3!; · · · ;r8!;r9(n)!;r9(b)!;r10!
terminal: simple&unlabeled&looped

The rules of the unit VC-to-HC are depicted in Figure 5, 6, and 7.
According to the control condition the first rule is applied as long as possible before trying

to apply the second rule once. This converts the graph gr(k) into k n-nodes. The third rule
generates a {u,v}-edge-ladder, two 6-edges and two c-edges for each subset {u,v} of distinct
nodes that are adjacent in the initial graph. After applying it as long as possible each initial
node v is connected by a c-edge to l different ladders where l is the number of undirected edges
incident to v. The target of a c-edge originating from v is called a v-entry and the target of the 6-
edge starting from a v-entry is a v-exit. (The 6-edges are for remembering in further rules which
exits belong to which entries.) A ladder with a v-entry is also called a v-ladder. The fourth rule,
applied as long as possible, chooses one c-edge for each (non-isolated) initial node v replacing
it by an a-edge; hence, this rule selects one {u,v}-ladder for each initial node v. The rule r5
connects the v-entry of each selected ladder to each n-node. The rule r6 selects for each initial
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r1: 1

succ

succ

⊇ 1 ⊆ 1

succ n

r2: 1

succ

⊇ /0 ⊆
n

r3:
1

2

⊇
2

1 ⊆
2

1

b b b b b

b b b b b

c

c

b

b

6

6

r4: 1 2c ⊇ 1 2 ⊆ 1

ok

2a

Figure 5: The rules r1, . . . ,r4 of the unit VC-to-HC

r5: 2 1a

3n

⊇ 2 1a

3n

⊇ 2 1a

3n

⊆ 1 2a

3n

r6 : 3

4
c

1a

2
6

⊇ 3

4

1

2
6

⊆ 3

4
a

1

2
6

Figure 6: The rules r5 and r6 of the unit VC-to-HC

node v a not yet selected v-ladder and connects the v-exit of the previously selected ladder to the
v-entry of this ladder. This is repeated as long as possible so that finally all v-ladders are selected.

Rule r7 connects for each initial node v the v-exit of the last selected ladder to each n-node.
The rule r8 removes all initial nodes together with the attached loops and the incident a-edges;
with the rule r9 every n-loop and every b-loop is turned into an unlabeled loop; r10 deletes all
6-edges and r11 all isolated initial nodes.

The next observation concerns the successful derivations of VC-to-HC.

Observation 4 Let (G+gr(k)) ∈ SEM(IVC) and let H ∈ G . Then H ∈ VC-to-HC(G+gr(k)) if
and only if H consists of the following components:

• A {u,v}-ladder for each set {u,v} of distinct adjacent nodes in G,

• k nodes, say 1, . . . ,k (not being part of a ladder),

• for each v ∈ VG there is some ordering lv
1, . . . , l

v
m(v) of the set of v-ladders such that for

j = 1, . . . ,m(v)−1 the v-exit of lv
j is adjacent to the v-entry of lv

j+1 and every node in [k] is
adjacent to the v-entry of lv

1 as well as to the v-exit of lv
m(v).

2

2 [k] denotes the set {1, . . . ,k}.
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r7: 3

4

n

1a

2
6

⊇ 3

4

n

1a

2
6

⊇ 3

4

n

1a

2
6

⊆ 3

4

n

1a

2
6

r8: 1

ok

2a ⊇ 2 ⊆ 2 r9(x):1

x

⊇ 1 ⊆ 1

r10: 1 26 ⊇ 1 2 ⊆ 1 2

Figure 7: The rules r7, . . . ,r11 of the unit VC-to-HC

The nodes 1, . . . ,k will also be called clip nodes.
Since every permitted derivation that cannot be prolonged ends in a terminal graph we get by

Proposition 1 that VC-to-HC is deadlock-free. By Observation 4, it is not functional. Moreover,
since each successful derivation consists of a polynomial number of steps, we get together with
the considerations in Section 2 that VC-to-HC is polynomial.

5 Correctness

The following proposition is useful for proving forward correctness of reductions and provides
a first step towards a proof scheme for correctness of reductions. Roughly spoken, it states
that the existence of a set Aux of deadlock-free graph transformation units leads to the forward
correctness of a reduction from gtu1 to gtu2 if the units in Aux satisfy certain compatibility
conditions that may be seen as stepwise correctness.

Proposition 3 For i = 1,2, let gtui = (Ii,Pi,Ci,Ti) be polynomial graph transformation units.
Let red = (I1,P,C, I2) be a deadlock-free polynomial graph transformation unit. Then red is a
forward correct unit from gtu1 to gtu2, if there is a set Aux of deadlock-free polynomial graph
transformation units such that for each successful derivation G0=⇒·· ·=⇒Gn in gtu1 and each
H0 ∈ red(G0) there are units aux1, . . . ,auxn ∈ Aux and graphs H1, . . . ,Hn ∈ G such that the fol-
lowing hold:

1. For i = 1, . . . ,n, the graph Hi is in auxi(Gi), and there is a derivation deri = (Hi−1
∗

=⇒Hi)
such that the sequential composition der1 · · ·dern is permitted in gtu2.

2. Hn ∈ SEM(T2).

Remarks.

1. This proposition allows to prove forward correctness by induction on the length of the
permitted derivations that can be prolonged to successful derivations. To this aim, stepwise
control is essential.
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2. Let r̂ed be a deadlock-free polynomial unit from gtu2 to gtu1 such that for each G ∈
SEM(I1) and each H ∈ red(G) with a successful derivation in gtu2, G ∈ r̂ed(H). Then
forward correctness of r̂ed implies backward correctness of red.

5.1 Correctness of CLIQUE-to-INDEP

Let der = (G0
n

=⇒Gn) be a successful derivation of CLIQUE. Then in every derivation step
the rule select is applied. Let H0 ∈ CLIQUE-to-INDEP(G0). Then due to the functionality of
CLIQUE-to-INDEP, H0 is the unique graph in CLIQUE-to-INDEP(G0). Let aux be the unique
auxiliary unit defined as

aux = (all,PCLIQUE-to-INDEP,CCLIQUE-to-INDEP,all),

where SEM(all) = G . Please note that aux is used for transforming the graphs G1, . . . ,Gn which
are not in SEM(ICLIQUE). Hence, the initial graph class expression of aux is more general than
that of CLIQUE. For similar reasons the terminal expression of aux is more general than the
initial expression of INDEP. By Propositions 1 and 2, aux′ is functional. Moreover, for i =
1, . . . ,n, red(Gi) consists of the complement of the underlying simple graph of Gi plus the loops
of Gi. We assume without loss of generality that the node set of the graph in aux(Gi) is equal to
VGi .

If n = 0 then CLIQUE-to-INDEP(Gn) = {H0} and H0
∗

=⇒H0 is permitted in INDEP. Now
assume that for some n ∈ N, H0

∗
=⇒
select

Hn is a derivation in INDEP where Hn ∈ aux(Gn) if n > 0

and Hn ∈ CLIQUE-to-INDEP(Gn) if n = 0. Let Gn =⇒
select

Gn+1. Then Gn contains a node v, an

unlabeled loop of which is replaced by an s-loop and a succ-loop which is deleted. Then v has
also an unlabeled loop in Hn and the succ-loop is also present in Hn. Hence there is a derivation
step Hn =⇒

select
Hn+1 in which the rule select is applied to v and the succ-loop. Since select only

affects loops and aux does not affect loops, Hn+1 ∈ aux(Gn+1). Since H0
∗

=⇒
select

Hn+1 is permitted,

Point 1 of Proposition 3 is satisfied.
If Gn ∈ SEM(TCLIQUE), then test(INDEP)) is not applicable to Hn because otherwise, there

would be an edge between s-nodes in Hn which is not present in Gn. This means that test(CLIQUE)
would be applicable to Gn, i.e., Gn /∈ SEM(TCLIQUE) which is a contradiction. Hence, Hn ∈
SEM(TINDEP), i.e., the second condition of the proposition is also satisfied.

Hence, CLIQUE-to-INDEP is forward correct. The situation is illustrated in Figure 8.
If CLIQUE-to-INDEP is applied twice we obtain the original graph again, i.e., the complement

of the complement of a graph G equals G. Hence, due to the second remark of Observation 3
CLIQUE-to-INDEP is also backward correct. This leads to the following observation.

Observation 5 The unit CLIQUE-to-INDEP is correct.

5.2 Forward Correctness of VC-to-HC

Let G0 = (G′0 +gr(k)) ∈ SEM(IVC) and let G0
n

=⇒
select

Gn. Let H0 ∈ VC-to-HC(G0) and for v ∈VG′0

let lv
1, . . . , l

v
m(v) be the ordering of the v-ladders in H0 and let c1, . . . ,cn be clip nodes (cf. Obser-
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G0

CLIQUE

G1

Gn

successful

H0

INDEP

H1

Hn

successful

CLIQUE-to-INDEP

aux

aux

select

select

select

select

select

select

Figure 8: Forward correctness of CLIQUE-to-INDEP

vation 4).3 Then for each ordering v1, . . . ,vn of the s-nodes in Gn the sequence

(c1, l
v1
1 , . . . , lv1

m(v1)
, . . . ,cn, l

vn
1 , . . . , lvn

m(vn)
)

induces a set Pathsn consisting of all paths in H0 that visit nodes c1, . . . ,cn in this order so that
after each ci the ladders lvi

1 , . . . , l
vi
m(vi)

are visited in this order. In more detail, for j = 1, . . . ,m(vi)

the ladder lvi
j is passed straight from its vi-entry to its vi-exit if the other entry of the ladder (i.e.,

the entry not equal to the vi-entry) is an s-node; otherwise it is passed straight or zigzag from
its vi-entry to its vi-exit. The ladders depicted in Figure 9 illustrate the courses of the straight
and zigzag paths. The top nodes of the ladders represent their entries and the bottom nodes their
exits.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

10

11

12

4

5

6

7

8

9

4

5

6

7

8

9

1

2

3

10

11

12

Figure 9: Straight and zigzag paths through ladders

We can construct a polynomial deadlock-free graph transformation unit red such that for
each graph G derivable from some G0 ∈ SEM(IVC) by successive applications of the rule select,
red(G) consists of all graphs H which can be obtained from some H0 ∈ VC-to-HC(G0) by high-
lighting one of the described paths in such a way that all edges on the path are labeled with p
the first clip node has a start-loop and all other nodes on the path have a run-loop. For reasons

3 Since n≤ k these clip nodes exist.
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of space limitations red is not presented here; but it is worth noting that it is quite similar to
the unit VC-to-HC although needing more complicated control conditions. By induction on n it
can be shown that for every H0 ∈ VC-to-HC(G0) there is a derivation H0

∗
=⇒Hn with application

sequence init start runn−1 and Hn ∈ red(Gn) if n > 0. If n = 0 the application sequence is equal
to λ .

Moreover, if Gn is a terminal graph, then test(VC) is not applicable to Gn i.e., the path in Hn

contains all ladders and all clip nodes of H0 (remember that k cannot be larger than the number
of nodes in G′0). Hence the application of stop to the last and the first node of the path yields a
terminal graph of HC.

Altogether we get that VC-to-HC satisfies the conditions for the forward correctness and hence
the following observation is holds.

Observation 6 The unit VC-to-HC is forward correct.

6 Conclusion

In this paper, we have shown how reductions in NP can be modeled by graph transformation units
in a visual and formal way. In particular, we have presented a first step towards a proof scheme
for the correctness of reduction units. It turned out that the presented approach is suitable to
specify and prove the (forward) correctness of two well-known reductions where the latter is
rather complex.

In the future, we want to undertake further steps in the following directions. (1) The presented
proof scheme for forward correctness is based on the correctness of a set of auxiliary units which
in turn can be shown by induction. Hence, an interesting question is how the induction proof
of the forward correctness can be interwoven with the induction proofs of the auxiliary units
in a systematic way. (2) The first of our two reduction examples is backward correct because
the reduction can be done the other way round. However, the proof of backward correctness
should be integrated in the presented proof scheme in a systematic way. (cf. also [EEHP09]).
(3) Since reductions are a special kind of model transformations we would like to investigate
how the presented ideas can be used to prove correctness of model transformations, in general.
To this aim, the presented ideas should be related to other approaches to correctness proofs of
model transformations based of graph transformations. In particular, we will compare our results
with those obtained in the field of model transformations using triple grammars. (4) In addition
to the considered class of stepwise control conditions based on try and as-long-as-possible, we
want to find out whether more general control conditions are suitable for our purposes (see, e.g.,
[FNTZ00, Kus00, Plu09]).

Acknowledgment. We are grateful to Hans-Jörg Kreowski for his helpful comments.

Bibliography

[CEH+97] A. Corradini, H. Ehrig, R. Heckel, M. Löwe, U. Montanari, F. Rossi. Algebraic
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