Electronic Communications of the EASST

Volume 58 (2013)

Proceedings of the
12th International Workshop on Graph Transformation
and Visual Modeling Techniques
(GTVMT 2013)

Interactive Strategy-Based Validation of Behavioral Models
Ralf Teusner, Gregor Gabrysiak, Stefan Richter, and Stefan Kleff

12 pages

Guest Editors: Matthias Tichy, Leila Ribeiro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Interactive Strategy-Based Validation of Behavioral Models

Ralf Teusner, Gregor Gabrysiak, Stefan Richter, and Stefan Kleff

{firstname.lastname } @hpi.uni-potsdam.de
Hasso Plattner Institute for Software Systems Engineering,
University of Potsdam, Germany

Abstract: When behavioral models are derived automatically based on observed
stakeholder interactions, requirements engineers need to validate whether the stake-
holders agree with the synthesized behavioral models. Allowing stakeholders to
experience such models through simulation and animation allows them to comment
on, amend to and correct these models. However, to ensure an efficient stakeholder
validation, the simulation has to be guided instead of confronting the user with ran-
dom situations over and over again.

In this paper, we present a strategy-driven simulator capable of guiding the execu-
tion of behavioral models based on graph transformations. By analyzing either the
overall structure of a partial state space (look ahead) or by performing an in-depth
analysis of the states therein, the simulator is able to determine which transforma-
tions should be executed next to continue on the most promising path through the
overall state space. The discussed implementation is illustrated with a case study.

Keywords: Requirements Simulation, Stakeholder Validation, Simulation Strategy

1 Introduction

Capturing requirements and scenarios in formal models such as graph transformations introduces
a communication barrier between requirements engineers and stakeholders. Nevertheless, the lat-
ter have to understand what was elicited and specified to identify conflicts, find errors or provide
feedback. Especially in highly collaborative scenarios involving multiple stakeholders and their
individual perspectives on what is to be accomplished, gathering knowledge about the stakehold-
ers’ scenarios is inherently complex. In our earlier work, we presented a combined animation
[GGS09] and simulation [GGS10, GHG12] approach capable of deriving graph transformations
that represent observed activities (cf. generalization in [Hec06]) within such collaborative sce-
narios. Based on the differences between two succeeding states prior and after a stakeholder
activity was observed, a behavioral specification is derived which encapsulates the changes asso-
ciated with the activity. For this specification, story patterns [KNNZ00] are used. Furthermore,
these story patterns can later on be rearranged and replayed to simulate any stakeholder activities
that were already observed. By executing the corresponding graph transformations of stakehold-
ers, their actions and interactions can be simulated and visualized for stakeholders participating
in the simulation. Eventually, the activities of all stakeholders have been observed and captured
in story patterns. Then, the requirements engineers end up with story patterns which, when ex-
ecuted, can simulate the commonly agreed upon scenarios that can unfold for the stakeholders.

1/12 Volume 58 (2013)

Interactive Strategy-Based Validation of Behavioral Models E}

Being able to replay specific activities of any of the roles involved in the explored scenarios
enables individual stakeholders to participate as one of the roles. As a participant, this stake-
holder is then able to experience and validate, whether the behavioral models that are executed
are correct, consistent from his point of view and complete, i.e. covering at least all of his known
information for the considered scenario.

To ensure that the paths chosen during the simulation of a scenario do not always lead to the
same, already validated situations, the decisions of the simulator, i.e. of the individual roles
that are simulated, need to be guided in different directions to provoke the participant to play-in
alternative scenarios. By navigating through the state space, the simulator can specifically guide
the stakeholder through a conflicted scenario. A scenario has to be considered as conflicted if it
contains states which yield possibly wrong outcomes or unwanted effects. Examples are traces
leading to dead ends and situations that are impossible in reality such as having a negative amount
of goods or inconsistencies such as an inquiry that is both accepted and rejected. Thereby,
unidentified constraints which the participants can point out afterwards are then be captured as
“forbidden situations” that are avoided during future simulations. By generally avoiding dead
ends, on the other hand, the simulator can ensure that the stakeholder experiences a scenario that
can successfully terminate.

Such a scenario simulation can be guided more effectively if the consequences of the avail-
able decisions are known. If the complete state space, i.e. information about all possible states
and the transitions between them, is explored, all eventually occurring consequences and their
side-effects are known. However, it is not feasible to compute all possibilities beforehand, es-
pecially since the state space might be infinite. Still, to avoid solely relying on impromptu or
even random decisions, a limited preview of the state space (i.e. look ahead) is already helpful.
Moreover, the state space that can be explored depends on the story patterns which were already
captured, i.e. played in by participants. Thus, the state space supports a guided simulation only
in cases in which the participant’s actions were known in the form of expected inputs for the
simulation. Since participants can interact with the simulation within their visualization, they
can directly change the state of the simulation (cf. play-in [HMO03]). In such cases, the simula-
tor is confronted with inputs that were unexpected for the current state. Still, such an input may
be equivalent to a sequence of other activities which implies that the actual follow-up state of
the simulation is already included in the state space. Consequently, the participant played in an
alternative which would result in a new transition within the state space. Still, if the participant’s
activity was new and without an equivalent sequence of other activities, then the simulator would
be in a follow-up state which was not covered by any state space that might have been calculated
beforehand. In such a situation, a feasible guidance of the simulation can only be provided, if
a look ahead can be computed fast enough at runtime so that the simulation is still perceived as
interactive for the participating stakeholders.

The stakeholders’ perspective of the simulation is discussed in [GGS09]. This partial perspec-
tive on the simulation is not sufficient for the requirements engineer, who needs a more technical
perspective on the simulation, so he should be supplied with an interactive visualization of not
only the current state of the simulation, but also of its look ahead. The conceptual contribution
of this paper is a bounded look-ahead for graph transformation systems which incorporates strate-
gies and cost functions to explore the potentially infinite state space more effectively. The main
contribution is an Eclipse-based simulation environment, that supports engineers to interactively

Proc. GTVMT 2013 2/12

Eg ECEASST

validate the requirements by automatically guiding the simulation. The concepts underlying the
strategy-based simulation approach are presented in Section 2. Then, Section 3 illustrates the im-
plementation using a steelworks case study. Afterwards, related work is discussed in Section 4
which focusses on graph transformation approaches. Finally, conclusions are drawn and future
work is outlined in Section 5.

2 Concepts

2.1 Navigation and Reduction

To fulfill the outlined requirements, several different concepts are employed. An interactive
navigation is only feasible, for technical as well as user-interface reasons, if the graph-structure
in scope is kept small enough so that the time for the computation of what to do next and the
actual execution take less than one second. Nevertheless, the regarded state space has to be
complete and correct concerning the already established constraints. The user’s main focus of
interest lies in all future states outgoing from the current one. Since the amount of future states
might be unlimited, possible future states are limited by the introduction of a maximal look
ahead depth, after which the simulation of further states is simply aborted. Another reduction is
achieved by aborting the simulation behind states that violate predefined conditions as illustrated
by s5 in Figure la. Despite that, the growth of states still correlates exponentially with the
chosen look ahead depth. By merging two or more instances of an identical states into one, the
exponential growth can at least be postponed (cf. Figures 1b and 1c). This results in a potentially
cyclic graph, but reduction of branches enhances lucidity and performance significantly. The
effectiveness of this technique is determined by the depth, at which the merging takes place (the
earlier the better).

Stakeholders should not encounter situations which are known to be impossible or invalid, e.g.
situations in which a budget is exceeded or a time constraint is violated. Usually, such situations
can be specified as partial states or as a sequence of states which must not occur. To avoid these
situations, the simulator has to check whether one of them can be matched in one of the states
of the look ahead. If so, the corresponding path can be excluded, i.e. cut-off as early as possible
[HHV10], from the options that are available to the stakeholder from the current state of the
simulation onwards.

Yool

Jol'o

SORONO!
D@

(a) A look ahead (depth=3) which contains a for- (b) Simplified look ahead with (c) Final look ahead after
bidden state (s5) and the infinite state space a depth of 3 merging (s3,59) and (sg,s12)

v

\
o

\

Figure 1: Steps of reduction before scoring the look ahead

3/12 Volume 58 (2013)

Interactive Strategy-Based Validation of Behavioral Models E}

2.2 Guidance and Scores

If the available story patterns are underspecified, they will be matched and executed more often
than necessary. Consequently, states with many available story patterns might imply that some
of these patterns are underspecified and need to be revised. However, only a stakeholder can
decide which of the patterns should match in the corresponding state and which patterns require a
stricter precondition. To support a stakeholder in identifying such patterns, a strategy that scores
the number of alternatives is required which chooses the path leading to the most alternatives for
further execution. This can be determined based on the look ahead: by scoring the structure of
the look ahead, e.g. by adding up the number of outgoing transitions of each of its states, the
simulator can simply choose the sequence of transitions which provides the most alternatives.

To enable a participating stakeholder to resolve a specific situation (e.g., What do you do
if you are over-budget?), the simulator has to reach a corresponding state. The requirements
engineer needs to create a strategy that scores the value of the corresponding resource, in this case
“budget”, negatively which, in turn, favors all activities that decrease the value of this resource.
Scoring is based on increasing and decreasing amounts of resources, which are manipulated
through actions, i.e. the application of story patterns. All scores of states in the look ahead
are relative to the the simulation’s current state s,. By assigning a weight w; to each individual
resource r;, the sum of all resources times their individual weight is a suitable scoring function
for each state. This score is based on the value of the individual resources of the current state s,
of the simulation. Equation 1 illustrates this function for a state s, with r; representing the value
of resource r; in state s,. If, for instance, a resource r; named “budget” would have a value of
5,000 in s,, a value of 3,000 in a potential follow-up state s, would be scored higher since it is
2,000 times wy closer to the goal of the strategy.

|Resources|
score(sy — §y) = Z wi X (r] =r}) (1)
i=1

In the overall state space, only some specific paths represent valid, successful scenarios cap-
turing how stakeholders interact to achieve their common goal. By looking at the complete (if
not infinite) state space, the simulator can find all states in which this goal is satisfied. Knowing
these states, the simulator is able to choose the path that satisfies the stakeholders’ overall goal
best. Since computing capabilities are limited, the simulator has to decide which path is most

likely to lead to success based on the feasibly available look ahead.

3 Implementation and Performance-Evaluation

The implementation of the discussed concepts is structured into three layers. All scoring, mon-
itoring and decision-making is located on the topmost layer in the form of strategies. The sec-
ond layer computes the look ahead, thereby reducing it in compliance with the aforementioned
concepts of state-merging and pruning of states that violate the predefined constraints. Such
constraints can be expressed as forbidden states which have to be avoided by the simulator. Ad-
ditionally, these state specifications can also include OCL' statements which have to hold. The

1 Object Constraint Language (http://www.omg.org/spec/OCL/)

Proc. GTVMT 2013 4/12

http://www.omg.org/spec/OCL/

ECEASST

800 XSimulator Perspective — runtime: /model.worldgraph_diagram - Eclipse Platform
e Tahoma 9 R ok - M I =i I e
% | v le o GO
[@) Play-Engine 52 @) world 53 = B || @ Active StoryPatterns View 53 - » =0
4 4| e rutes
3 (] sellsteel1s
(i8] producesteel
coaloeposit ronorepeposh steeipeposit maneyL =
— o 9 Siowts | [buyironore
[mam—ve | [mem-1oo] 50| [mem—z00] fi] sellsteel20
1 3 a (i8] buyCoal
buyCoal produceSteel [ig] sellSteel 10
selistzeino (= Breakpoints
a1 iyirangre {opirontiee s (= Forbidden Patterns
bapranGre [Invariant Patterns
buyiranOre (= Manitors
s 7 0
froyCiaxd Breducesteel Irsteell0 suiren
buyCoal
buyCaal 2
buyCoal
e
n s
duceStect
@ Rules View 52 = O @ SmartStrategy View 5 @ Rule Description View = O|| @ control View £2 . [Properties =a
Search: [steelworks Simulation
Rule Project | Last Modifiec Coal BetterCoal startedRuns - - - -
sellSteel15.story de.hpi.sam.dtrp.ontologies.steelworks 17.10.2011 Current weight: 0 Current weight: 0 Current weight: 0 (xa) (A1) (&) (&) [
produceSteelNoOCL.st de.hpi.sam.dtrp.ontologies.steelworks 09.10.2011
buyCoalNoOCL.story de.hpi.sam.dtrp.ontalogies.steelworks 08.10.2011 World
produceSteel.story de.hpi.sam.dtrp.ontologies.steelworks 20.06.2012
buyiranOreNoOCL.stor de.hpi.sam.dtrp.ontologies.steelworks 09.10.2011 IronOre Time. failedRuns | Load.. | SteelworksExample30MoneyAtStart.x
buylronOre story de.hpi.sam.dtrp.ontologies.steelworks 08.10.2011 Current weight: 0 Current weight: 0 Current weight: 0
sellStel 1LONOOCL stor de.hpi.sam.dtrp.ontologies.steelworks | 28.10.2011 Strateay
buyPatent.story de.hpi.sam.dtrp.ontologies.steelworks 21.09.2011
sellSteel20.story de.hpi.sam.dtrp.ontologies.steelworks 17.10.2011 7 i ; Lookahead: 4 |[3]
buyCoal.story de.hpi.sam.dtrp.ontologies.steelworks | 20.06.2012 == . CEnoy D)
sellSteel10.story de.hpi.sam.durp.ontologies.steelworks | 20.06.2012 Current weight: & Current weight : 1 Current weight: 0 Max simulation steps: |10 |[%]
upgradeFurnace.story de.hpi.sam.dtrp.ontologies.steelworks 21.09.2011 -
pru:u(eslee:Enhnn(ed :e hpi.sam. jtrp umn}ngies,slee:wor:s 21092011 Strategy: [Smartstrateay
producestec|BetterCoa de.hpi.sam.dtrp.ontologies steelworks | 08.10.2011 T T G s G ironQreDeposit
buyBetterlronOre.stary de.hpi.sam.dtrp.ontologies.steelworks 08.10.2011 y) g
e e Current weight: 0 Current weight: 0 Current weight: 0

=

Figure 2: Screenshot of the Eclipse perspective of the implementation

bottom layer is responsible for matching and executing story patterns on specific states. For this
task, it relies on Giese et al.’s Story Diagram Interpreter [GHS09]. Further, this layer supplies
caching algorithms and incremental transitions between states to speed up the most expensive
part of the simulation, the computation of the look ahead.

For the requirements engineers overseeing individual stakeholder sessions, the implementa-
tion offers an Eclipse perspective (cf. Figure 2). In this Eclipse perspective, parameters of a
simulation such as the depth of the look ahead or the scoring value of specific resources can be
changed at run-time to adjust the strategy employed by the simulator. The engineers’ visualiza-
tion of the look ahead and the proposed path through the look ahead are updated accordingly. To
avoid repeated computations, the look ahead that was previously explored is cached and re-used,
if an overlap between the old and the new look ahead exists. States that are located before the
currently active state and are not part of the actual path taken to the active state (for example al-
ternative states to s, after state s_; in Figure 2), are not cached to reduce memory consumption.
The merging process uses a simple fingerprinting approach to reduce the necessary amounts of
computation: the count of inner objects and relations of a state are multiplied by different prime
numbers and summed up afterwards. A more detailed and expensive equals comparing individ-
ual objects is only executed if the fingerprints match. While we are aware that the fingerprinting
algorithm could be more sophisticated to further improve the performance gains, this approach
already suffices for our requirements.

5/12 Volume 58 (2013)

Interactive Strategy-Based Validation of Behavioral Models Eﬁ

3.1 Example Scenario: Running a Steelworks

The aforementioned principles will be shown on a deliberately small example without distracting
elements. To produce and sell steel, iron ore and coal are required. Since both cost money, it
is necessary to plan accordingly to be able to produce steel and sell it with a profit. In this
case study, four story patterns are available: buy coal, buy iron ore, produce steel and sell steel.
While both resources cost 10k$ for ten units each, selling the resulting steel yields 30k$. The
domain model is illustrated in Figure 3, Figures 4 and 5 shows the story patterns which realize
the process.

Ontolo
Elemefz, < Resource
00\
/ reSourceP
Role » Actor [Machine Money
Y Y 7
Worker Company Furnace
workers
Coal IronOre Steel

Figure 3: Metamodel of the case study

? ®

buyCoal buylronOre
ironOre worker money
coal worker money
:dIronOre Worker :Money
Coal Worker :Money
[money.amount >= 10.0]
[money.amount >= 10.0] amount := amount + 10.0 amount = amount - 10.0

amount := amount + 10.0 amount := amount - 10.0

workers workers

this this
resourcePool resourcePool

resourcePool resourcePool

. .

Figure 4: Story patterns for buying coal and iron ore

3.2 Strategies for a Steelworks

After the simulation was initialized using an initial state (s, in Figure 8), the simulator computes
a look ahead with a default depth of four to explore which transitions are possible. Repeatedly
buying only one resource leads to states in which nothing else can be bought and nothing can

Proc. GTVMT 2013 6/12

Eg ECEASST

® ®

e N N
produceSteel sellSteel
worker coal ironOre steel money worker steel
:Worker :Coal :lronOre :Steel :Money :Worker :Steel
[coal.amount >= 10.0] [ironOre.amount >= 10.0] [steel.amount >=10.0]
amount := amount - 10.0 | | amount := amount - 10.0 amount := amount + 10.0 amount := amount + 30.0 amount ;= amount - 10.0
workers] resourcePool resourcePool resourcePool workers resourcePool
resourcePool
this this
A AN J

3 o

Figure 5: Story patterns for producing and selling steel

be produced or be sold. Consequently, these states (s3 and s3 in Figure 8) are dead ends. Since
the order of purchases is irrelevant in this scenario, buying both resources once leads to identical
states which can be merged (s¢).

After the look ahead is computed, all potential follow-up states and their paths can be scored to
allow the simulator to choose the path most suitable to fulfill the goals of the current simulation
strategy. The goal of the steelworks scenario is to maximize the profit, i.e. the amount of money
they have. In this case, the user would set the parameters to assess the resources so that money
is the only resource of interest (i.e. by giving it a weight of 1 and all other resources a weight
of 0). Thus, a weight can be assigned to each subclass of Resource that is defined in the
metamodel representing the domain (cf. Fig. 3). The simulator chooses the transformations
which maximize the score based on these weights. Consequently, a sequence of buying only the
required resources, producing and then selling the steel is the most promising one. Although both
buying actions are scored negatively, all paths containing sale of steel have an higher overall score
than the starting state. In the simulated look ahead, s yields the highest score and is therefore
proposed by the strategy. In more complex scenarios with more options available, the depth of
the look ahead would have to be increased. Since long sequences of actions might not pay off if
their benefit is not covered within the look ahead, such sequences would never be started.

The implemented Eclipse perspectives (Fig. 2) contains the following views for supervising
the simulation: In the upper left view is an illustration of the sequence of the already visited
states and the look ahead calculated from the current state (referred to as s,). In this view, the
optimal path is highlighted in green. The requirements engineers can select transitions from the
look ahead to inspect them in detail in the upper middle view which presents the current state of
the simulation or any state of the look ahead from which this transition is triggered.

In the lower left view, the rules that were already captured by observing stakeholders are listed.
These can be included in any simulation session by dragging and dropping them into the upper
right view under Rules. Also, forbidden situations and other variants, which are not within the
scope of this paper, can be included for a simulation session.

The simulation is initialized by providing an initial state, setting a depth of the look ahead, and
an optional maximum number of simulation steps after which the simulator should stop. This

7/12 Volume 58 (2013)

Interactive Strategy-Based Validation of Behavioral Models Eﬁ

is done in the lower right view, which also illustrates a list of all available strategies to choose
from for the simulation session. To influence the selected strategy, the lower middle view shows
all resources next to corresponding sliders which enable the requirements engineers to assign
weights to the individual resources.

1400

1200

-
o
o
S

800

600

Number of States

400

200

*« NG *« NG - —— M
0 e e
2 4 6 8 10 12 14 16
Depth of Look Ahead
¢ Number of States with State Merging 4 Number of States without State Merging

Figure 6: Number of states for different look ahead values — with and without state merging

=N W w
v o W o v

Runtime in Seconds

=
o

o
o %)

2 4 6 8 10 12 14 16
Depth of Look Ahead
» “Maximize Money"” Strategy (State Merging) Random Rule Execution (State Merging) <~ “Maximize Money” Strategy Random Rule Execution

Figure 7: Runtime of random rule execution compared to a strategy-based execution for different
look ahead values — with and without state merging

On a MacBook Pro (Mac OS 10.6) with a 2.4 GHz Core2Duo processor and 8 GB RAM
(JVM 1.6, Eclipse 3.6.1), the computation of the look ahead illustrated in Figure 8 took 0.135
seconds, its visualization needed 1.1 seconds.” Even the computation of a look ahead with a
depth of 12, which includes 67 states, took only 0.374 seconds. Without merging identical
states, the same look ahead included 1272 states. While these unmerged states were computed
in 3.22 seconds, it took the visualization code directly generated by EMF* and GMP* another
120 seconds to draw and layout the resulting graph-structure. Figures 6 and 7 show the linear

2 For each state, ten story patterns were evaluated. All presented values are averages of ten repeated measurements.
3 Eclipse Modeling Framework (http://eclipse.org/modeling/emf/)
4 Graphical Modeling Project (http:/eclipse.org/modeling/gmp/)

Proc. GTVMT 2013 8/12

http://eclipse.org/modeling/emf/
http://eclipse.org/modeling/gmp/

Eg ECEASST

correlation between the amount of states and the overall runtime for look aheads. As can be
seen, state merging effectively delays the exponential growth of states. Furthermore, Figure
7 compares the performance of a strategy maximizing the resource “money” with a random
execution of available story patterns. The additional computations which are required to score
and compare different alternatives when using a strategy, do not noticeably decrease the overall
performance. Thus, concerning the runtime performance it can be stated that the implemented
concepts of state merging and state scoring lead to acceptable execution times even for deeper
look aheads.

coalDeposit ironOreDeposit steelDeposit moneyl buyCoal 3
:Coal :IronOre :Steel :Money uyCoal
amount = 0.0 | amount = 0.0 amount = 0.0 amount = 30.0
4 5
buylronOre produceSteel
elements
buyCoal
resourcePool elements 1 v buyCoal buyCoal
elements resourcePool
elements
resourcePool M buyCoal buylronOre . 0 o
resalreeoot producesteel sellSteel10
buylronOre 11 buyCoal
buylronOre buylronOre
Workerl steelworksOntologyWorld1 ABCSteel
:Worker :SteelworksOntologyWorld :Company buylronOre D 2 8
elements| elements| buyCoal produceSteel

workers
buylronOre 5

Figure 8: Starting from an initial state s, (left), the look ahead can be computed (right)

4 Related Work

This section compares our approach to related ones, thereby focussing on approaches providing
guided state space exploration or direct model checking for graph transformation systems.

In [HKMPO2], Harel et al. extended their Play approach [HMO03] with an analysis of which
parts of the specification fit together before an actual simulation is started. Later, Harel et al. also
added the ability to exclude specific situations [HKP04] during the simulation. While this allows
a requirements engineer to ensure that only viable paths are offered, the possibility of expressing
strategies to guide the simulation more effectively into specific situations is missing.

To verify whether specifications are suitable, the GUIDE approach [TS07] enables engineers
to formally execute the specification. While one of them tries to arrive at an invalid state, another
one executes only safe transitions. Either one has to pursue a specific strategy to arrive at a cor-
responding state. Consequently, while no stakeholder is involved, this approach is still suitable
to explore and verify specific properties of the modeled system.

GROOVE [KRO06] can explore complete state spaces, but our approach does so automatically
by restricting the exploration to the most promising paths concerning a single goal (such as high-
est increase of a resource like money or smallest amount of transitions to reach a certain state)
or a set of them within the look ahead. As a model checking tool, GROOVE can verify whether
distinct properties are satisfied by the specification. GROOVE, however, does not provide a vi-
sualization for its graph transformations which is suitable to be used in stakeholder validations.

Henshin [BESW10] is another approach that is capable of creating a (partial) state space based
on an initial state and a set of graph transformations. While it provides an interactive UI to

9/12 Volume 58 (2013)

Interactive Strategy-Based Validation of Behavioral Models E}

explore the state space, it is not possible to express strategies to guide the exploration.

Edelkamp et al.’s approach [EJLO6] reduces the state space exploration by abstracting from
the original state space. Finding a path conforming to the elicited constraints in the abstracted
state space ensures that such a path also exists in the original state space. Thus, heuristically,
the exploration can be guided more efficiently by reducing the problem. However, since our
approach does not deal with the complete state space but instead tries to elicit new inputs from
stakeholders, their approach would only be feasible, if the generation of a suitable abstraction is
possible at runtime to determine how the simulation should continue.

Baresi and Spoletini [BS06] approach of using Alloy to analyze graph transformation systems
can be used to check properties of models and also to create look aheads of a specific depth.
While their approach tries to answer questions that are similar to ours, their approach is not
usable in an interactive way that can be integrated into or be a part of our visualization approach.

5 Conclusion and Future Work

In this paper, we extended our simulation approach of eliciting and validating scenarios between
different, interacting stakeholders with simulation strategies and a bounded look ahead. While
simulation and animation support stakeholders to understand behavioral specifications, require-
ments engineers had no explicit way of guiding the simulator effectively through these sessions.
Now, requirements engineers can specify strategies for the simulator to ensure that the stake-
holders validate viable scenarios first instead of randomly being led into dead ends due to the
inherent incompleteness of the models during the requirements engineering stage. Based on our
measurements, it is feasible to employ strategies for projects eliciting collaborative scenarios as
they occur in workplaces, i.e. in the range of up to dozens of story patterns. For more sophis-
ticated projects dealing with thousands and more graph transformations, the interactivity cannot
be ensured.

Currently, only a limited set of functions can be used to specify how a state is scored. To
express more sophisticated scoring algorithms, additional capabilities, such as a scoring function
editor or a mini DSL to express the desired logic, will be implemented. Also, since the look
ahead computation performs acceptable, the focus lies on increasing the efficiency of the UL

Acknowledgements: We would like to thank the anonymous reviewers for their helpful com-
ments. Also, we are grateful for Holger Giese’s feedback on earlier versions of this paper.

Bibliography

[BESW10] E. Biermann, C. Ermel, J. Schmidt, A. Warning. Visual Modeling of Controlled
EMF Model Transformation using HENSHIN. In Proc. of the Fourth International
Workshop on Graph-Based Tools (GraBaTs 2010). 2010.
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/528

[BS06] L. Baresi, P. Spoletini. On the Use of Alloy to Analyze Graph Transformation Sys-
tems. In Corradini et al. (eds.), Graph Transformations. LNCS 4178, pp. 306-320.

Proc. GTVMT 2013 10/12

http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/528

E

ECEASST

[EJLO6]

[GGS09]

[GGS10]

[GHG12]

[GHSO09]

[Hec06]

[HHV10]

[HKMPO2]

Springer, 2006.
doi:10.1007/11841883_22

S. Edelkamp, S. Jabbar, A. Lafuente. Heuristic Search for the Analysis of Graph
Transition Systems. In Corradini et al. (eds.), Graph Transformations. LNCS 4178,
pp. 414-429. Springer, 2006.

doi:10.1007/11841883_29

G. Gabrysiak, H. Giese, A. Seibel. Interactive Visualization for Elicitation and Val-
idation of Requirements with Scenario-Based Prototyping. In Proc. of the 4th Inter-
national Workshop on Requirements Engineering Visualization. RE’09, pp. 41-45.
IEEE Computer Society, Los Alamitos, CA, USA, 2009.

doi:10.1109/REV.2009.3

G. Gabrysiak, H. Giese, A. Seibel. Deriving Behavior of Multi-User Processes
From Interactive Requirements Validation. In Proceedings of the IEEE/ACM In-
ternational Conference on Automated Software Engineering. ASE’10, pp. 355-356.
ACM, Antwerp, Belgium, September 2010.

doi:10.1145/1858996.1859073

G. Gabrysiak, R. Hebig, H. Giese. Simulation-Assisted Elicitation and Validation
of Behavioral Specifications for Multiple Stakeholders. In Proc. of the 21st IEEE
International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises. WETICE, pp. 220-225. Toulouse, France, June 25-27 2012.
doi:10.1109/WETICE.2012.17

H. Giese, S. Hildebrandt, A. Seibel. Improved Flexibility and Scalability by In-
terpreting Story Diagrams. In Magaria et al. (eds.), Proc. of the Eighth Interna-
tional Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT 2009). 2009.

http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/268

R. Heckel. Graph Transformation in a Nutshell. Electronic Notes in Theoretical
Computer Science 148(1):187 — 198, 2006. Proceedings of the School of Seg-
raVis Research Training Network on Foundations of Visual Modelling Techniques
(FoVMT 2004).

doi:10.1016/j.entcs.2005.12.018

Abel Hegediis, Akos Horvith, D. Varré. Towards Guided Trajectory Exploration
of Graph Transformation Systems. In Proc. of the 4th International Workshop on
Petri Nets and Graph Transformation. Volume ECEASST Vol. 40. Enschede, The
Netherlands, Sept. 28 2010. Satellite Event of ICGT 2010.
http://journal.ub.tu-berlin.de/eceasst/article/view/583

D. Harel, H. Kugler, R. Marelly, A. Pnueli. Smart Play-out of Behavioral Require-
ments. In FMCAD ’02: Proc. of the 4th International Conference on Formal Meth-

11/12

Volume 58 (2013)

http://dx.doi.org/10.1007/11841883_22
http://dx.doi.org/10.1007/11841883_29
http://dx.doi.org/10.1109/REV.2009.3
http://dx.doi.org/10.1145/1858996.1859073
http://dx.doi.org/10.1109/WETICE.2012.17
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/268
http://dx.doi.org/10.1016/j.entcs.2005.12.018
http://journal.ub.tu-berlin.de/eceasst/article/view/583

Interactive Strategy-Based Validation of Behavioral Models Eﬁ

[HKP04]

[HMO3]

[KNNZO00]

[KRO6]

[TSO7]

ods in Computer-Aided Design. Pp. 378-398. Springer-Verlag, London, UK, 2002.
doi:10.1007/3-540-36126-X 23

D. Harel, H. Kugler, A. Pnueli. Smart Play-Out Extended: Time and Forbidden
Elements. In QSIC '04: Proceedings of the Quality Software, Fourth International
Conference. Pp. 2—10. IEEE Computer Society, Washington, DC, USA, 2004.
doi:10.1109/QSIC.2004.31

D. Harel, R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSC’s
and the Play-Engine. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

H. J. Kéhler, U. Nickel, J. Niere, A. Ziindorf. Integrating UML diagrams for pro-
duction control systems. In Proc. of the 22nd International Conference on Software
Engineering. ICSE’00, pp. 241-251. ACM, New York, NY, USA, 2000.
doi:10.1145/337180.337207

H. Kastenberg, A. Rensink. Model Checking Dynamic States in GROOVE. In
Model Checking Software. Springer, 2006.
doi:10.1007/11691617_19

J. Tenzer, P. Stevens. GUIDE: Games with UML for interactive design exploration.
Know.-Based Syst. 20(7):652-670, 2007.
doi:10.1016/j.knosys.2007.05.005

Proc. GTVMT 2013 12/12

http://dx.doi.org/10.1007/3-540-36126-X_23
http://dx.doi.org/10.1109/QSIC.2004.31
http://dx.doi.org/10.1145/337180.337207
http://dx.doi.org/10.1007/11691617_19
http://dx.doi.org/10.1016/j.knosys.2007.05.005

	Introduction
	Concepts
	Navigation and Reduction
	Guidance and Scores

	Implementation and Performance-Evaluation
	Example Scenario: Running a Steelworks
	Strategies for a Steelworks

	Related Work
	Conclusion and Future Work

