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Abstract: Hypergraph transformation systems are examples of M -adhesive trans-
formation systems based on M -adhesive categories. For typed attributed graph
transformation systems, the tool environment AGG allows the modelling, the simu-
lation and the analysis of graph transformations. A corresponding tool for analysis
of hypergraph transformation systems does not exist up to now. The purpose of this
paper is to establish a formal relationship between the corresponding M -adhesive
transformation systems, which allows us the translation of hypergraph transforma-
tions into typed attributed graph transformations with equivalent behavior, and, vice
versa, the creation of hypergraph transformations from typed attributed graph trans-
formations. This formal relationship is based on the general theory of M -functors
between different M -adhesive transformation systems. We construct a functor be-
tween the M -adhesive categories of hypergraphs and of typed attributed graphs, and
show that our construction yields an M -functor with suitable properties. We then
use existing results for M -functors to show that analysis results for hypergraph
transformation systems can be obtained using AGG by analysis of the translated
typed attributed graph transformation system. This is shown in general and for a
concrete example.

Keywords: M -adhesive transformation system, graph transformation, hypergraph
transformation, M -adhesive category, M -functor, critical pair analysis, AGG

1 Introduction

In the theory of graph transformation, various related approaches exist. Hypergraphs have shown
to be appropriate e.g. for evaluation of functional expressions since they allow a function with
n arguments to be modelled by an hyperedge with one source node and n target nodes [Plu93].
Other applications are distributed systems [BCK02] and diagram representation [Min00].

Hypergraph transformation is related to algebraic graph transformation [EEPT06], where
structural changes are modelled in the double-pushout (DPO) approach for the category of
(typed, attributed) graphs, which has been generalised to M -adhesive categories, relying on
a class M of monomorphisms. The DPO approach is a suitable description of transformations
leading to results like the Local Church-Rosser, Parallelism, Concurrency, and Local Confluence
Theorems [EEPT06]. The well-established tool AGG [AGG12] supports modelling and analysis
of (typed, attributed) graph transformation systems. However, up to now there exists no tool
support for directly analysing confluence of hypergraph transformation systems.
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Analysis of Hypergraph Transformation Systems based on M -Functors

In our previous paper [MEE11], we have proposed formal criteria ensuring a semantical cor-
respondence of reconfigurable Petri nets and their corresponding representations as graph trans-
formation systems. The aim of our previous work was to establish a formal basis allowing us to
translate Petri net transformations into graph transformations and, vice versa, to create Petri net
transformations from graph transformations such that the behavior of Petri net transformations
can be simulated by simulating their translation using the graph transformation tool AGG.

In [MEE11], we established the new framework of M -functors F : (C1,M1)→ (C2,M2) be-
tween M -adhesive categories. This framework allows to translate transformations in (C1,M1)
into corresponding transformations in (C2,M2) and, vice versa, to create transformations in
(C1,M1) from those in (C2,M2).

Building on this previous work, we have extended this framework in [MEE12] to allow the
analysis of interesting properties like termination, local confluence and functional behavior, in
addition to parallel and sequential independence, using the corresponding results and analysis
tools like AGG for graph transformation systems.

Hence, in this paper we define an M -functor FHG : (C1,M1)→ (C2,M2), where (C1,M1)
are hypergraphs and (C2,M2) typed attributed graphs. In our main results, we show that the
functor FHG satisfies all the properties required by the general framework to guarantee the trans-
fer, i.e., translation and creation of transformations and local confluence. This allows us in par-
ticular to apply the well-known critical pair analysis for typed attributed graph transformations
supported by the AGG-tool [AGG12] to analyse these properties for hypergraph transformations.
In contrast to previous instantiations of M -functors in [MEE11], we do not have to restrict our
functor to injective morphisms.

The paper is structured as follows: Section 2 introduces the basic notions of M -adhesive
transformation systems and M -functors to define a formal relationship between two different
M -adhesive categories. In Section 3, we construct the functor FHG between hypergraph and
typed attributed graph transformation systems, and show that this functor satisfies the proper-
ties of M -functors and some additional properties that are required in the general theory. In
Section 4, we study the F -transfer of local confluence by analysing F -reachable critical pairs
and show that the M -functor FHG from Section 3 satisfies the required properties. The result
is used in Section 5 to analyse a hypergraph transformation system using AGG on the functorial
translation of the system. In Section 6, we compare our approach to related work, conclude the
paper and give an outlook to future research directions. Detailed proofs are given in [MEE13].

2 M -Adhesive Categories, Transformation Systems, M -Functors

In this section we concentrate on some basic concepts and results that are important for our ap-
proach and which we review from our previous paper [MEE11]. Our considerations are based on
the framework of M -adhesive categories. An M -adhesive category [EGH10], consists of a cat-
egory C together with a class M of monomorphisms such that the following properties hold: C
has pushouts (POs) and pullbacks (PBs) along M -morphisms, M is closed under isomorphisms,
composition, decomposition, POs and PBs, and POs along M -morphisms are M -VK-squares
(see Figure 1), i.e., the VK-property holds for all commutative cubes, where the given PO with
m ∈M is in the bottom, the back faces are PBs and all vertical morphisms a,b,c and d are in
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M . The VK-property means that the top face is a PO iff the front faces are PBs.

A
B

C
D

A′
B′

C′
D′

m

a

b

c

d

Figure 1: M -VK-square

The concept of M -adhesive categories generalises that of ad-
hesive [LS04], adhesive HLR, and weak adhesive HLR categories
[EEPT06]. The categories of typed attributed graphs, hypergraphs
and several categories of Petri nets are weak adhesive HLR (see
[EEPT06]) and hence also M -adhesive. A set of transformation
rules in an M -adhesive category constitutes an M -adhesive trans-
formation system [EGH10].

Definition 1 (M -Adhesive Transformation System)
Given an M -adhesive category (C,M ), an M -adhesive transfor-

mation system AS = (C,M ,P) has a set P of productions of the form ρ = (L l←− K r−→ R) with
l,r∈M . A direct transformation G

ρ,m
=⇒H via ρ and match m consists of two pushouts according

to the DPO approach [EEPT06].

We use the notion of an M -functor [MEE11] to define a formal relationship between two
different M -adhesive transformation systems.

Definition 2 (M -Functor)
A functor F : (C1,M1)→ (C2,M2) between M -adhesive categories is called M -functor if
F (M1)⊆M2 and F preserves pushouts along M -morphisms.

Given an M -adhesive transformation system AS1 = (C1,M1,P1), we want to translate trans-
formations from AS1 to AS2 = (C2,M2,P2) with translated productions P2 = F (P1) and, vice
versa, we want to create transformations in AS1 from the corresponding transformations in AS2.
This can be handled by Theorem 1 below, shown in [MEE11].

By definition, each M -functor F : (C1,M1)→ (C2,M2) translates each production ρ =

(L l← K r→ R) in P1 with l,r ∈M1 into F (ρ) = (F (L)
F (l)← F (K)

F (r)→ F (R)) in P2 = F (P1)

with F (l),F (r) ∈M2 and each direct transformation G
ρ,m
=⇒ H in AS1 given by DPO (1)+(2)

into a direct transformation F (G)
F (ρ),F (m)

=⇒ F (H) in AS2 given by DPO (3)+(4).

L K R

G D H

(1)
=

(2)
=

l r

m ⇒
F (L) F (K) F (R)

F (G) F (D) F (H)

(3)
=

(4)
=

F (l) F (r)

F (m)

Vice versa, we say F creates direct transformations, if for each direct transformation F (G)
F (ρ),m′
=⇒ H ′ in AS2 there is a direct transformation G

ρ,m
=⇒ H in AS1 with F (m) = m′ and F (H)∼=

H ′ leading to F (G)
F (ρ),F (m)

=⇒ F (H) in AS2. In the following, we provide two conditions in
order to show creation of direct transformations and transformations, i.e., sequences of direct
transformations written G ∗⇒ H.

Theorem 1 (Translation and Creation of Transformations)
Each M -functor F : (C1,M1)→ (C2,M2) translates (direct) transformations.
Vice versa, F creates (direct) transformations if we have the following two conditions:
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• (F creates morphisms): For all m′ : F (L)→ F (G) in (C2,M2), there is exactly one
morphism m : L→ G with F (m) = m′.
• (F preserves initial pushouts): (C1,M1) has initial pushouts and for each initial pushout

(1) over m : L→ G, also (2) is initial pushout over F (m) in (C2,M2).

B
(1)

L

C G

b

m ⇒
F (B)

(2)

F (L)

F (C) F (G)

F (b)

F (m)

The proof for Theorem 1 is given in [MEE11]. Moreover, it is shown under the same as-
sumptions that F translates and creates parallel and sequential independence of transformations.
Concerning the definition and the role of initial pushouts for the applicability of productions we
refer to [EEPT06, MEE11].

3 M -Functor from Hypergraphs to Typed Attributed Graphs

Our aim is to construct a functor from hypergraphs to typed attributed graphs to be able to analyse
hypergraphs by anlysing typed attributed graphs according to the general theory from [MEE11]
and [MEE12]. For this purpose, we review on the one hand the category (HyperGraphs,M1)
of hypergraphs with the class M1 of all injective hypergraph morphisms, which is shown to be
M -adhesive in [EEPT06]. On the other hand, we review the category of typed attributed graphs
(AGraphsATG,M2) with the class M2 of all injective typed attributed graph morphisms, which
is also shown to be M -adhesive in [EEPT06], and we define a suitable attributed hypergraph
type graph AT G = HGT G. Moreover, we construct a functor FHG between both categories and
show that the general result from Theorem 1 is applicable to this functor.

Definition 3 (Category HyperGraphs [EEPT06])
A hypergraph G is defined as G = (VG,EG,sG, tG), where VG is a set of hypergraph nodes, EG is
a set of hyperedges and sG, tG : EG→V ∗G are functions assigning the string sG(e) of source nodes
resp. tG(e) of target nodes to each hyperedge e.
Consider two hypergraphs G1 = (VG1 ,EG1 ,sG1 , tG1) and G2 =
(VG2 ,EG2 ,sG2 , tG2). A hypergraph morphism f : G1 → G2 is given by
a tuple of functions f = ( fV : VG1 →VG2 , fE : EG1 → EG2) such that the
diagram to the right commutes with source and target functions, i.e.,
sG2 ◦ fE = f ∗V ◦ sG1 and tG2 ◦ fE = f ∗V ◦ tG1 , where f ∗V : V ∗G1

→ V ∗G2
with

λ 7→ λ and x1 . . .xn 7→ fV (x1) . . . fV (xn).

EG1

=

V ∗G1

EG2 V ∗G2

sG1

tG1

fE f ∗V
sG2

tG2

According to [EEPT06], the category (HyperGraphs,M1) of hypergraphs with a class M1
of all injective morphisms is M -adhesive, where pushouts are constructed componentwise.
Attributed graphs and morphisms between them form the category
AGraphs, where each object is a pair (G,D) of an E-graph G with sig-
nature E (shown to the right) and Σ-nat algebra D, where in the follow-
ing we only use D = TΣ-nat ∼= NAT (with the term algebra TΣ-nat and the
ordinary natural numbers algebra NAT). This means, G is given by

EG VG

ENAVDEEA

sG

tG sNA

tNA

sEA

tEA

G = (V G
G ,V G

D ,EG
G ,E

G
NA,E

G
EA,(s

G
j , t

G
j ) j∈{G,NA,EA}), where V G

G resp. V G
D are the graph resp. data
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nodes of G, EG
G , EG

NA resp. EG
EA are the graph edges resp. node attribute and edge attribute edges

of G and sG
j , tG

j are corresponding source and target functions for the edges.
The notion of attributed graphs combined with the typing concept leads to the well-known

category of typed attributed graphs AGraphsATG, where attributed graphs are typed over an
attributed type graph ATG [EEPT06]. Here, we consider a specific type graph HGTG to express
hypergraphs as typed attributed graphs, which is shown in Figure 2. 1

Node

Edge
in : nat
out : nat

n2e
num : nat

e2n
num : nat

Figure 2: Attributed type
graph HGTG

The meaning of every depicted element of HGTG is as follows:
Nodes of type Node and Edge represent hypergraph nodes and hyper-
edges. Edges of types n2e, e2n represent hyperedge tentacles and are
attributed by a number num which contains the position of a node in
the source (resp. target) string of the considered hyperedge. Nodes of
type Edge have two attributes in and out giving the number of nodes
in the pre- and postdomain of a hyperedge (to ensure the preserva-
tion of an Edge node’s environment using typed attributed graph mor-
phisms). All node and edge attributes are typed over natural numbers.

We consider the category AGraphsHGTG with fixed data type NAT
and identical algebra homomorphism, which implies that the VD-
component of morphisms is the identity.

According to [EEPT06], the category (AGraphsATG,M ) is M -adhesive for each type graph
AT G, where M -morphisms are injective with isomorphic data type part. Hence also the special
case of (AGraphsATG,M ) with AT G = HGT G is M -adhesive. The subcategory
(AGraphsHGTG,M2) with identical algebra homomorphism as considered above is also M -
adhesive for the subclass M = M2 of all injective typed attributed graph morphisms.

We are using the M -functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2) defined
below for the translation of HyperGraphs objects and morphisms into the corresponding
AGraphsHGTG objects and morphisms.

Definition 4 (M -Functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2))
Consider a hypergraph G = (VG,EG,sG, tG). We define the object FHG(G) = ((G′,NAT), type)2

in AGraphsHGTG with morphism type : (G′,NAT)→ (HGTG,D f in) and E-graph G′=(V G′
G ,V G′

D =
N,EG′

G ,EG′
NA,E

G′
EA,(s

G′
j , t

G′
j )

j∈{G,NA,EA}) as follows:

V G′
G =VG]EG (graph nodes)

EG′
G = EG′

n2e]EG′
e2n (graph edges) with

EG′
n2e = {(v,e,n) ∈VG×EG×N | sn

G(e) = v} ,

EG′
e2n = {(e,v,n) ∈ EG×VG×N | tn

G(e) = v} ,
where sn

G(e) is the n-th node in the string sG(e) and similar for tn
G(e),

EG′
NA = EG′

in ]EG′
out (node attribute edges) with

EG′
in = {(e,n, in) | (e,n) ∈ EG×N∧|sG(e)|= n} ,

1 Node and edge attributes are depicted in compact notation as node/edge inscriptions together with their data type.
2 In the following, we also use the short notation FHG(G) = G′.
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EG′
out = {(e,n,out) | (e,n) ∈ EG×N∧|tG(e)|= n} , where |w| is the length of w,

EG′
EA = EG′

s ]EG′
t (edge attribute edges) with

EG′
s = {(n,v,e) ∈ N×VG×EG | sn

G(e) = v} 3,

EG′
t = {(n,e,v) ∈ N×EG×VG | tn

G(e) = v} 3,

(and the corresponding source and target functions:)

sG′
G , tG′

G : EG′
G →V G′

G defined by sG′
G (x,y,n) = x, tG′

G (x,y,n) = y,

sG′
NA : EG′

NA→V G′
G , tG′

NA : EG′
NA→ N defined by sG′

NA(e,n,x) = e, tG′
NA(e,n,x) = n,

sG′
EA : EG′

EA→ EG′
G , tG′

EA : EG′
EA→ N defined by sG′

EA(n,x,y) = (x,y,n), tG′
EA(n,x,y) = n.

The AGraphsHGTG-morphism type : (G′,NAT)→ (HGTG,D f in) is given by the final morphism
of data types from NAT to the final algebra D f in and typeG′ : G′→ HGTG is given by E-graph
morphism typeG′ = (typeVG , typeVD , typeEG , typeENA , typeEEA), where each component is mapped
to the obvious type in the type graph HGT G, e.g., typeVG : V G′

G →V HGTG
G with x 7→Node (if x∈

VG), x 7→ Edge (if x ∈ EG).
For each hypergraph morphism f : G1→G2 with f = ( fV : VG1→VG2 , fE : EG1→EG2), we de-

fine FHG( f ) : FHG(G1)→FHG(G2), where in short notation FHG(Gi)= (V Gi
G ,N,EGi

G ,EGi
NA,E

Gi
EA,

(sGi
j , t

Gi
j ) j∈{G,NA,EA}) with i ∈ {1,2} by FHG( f ) = f ′ = ( f ′VG

, f ′VD
= idN, f ′EG

, f ′ENA
, f ′EEA

) with

f ′VG
: V G1

G →V G2
G with V Gi

G =VGi ]EGi for i ∈ {1,2} by f ′VG
= fV ] fE

f ′EG
: EG1

G → EG2
G with EGi

G = EGi
n2e]EGi

e2n for i ∈ {1,2} by

f ′EG
(v,e,n) = ( fV (v), fE(e),n) for (v,e,n) ∈ EG1

n2e

f ′EG
(e,v,n) = ( fE(e), fV (v),n) for (e,v,n) ∈ EG1

e2n

f ′ENA
: EG1

NA→ EG2
NA with EGi

NA = EGi
in ]EGi

out for i ∈ {1,2} by

f ′ENA
(e,n,x) = ( fE(e),n,x) for (e,n,x) ∈ EG1

in ]EG1
out ∧ x ∈ {in,out}

f ′EEA
: EG1

EA→ EG2
EA with EGi

EA = EGi
s ]EGi

t for i ∈ {1,2} similar3 to f ′EG
: EG1

G → EG2
G

An example for using the functor FHG on objects and morphisms is shown in Figure 3, where
the typed attributed graphs on the right together with the morphism between them are the transla-
tion of the corresponding hypergraphs and the morphism on the left. As usual in the hypergraph
notation, only the target nodes of a hyperedge are marked by arrows.

Note that FHG defined above is a well-defined M -functor in the sense of Definition 4. This
includes that the components of FHG( f ) are well-defined w.r.t. their codomain and that they
are compatible with source and target functions as well as typing morphisms. FHG is a functor,
because FHG preserves identities and composition. Moreover, FHG is an M -functor, because
we have FHG(M1) ⊆M2, i.e., FHG preserves injectivity of morphisms, and FHG preserves
pushouts along M -morphisms (see [MEE13]).

Now we apply the translation and creation of (direct) transformations (see Theorem 1) to
the M -functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2) leading to our new main
technical result.
3 where EG′

s
∼= EG′

n2e and EG′
t
∼= EG′

e2n.
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v0:Node

v1:Node

FHG(G1)

e0:Edge
in=2
out=1

v3:Node v4:Node

e1:Edge
in=1
out=1

v2:Node

(v0,e0,1):n2e
num=1

(v1,e0,2):n2e
num=2

(e0,v3,1):e2n
num=1

(v4,e1,1):n2e
num=1

(e1,v2,1):e2n
num=1

v′0:Node v′1,2:Node

FHG(G2)

e′0:Edge
in=2
out=1

v′3:Node v′4:Node
e′1:Edge
in=1
out=1

(v′0,e
′
0,1):n2e

num=1
(v′1,2,e

′
0,2):n2e

num=2

(e′0,v
′
3,1):e2n

num=1

(v′4,e
′
1,1):n2e

num=1

(e′1,v
′
1,2,1):e2n

num=1

v′0 v′1,2

e′0

v′3

e′1

v′4

G2

1 2

1

1

1

v0 v1

e0

v3 v4 e1

v2

G1

1 2

1

1
1

FHG

FHG(g)
g

FHG

Figure 3: Applying functor FHG to two hypergraphs and morphism between them

Theorem 2 (Translation and Creation of Transformations between Hypergraphs and Typed At-
tributed Graphs)
The M -functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2) translates and creates di-
rect transformations and transformations.

Proof Idea. According to Theorem 1 we have to show that FHG creates morphisms and pre-
serves initial pushouts.

1. (FHG creates morphisms): Given a typed attributed graph morphism f ′ : FHG(G1)→
FHG(G2), there is a unique hypergraph morphism f : G1 → G2 with FHG( f ) = f ′ de-
fined by f = ( fV , fE) with fV (v) = f ′VG

(v) for v ∈ VG1 ⊆ V G1
G and fE(e) = f ′VG

(e) for
e ∈ EG1 ⊆V G1

G , where V G1
G =VG1 ]EG1 is the VG-component of FHG(G1). From the mor-

phism property of f ′ we can show that f is a hypergraph morphism with FHG( f ) = f ′ and
FHG( f ) =FHG(g) implies f = g and hence uniqueness. The proof is based on the lemma
given in [MEE13] showing that each typed attributed graph morphism f ′ : FHG(G1)→
FHG(G2) is uniquely determined by its VG-component f ′VG

: V G1
G →V G2

G .
2. (FHG preserves initial pushouts): Preservation of initial pushouts means that (Hyper-

Graphs,M1) has initial pushouts, which become also initial pushouts in (AGraphsHGTG,
M2) as defined in [EEPT06] after application of FHG. The construction of initial pushouts
in (HyperGraphs,M1) and their preservation is shown in [MEE13].

4 F -Transfer of Local Confluence

In this section, we review under which conditions local confluence can be translated by M -
functor F : (C1,M1)→ (C2,M2) from one transformation system AS1 = (C1,M1,P) to another
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one AS2 = (C2,M2,F (P)) with translated productions F (P) and, vice versa, under which con-
ditions local confluence of AS1 can be created by F from local confluence of AS2 (see [MEE12]).
In this case, we speak of F -transfer of local confluence.

According to [EEPT06], an M -adhesive transformation system (C,M ,P) is locally conflu-
ent, if for all direct transformations G⇒ H1 and G⇒ H2 there is an object X together with
transformations H1

∗⇒ X and H2
∗⇒ X . In the case of confluence this property is required for

transformations G ∗⇒ H1 and G ∗⇒ H2.
In [MEE12] it is shown under the assumptions of Theorem 1 that AS1 is locally confluent

for all transformation spans H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 iff AS2 is locally confluent for all translated

transformation spans F (H1)
F (ρ1),F (m1)⇐= F (G)

F (ρ2),F (m2)
=⇒ F (H2).

A well-known approach for the verification of local confluence is the analysis of critical pairs.
A critical pair P1

ρ1,o1⇐= K
ρ2,o2
=⇒ P2 is a pair of parallel dependent transformations with a minimal

overlapping K of the left-hand sides of the rules.

Definition 5 (F -Reachable Critical Pair)
Given an M -functor F : (C1,M1)→ (C2,M2). An F -reachable critical pair of productions
F (ρ1) and F (ρ2) is a critical pair in AS2 of the form

F (R1) F (K1) F (L1) F (L2) F (K2) F (R2)

F (P1) F (N1) F (K) F (N2) F (P2)

F (o1) F (o2)

F (l1)F (r1)

F (v1)F (w1)

F (l2) F (r2)

F (w2)F (v2)

where all morphisms of type F (A)→F (B) are of the form F ( f ) for some morphism f :
A→ B.

Note that for determining F -reachability of a critical pair, it is sufficient to ensure that the
overlapping of F (L1) and F (L2) is an F -image [MEE12].

For Theorem 3 below we require that F : (C1,M1)→ (C2,M2) is compatible with pair fac-
torisation. This means, on the one hand, that (Ci,Mi) has pair factorisation based on Ei−Mi-
factorisation for i ∈ {1,2}. For (C1,M1) this means that each morphism pair ( f1 : L1→ G, f2 :
L2 → G) with common codomain can be decomposed uniquely up to isomorphism as ( f1 =
m ◦ e1, f2 = m ◦ e2) with a pair (e1,e2) of jointly epimorphic morphisms and m ∈M1. On
the other hand, it means that F preserves pair factorisation, i.e., for each pair factorisation
( f1 = m◦ e1, f2 = m◦ e2) in (C1,M1) also (F ( f1) = F (m)◦F (e1),F ( f2) = F (m)◦F (e2))
is a pair factorisation in (C2,M2).

Furthermore, we use the Local Confluence Theorem [EEPT06]
to analyse whether a given M -adhesive transformation system is lo-
cally confluent. This is the case, if all critical pairs P1

ρ1,o1⇐= K
ρ2,o2
=⇒ P2

of the given transformation system are strictly confluent. Strictness
means intuitively that the largest substructure of K that is preserved
by the critical pair is also preserved by the merging transformation
steps P1

∗⇒ K′ and P2
∗⇒ K′ (see the diagram to the right).

K

P1 P2

K′

ρ1,o1 ρ2,o2

∗ ∗
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The following Theorem 3, with the proof in [MEE12], shows that AS1 is locally confluent if
all F -reachable critical pairs in AS2 are strictly confluent. This is important if in AS2 critical
pairs of typed attributed graph transformation systems have to be considered, because they can
be detected automatically using the tool AGG.

Theorem 3 (Creation of Local Confluence Based on F -Reachable Critical Pairs)
Given M -adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2, M2, F (P)) and an
M -functor F : (C1,M1)→ (C2,M2) that creates (direct) transformations and morphisms (see
Theorem 1 in Section 2) and is compatible with pair factorisation in the sense as discussed
before. Then, AS1 is locally confluent for all transformation spans H1

ρ1,m1⇐= G
ρ2,m2
=⇒ H2 if all

F -reachable critical pairs of F (ρ1) and F (ρ2) in AS2 are strictly confluent.

Now we apply the results concerning the creation of local confluence based on F -reachable
critical pairs to the concrete M -functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2).
This is our main conceptual result, allowing us to use AGG for the analysis of hypergraph trans-
formation systems.

Theorem 4 (Local Confluence of Hypergraph Transformation Systems )
Consider the M -functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2) from Definition 4
in Section 3. A hypergraph transformation system is locally confluent for all transformation
spans H1

ρ1,m1⇐= G
ρ2,m2
=⇒ H2 if all FHG-reachable critical pairs of FHG(ρ1) and FHG(ρ2) are strictly

confluent.

Proof Idea. In Theorem 2 (see Section 3), we have shown that FHG : (HyperGraphs,M1)→
(AGraphsHGTG,M2) is an M -functor, which creates (direct) transformations and morphisms.
Moreover, FHG is compatible with pair factorisation using the E -M -factorisations (E1,M1) in
(HyperGraphs,M1) and (E2,M2) in (AGraphsHGTG,M2), where E1 and E2 are the classes of
surjective morphisms. In fact, FHG preserves coproducts and we have FHG(E1)⊆ E2 such that
we obtain compatibility of FHG with pair factorisation according to [MEE13]. Altogether, this
allows us to apply Theorem 3 with F = FHG.

Since AGraphsHGTG is the category of typed attributed graph transformation systems, we can
use the tool AGG for critical pair analysis, while it is sufficient for our result to consider only
FHG-reachable critical pairs (see Definition 5 in this section).

5 Analysis of Hypergraph Transformation Systems based on AGG

We consider a simple distributed system with mobility, inspired by [BCK02], with servers con-
nected by channels, and processes moving through the network and running on the servers.

Note that for this example, we use hypergraphs extended by a labelling function for hyper-
edges. Objects in this slightly extended category have the form: G = (VG,EG,sG, tG, lG) with the
labelling function lG : EG→ A, where A is some alphabet. The corresponding M -functor addi-
tionally translates the hyperedge labels into String attributes of the corresponding hyperedge node
representation. All properties shown in Section 3 and Section 4 do also hold for the M -adhesive
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category of labelled hypergraphs and the extended M -functor FHG.4

In our distributed system model with mobility, servers, connections and processes are repre-
sented as labelled hyperedges. The meaning of the hyperedge labels is as follows: P denotes a
process before it is executed, S stands for server, and C for connection. A running process is rep-
resented by label R. Note that, on the one hand, we simplify the network model in [BCK02] by
disregarding firewalls and secure servers; on the other hand, we allow for connections between
three servers modelled by hyperedges with three tentacles, and we distinguish between travelling
processes P and running processes R.

The hypergraph in Figure 4 models a network with four servers, different kinds of connections
between them, and two processes. Nodes are depicted as black bullets, while hyperedges are
represented by labelled rectangles.

Figure 4: Hypergraph defining a network with distributed processes

The behaviour of the system is modelled by the hypergraph transformation rules in Figure 5.
Rules enterServer [leaveServer] allow a process to enter [leave] a server location. Both rules are
inverse to each other (indicated by the double arrow). Rules crossC [backC] model the travelling of
a process via a connection. We have different rules for process travelling, depending on the kind
of connection hyperedge that is crossed. When a process finally has found a suitable server, it
switches into the state running by applying the rule runP. A process that has finished its execution
is removed from the system by the rule removeR.

Figure 5: Hypergraph transformation rules modelling the behaviour of mobile processes

4 Note that this holds also for the variants of hypergraphs with labelled nodes and/or labelled hyperedges.
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Applying the M -functor FHG from Definition 4 to this hypergraph transformation system
results in a typed attributed graph transformation system that can be statically analysed using
AGG. Figure 6 shows an FHG-reachable critical pair for the application of rules leaveServer and
crossC (depicted in the left part) when their left-hand sides overlap as indicated in the overlapping
graph in the right part. The conflict (a delete-use conflict) is obviously caused when a process
can “choose” either to leave a server location or to cross a connection channel in the network.

Figure 6: A critical pair detected by AGG for the rule pair (leaveServer, crossC)

This critical pair is strictly confluent: after applying either rule, we can reverse the effect by
applying the corresponding inverse rule and hence have at least one graph which can be derived
to join the different results. We can even conclude that the whole transformation system is locally
confluent by applying Theorem 4, showing strict confluence of all FHG-reachable critical pairs.5

Obviously, rules for process travelling can be executed in any order; a step modelling forward
travelling and a step modelling the execution of a process can be joined again by performing
backward travelling and then executing the process.

6 Related Work and Conclusion

In our previous paper [MEE11] we have developed a general framework to establish a formal
relationship between different M -adhesive transformation systems, showing under which condi-
tions transformations can be translated and created between different M -adhesive transformation
systems. This result is based on suitable properties of M -functors between the corresponding
M -adhesive categories. In this paper, we construct an M -functor from hypergraphs to typed
attributed graphs. We show in our main technical result in Theorem 2 (with non-trivial proof in
[MEE13]) that the functor satisfies the required properties guaranteeing translation and creation
of rule applications, as well as the transfer of local confluence. Moreover, also termination and
functional behavior can be transferred according to [MEE12]. This provides us with a general
framework to analyse hypergraph transformation systems and allows us by Theorem 4 to use

5 Note that there are several non-FHG-reachable critical pairs that do not have to be considered according to Theo-
rem 4.
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the critical pair analysis of the AGG-tool [AGG12] for typed attributed graphs to analyse con-
fluence of hypergraph transformation systems. We demonstrate this by analysing a hypergraph
transformation system modelling a distributed system with mobile processes.

A related approach to hypergraph analysis considers causal dependencies modelled by approx-
imated unfolding [BCK02, BK02]. The thesis of D. Plump [Plu93] contains already theoretical
results about confluence of hypergraph transformation systems, comprising a sufficient condition
for local confluence based on critical pairs. But to the best of our knowledge, a tool supporting
directly critical pair analysis of hypergraph transformation systems does not yet exist.

A suitable automated detection of F -reachable critical pairs would be helpful to reduce the
analysis effort, and is subject to future work. Furthermore, we will investigate how (nested) ap-
plication conditions [HP05] can be handled in this framework in order to consider critical pairs
and local confluence of M -adhesive transformation systems with (nested) application condi-
tions.
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