
Electronic Communications of the EASST
Volume 58 (2013)

Proceedings of the
12th International Workshop on Graph Transformation

and Visual Modeling Techniques
(GTVMT 2013)

Reusing Semantics in Visual Editors:
A Case for Reference Attribute Grammars

Niklas Fors and Görel Hedin

13 pages

Guest Editors: Matthias Tichy, Leila Ribeiro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Reusing Semantics in Visual Editors:
A Case for Reference Attribute Grammars

Niklas Fors and Görel Hedin

Department of Computer Science
Lund University, Lund, Sweden

(niklas.fors|gorel.hedin)@cs.lth.se

Abstract: The semantic formalism reference attribute grammars (RAGs) allows
graphs to be superimposed on abstract syntax trees. This paper investigates how
RAGs can be used to model visual languages, with a case study of a control lan-
guage that also has a textual syntax. The language contains blocks on which a
total execution order is defined based on connections and layout information. One
strength of RAGs is reusability, and we demonstrate this by reusing the definition of
the execution order in the visual editor to provide semantic feedback to the user.

Keywords: reference attribute grammars, JastAdd, visual languages

1 Introduction

Domain-specific languages (DSLs) are used in many engineering areas to support concise and
natural descriptions of models, using both textual and visual languages, see e.g., [Wil04].

Tool development for languages, like compilers and editors, is typically very costly [DKV00,
MHS05], and numerous reusable frameworks and generative techniques have been developed to
help bring down costs. Recent examples include model-based metaprogramming systems such as
the ecosystem around the Eclipse Modelling Framework (EMF), as well as generators based on
formal specifications like term rewrite rules and attribute grammars (AGs), for example, Spoofax
[KV10], and JastAdd [HM03].

While AGs decorate abstract syntax trees (ASTs) with attributes [Knu68], JastAdd is based on
reference AGs (RAGs) [Hed00]. In RAGs, attributes can be references to other AST nodes,
thereby superimposing graphs on the AST. JastAdd has been successfully used for building
reusable compilers for textual languages like Java and the textual syntax of Modelica [EH07,
ÅEH10], and we are now investigating their use for supporting visual languages and editors.
Since visual languages are typically more natural to model using graphs than trees, we expect
RAGs to be useful also for such languages. More specifically, our goals include:

• defining abstract models that can have both textual and visual syntax
• defining semantic analyses on the common model, for reuse in both compilers and editors
• using semantic analyses to obtain advanced language-based support in visual editors

As a case study, we have used JastAdd to develop a visual editor and a compiler for a simple
but non-trivial visual language, PicoDiagram, demonstrating how the same model and analyses
can be reused for both tools. PicoDiagram is inspired by a product from ABB, which in turn is

1 / 13 Volume 58 (2013)

Reusing Semantics in Visual Editors

based on the IEC 61131-3 standard for programmable logic controllers. The language is (per-
haps) unusual in that the visual layout of the elements in a program is used for disambiguating
the execution order. This paper has the following contributions:

• The design of a textual syntax that allows the layout-specific semantics of PicoDiagram
to be defined without using low-level graphical coordinates. This makes it possible to use
the same abstract RAG model for both the textual and visual syntax. (Section 3.2)
• A high-level mathematical formulation of the layout-specific semantics, and its straight-

forward declarative implementation using RAGs. (Section 4)
• A demonstration of how the semantics can be reused to support advanced features in the

visual editor. For example, we reuse the specification of the execution order to provide
semantic feedback on how a block can be moved without changing this order. (Section 5)

Background on JastAdd is given in Section 2, and PicoDiagram is described in Section 3.
Section 4 explains the declarative computation of the execution order, and Section 5 discusses
how this computation is reused by the visual editor. Section 6 evaluates the approach, Section 7
discusses related work, and Section 8 concludes and discusses future work.

2 JastAdd

The semantic specification of the control language is defined declaratively using the metacom-
pilation system JastAdd [HM03] which is based on object-oriented concepts, reference attribute
grammars (RAGs) [Hed00], and inter-type declarations [KHH+01]. Traditional Knuth-style at-
tribute grammars [Knu68] support synthesized and inherited attributes, used for propagating in-
formation downwards and upwards in the AST, respectively. RAGs generalize Knuth’s AGs by
supporting reference attributes, i.e., attributes that refer to other AST nodes, and parameterized
attributes that provide one value per combination of parameter values, similar to a function.

A RAG decorates an AST with attributes, thereby describing the meaning of the AST. The
attribute values are defined declaratively using equations and a generated attribute evaluator uses
the equations to compute the value of any attribute in any AST. For instance, a name analysis
RAG can provide equations defining reference attributes that connect use nodes to their corre-
sponding declaration node. For further examples of uses of attributes, and additional kinds of
attributes, see, e.g., [Hed09].

Abstract grammar

Name analysis

Execution order

...

JastAdd RAG specification

uses

class Block {

Block sp();

...

}

...

Decorated AST

defines
Visual Editor

Compiler

uses

uses

GEF
uses

Figure 1: The visual editor and the compiler reuse the same decorated AST.

Proc. GTVMT 2013 2 / 13

ECEASST

JastAdd represents an AST with Java objects, which are instances of classes that are generated
from a user-defined abstract grammar. JastAdd does not care how the AST is created; it can
be created by a third-party parser or by writing Java code directly. For each attribute, JastAdd
generates a Java method, enabling attributes to be invoked from ordinary Java programs. The
JastAdd attribute evaluator is demand-driven so that an attribute is not evaluated until it is in-
voked. Other attributes needed for its evaluation are then also evaluated, and caching is used to
speed up multiple accesses of the same attribute. If the AST is changed (by an editor), invalid
caches are flushed. This way, programs like a compiler or a visual editor can treat the AST as
always being completely evaluated, and can reuse the same decorated AST, as Figure 1 shows.

The PicoDiagram editor is built on the graphical editing framework GEF, which is based on
Eclipse and the model-view-controller (MVC) pattern. We use the AST as the model, and all
changes in the editor are first made in the AST and then propagated back to the view using the
Observer pattern.

3 PicoDiagram—A Visual Control Language

Many control systems are built using programmable logic controllers (PLCs). A common way of
programming them is to use visual function block diagrams (FBDs) like those defined in the IEC
61131-3 standard. An FBD consists of blocks and connections between them that describe the
data flow. The blocks in a diagram are typically executed in periodic scans, based on sampling.
Different FBD languages use different ways of defining the execution order. The PicoDiagram
language is a prototype language inspired by an FBD language developed by ABB. Here, the
connections define a partial execution order, and to obtain a total order, the layout of the blocks
is used as well: if two blocks are unordered with respect to connections, the graphical positions of
these and other blocks will influence the total order. This allows an engineer to easily understand
the execution order just by looking at the diagram. The total order can be important for the
semantics as blocks may use shared variables. If a diagram contains feedback loops, the data
flow will be delayed to the next scan at certain connections, effectively breaking the loops. For
the purpose of this paper, we therefore assume that each FBD is acyclic.

3.1 Tank Regulator Example

As an example, consider an on-off regulator for a tank containing liquid. The regulator uses
two valves, one for filling (vIn) and one for emptying (vOut), to adjust the current liquid level
(level) to a reference level (refLevel). The valves can be either open or closed. To avoid
oscillation, the filling valve accepts a tolerance value (tolerance); the filling valve is only open
if the error is larger than the tolerance value. The regulator model can be seen in Figure 2. Note
that Sub 1 produces data for two subsequent blocks, and it is the visual placement of the blocks
that determines which one to execute first. In this simple case, Sub 2 should execute before Neg,
since Sub 2 is closer to the origin (top left corner) than Neg, and there are no other edges that
influence the order.

The execution order of the regulator model is shown in Figure 3a. Figure 3b shows how the
execution order is changed when the grey block is moved in the editor. Note that the execution

3 / 13 Volume 58 (2013)

Reusing Semantics in Visual Editors

(a) Visual syntax

diagramtype tank-regulator(
Int refLevel, Int tolerance

=> StatusData status) {
StatusMonitor level;

Sub Sub_1;

...

connect(refLevel, Sub_1.in1);
...

}

(b) Textual syntax

Figure 2: A regulator model for a tank with two input parameters (refLevel and tolerance)
and one output parameter (status). White rounded rectangles represent blocks. Sub means
subtraction, Neg negation, and GTZmeans greater than zero and returns a boolean value. A valve
takes a boolean value, indicating if it should be open or not. The data flow is from left to right.

order is changed also for the succeeding blocks, following the intuition that a chain of connected
blocks is executed in sequence.

3.2 Textual Syntax and Declaration Order

FBD languages are visual, and although the programs can be serialized and stored in files, this
is typically done in a low-level format not primarily intended for viewing or editing, but that
may contain generated redundant information, and mix graphical properties like shape, color
and coordinates with constructs of semantic importance.

In contrast, for PicoDiagram, we have defined both a visual and a textual syntax, see Figure 2.
The textual syntax is high-level and readable, and is useful, for example, for generating and
merging diagrams. Even if graphical merging is desirable, textual syntax enables us to use
existing merging techniques and tools without any effort.

However, since the execution order depends on the layout, we would like to design the textual
syntax in such a way that the same execution order can be derived as from the visual diagram,
but without using explicit block coordinates. We do this by defining a total positional order on

(a) (b) (c) (d)

Figure 3: Examples of different execution orders depending on connections and layout. Each
block contains its execution order number. In (a) and (b) it is shown how the execution order is
changed when the grey block is moved.

Proc. GTVMT 2013 4 / 13

ECEASST

B(2)

C(3)A(1)

D(5)

E(6)

F(4)

(a)

A

CB D

EF

(b) Sink tree of (a)

Figure 4: (a) is the graph representation of Figure 3d. Execution order numbers are within
parentheses. In (b), the children are ordered in according to their positional order.

the set of blocks in a diagram, and compute the execution order based on this positional order.
For the textual syntax, the positional order is simply the declaration order of the blocks. For the
visual syntax, the positional order is defined as the graphical order based on the distance from
each block to the origin in the following way:

Let dist(v) denote the distance between a block v and the origin. We define the graphical
order between two blocks A and B as follows: A≤ B if and only if dist(A)< dist(B) or (dist(A) =
dist(B) and xA ≤ xB). To create an antisymmetric relation, we forbid two distinct blocks in a
diagram to share coordinates, that is, the condition ¬(xA = xB∧ yA = yB) holds for all blocks A
and B in a diagram where A 6= B. The visual editor makes sure this condition is satisfied.

Note that the graphical order and the declaration order must always be the same, in order to
have a consistent semantics in the two syntaxes. Therefore, when a block is moved in the visual
editor, the declaration order in the textual syntax may need to be changed, and vice versa. The
coordinates can optionally be stored in the textual syntax, but are just secondary notation that
does not influence the semantics. In case the coordinates are inconsistent with the semantics, the
visual editor will discard them and use auto layout instead.

4 Execution Order

The connections in a diagram determine a partial execution order, and there are many ways of
choosing a total order. In ABB’s diagram language, a total order is chosen that follows a number
of intuitive rules, as illustrated in Figure 3. For instance, blocks in a horizontal chain are executed
in sequence, as illustrated in Figure 3a. Furthermore, it is the distance to the origin of the first
block in a subchain that decides which subchain executes first, as illustrated by the grey block
that has been moved in Figure 3b. If we have two unrelated chains as in Figure 3c, the upper
chain is executed before the lower one.

The execution order becomes more complicated when a block has more than one predecessor.
For example, in Figure 3d, block 6 has three predecessors. The execution number of block 6 will
be determined by the predecessor with the highest execution number, in this case block 5. We
say that block 6 is sunk by block 5, and we call block 5 the sink pred of block 6. The positional
order is only used to determine the execution order between blocks that are sunk by the same
predecessor, or that have no predecessor. This means that the position of blocks 6 and 4 is not

5 / 13 Volume 58 (2013)

Reusing Semantics in Visual Editors

relevant for the execution order, since they are sunk by different predecessors.
We have formalized the computation of the total execution order based on a directed graph

that models a diagram. In a diagram, block A can be connected to several ports on block B. These
connections are represented by only one connection in the graph, since we are only interested
in the dataflow between blocks. Figure 4a shows the graph representation of the diagram in
Figure 3d, but with new block names.

The bold connections in Figure 4a represent which predecessor a block is sunk by. We can
model these connections as a tree, which we call the sink tree, where the children are ordered by
the positional order, as can be seen in Figure 4b. When we have this tree, we can easily compute
the execution order by a depth first search (DFS), where children are visited from left to right.
The resulting DFS number is the block’s execution number.

4.1 Defining the Sink Tree

The blocks make up a directed acyclic graph (DAG). We extend this DAG with a root in order
to handle blocks with and without predecessors uniformly. The new root r has no predecessor
and has edges to all blocks with no predecessor in the original graph. Let G0 = (V,E) denote the
original graph and let pred(v) denote the immediate predecessors of v. The new graph G is then
defined as follows.

G = (V ∪{r},E ∪{(r,v) | v ∈V ∧ predG0(v) = /0})

We define the sink tree by defining a block’s parent in the tree, that is, the sink pred (sp) of the
block. It is defined as follows:

sp(v) =
{ ⊥ (predG(v) = /0)

u where u ∈ predG(v) and ∀p ∈ (predG(v)\{u}) : compare(p,u)

The first case is when block v has no predecessors in G, that is, when v = r. Hence, the root
block r will be the root of the sink tree as well. The second case is when v has predecessors, that
is, when v 6= r. In this case, the function returns the predecessor u with the highest execution
number, that is, the predecessor with the highest DFS number. The predicate compare(a,b)
returns true if block a is executed before b. The sink pred u should execute after all other
predecessors of v. The predicate compare(a,b) is defined as follows, where we use the positional
order (po(v)1) and the depth of a block in the sink tree (d(v)).

compare(a,b) =

po(a)< po(b) if sp(a) = sp(b) (1)

true if a = sp(b) (2)

false if sp(a) = b (3)

compare(sp(a),sp(b)) if d(a) = d(b) (4)

compare(a,sp(b)) if d(a)< d(b) (5)

compare(sp(a),b) if d(a)> d(b) (6)

1 The function po maps a block to a natural number and preserves the positional order.

Proc. GTVMT 2013 6 / 13

ECEASST

d(v) =
{

0 if predG(v) = /0

d(sp(v))+1 else

When comparing blocks a and b, we want to know if a will have a lower DFS number than
b. One way is to find their lowest common ancestor, and compare its children that are ancestors
to a and b. If the child that is ancestor to a is before the child that is ancestor to b, then a will
execute before b. For example, in Figure 4b, if we want to compare the blocks B and E, then we
want to compare the corresponding children to their lowest common ancestor (A), which are B
and D. Since B is before D, then B will execute before E. We find the lowest common ancestor by
walking up tree, using sp(v), which is done in case 4-6. The cases 1-3 handle when the lowest
common ancestor is found. In case 1, the positional order is compared. In cases 2-3, a is the
parent of b or vice versa.

The definitions of sp and compare are mutually recursive. However, because sp only calls
compare on predecessor blocks, and the DAG is acyclic, the computation will terminate.

4.2 Implementing the Sink Tree as Attributes

The sink tree described above has been implemented as RAGs in the JastAdd system, see Fig-
ure 5. Each function is implemented as a synthesized attribute. By writing syn int Block.d(),
we define a synthesized (syn) attribute d() with return type int on nodes of type Block, where
Block is an AST node type defined in the abstract grammar. For synthesized attributes, the
equation defining the value can be written as a function body of ordinary Java code, and can use
other attributes by calling their corresponding methods. In contrast to Java methods, attribute
equations are forbidden to have side effects, and their values can be automatically cached.

Note that the attributes are a straightforward implementation of the mathematical definitions
of sp, compare and d. The attribute sp is a reference attribute (an attribute denoting another
AST node of type Block), compare is a parameterized attribute (comparing a Block with an-
other Block), and d is a simple attribute of type int. Furthermore, in the definition of sp, the
attribute pred is used which is the set of references to the predecessor blocks, according to the
connections. The pred attribute is in turn defined using attributes defined in the name analysis,
that use reference attributes to bind uses of names to their declarations. These definitions are not
shown here, but similar RAGs can be found in, e.g., [Hed09].

5 Reusing Attributes in the Editor

The attribute implementation allows AST node properties to be reused during visual editing to
provide useful semantic feedback. Since the attributes are defined declaratively and have no
side effects, they can be reused without having to think about in what order they are computed.
This means that we can access all attributes in the AST without bothering about what information
(which attributes) they depend on. Thus, in contrast to a traditional compiler, there are no explicit
phases of name analysis, type checking, etc. We will now give examples of how the attributes in
PicoDiagram can be reused.

7 / 13 Volume 58 (2013)

Reusing Semantics in Visual Editors

syn Block Block.sp() {
Block u = null;

for (Block p: pred())
if (u == null || u.compare(p))

u = p;

return u;
}

syn boolean Block.compare(Block b) {
if (sp() == b.sp()) return po() < b.po();
if (this == b.sp()) return true;
if (sp() == b) return false;
if (d() == b.d()) return sp().compare(b.sp());
if (d() < b.d()) return compare(b.sp());
return sp().compare(b);

}

syn int Block.d() {
return sp() == null ? 0 : sp().d() + 1;

}

Figure 5: Sink tree implemented as attributes

Figure 6: Feedback when a
block is moved

Show Execution Order. One example is to reuse the attributes to show the execution order
number for each block in the visual editor, as in Figure 3. If the user changes the diagram, then
the execution order numbers are updated.

Move Block Feedback. Another example is to reuse the sink tree to provide feedback when
the user moves a block. For instance, we have implemented visual feedback showing within what
area a block can be moved, without changing the execution order. This can be seen in Figure 6,
where two circle arcs are drawn to show the upper and lower bounds in terms of distances to
the origin. The block is colored green as long as the block is moved within the bounds, and
otherwise it turns yellow. To provide this feedback, the sink tree is used, where the siblings of
the block in the sink tree define the boundaries. The sibling on the left will set the lower bound
and the sibling on the right will set the upper bound. For instance, in Figure 4a, the boundaries
of C are defined by B and D, as Figure 4b shows. Let dist(v) denote the distance to the origin of
a block v. If we want the execution order to remain the same, then the move of C must satisfy
dist(B) < dist(C) < dist(D). (Or if two blocks have the same dist value, the x coordinate is
compared instead, as was described in Section 3.2.)

Automatic Layout. For visual languages automatic layout is essential. For example, if the
user opens a diagram without coordinates in the visual editor, the automatic layout should be
constrained so that the execution order remains the same. We can use the sink tree to define
such constraints, where each block is constrained by its siblings in the sink tree. If we have
an ordered sequence of siblings (s1,s2, ...,sk), then the constraints between these siblings are
dist(s1)< dist(s2)< ... < dist(sk). Another possibility is to use the sink tree itself as the layout
of the blocks (or rotated 90◦ and mirrored to get the dataflow from left to right), since it conforms
to these constraints.

Proc. GTVMT 2013 8 / 13

ECEASST

20
40
60
80

100
120
140
160
180
200
220

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ti
m

e
(m

s)

p

G(500, p)

Imperative
Declarative

(a) Generated with method G(n, p)

100
120
140
160
180
200
220
240
260
280
300

5000 6000 7000 8000 9000 10000

Ti
m

e
(m

s)

n

G(n, M=10n)

Imperative
Declarative

(b) Generated with method G(n,M)

Figure 7: Performance comparison between the declarative attribute implementation and an im-
perative iterative implementation of the execution order on randomly generated graphs.

6 Evaluation

We have evaluated the performance of the declarative attribute implementation of the execution
order to show that it is feasible in practice. For comparison, we have also implemented an imper-
ative algorithm that computes the execution order by iterating over the blocks. Both algorithms
use the same underlying RAG-based declarative name analysis. Since JastAdd generates Java
code, we need to be careful when measuring the performance due to non-determinism (e.g.,
garbage collection, JIT compiler, dynamic optimizations) in the virtual machine. We follow
the methodology described by Georges et al. [GBE07], and we measure the steady-state perfor-
mance, since editors are typically long-running applications. We only measure the computation
of the execution order, excluding the time for name analysis and semantic error checking.

The comparison is made on randomly generated DAGs consisting of 500 to 10000 nodes,
generated with the tool GGen [CMP+10]. Figure 7 shows results on graphs generated with the
Erdős-Rényi methods G(n, p) and G(n,M), where n is the number of nodes. The first method
generates a graph where each edge is present with a probability p, meaning that the total number
of edges is around pn(n− 1)/2. The second method generates a graph with M edges that are
chosen uniformly from all possible edges. Confidence intervals have been omitted from the
figures since they were barely visible. The results show that the performance is roughly linear,
and that there is no problem in handling graphs of several thousands of blocks and with ten
times as many edges as blocks. In practice, diagrams are usually much smaller, and likely with
much fewer edges, so the method is clearly feasible in practice. It is also interesting to note
that the declarative implementation is slightly faster than the imperative one, probably due to the
on-demand attribute evaluation.

The benchmarks were performed on a computer running the operating system OS X version
10.8.2, with the processor 2.53 GHz Intel Core i5 and 8 GB memory. They were run on the Java
HotSpot(TM) 64-Bit Server VM version 1.7.0 10 with 1 GB heap size.

9 / 13 Volume 58 (2013)

Reusing Semantics in Visual Editors

7 Related Work

We focus in this paper on using reference attribute grammars to declaratively specify semantics,
and to reuse these specifications to provide semantic feedback in visual editors. In contrast to
some other specification-based systems, we do not (so far) generate the visual editor itself, but
have hand-coded it with the use of the Graphical Editing Framework (GEF).

DEViL is a system that generates visual editors from high-level specifications and it is based
on attribute grammars [SCK09]. DEViL uses an abstract structure similar to ours: it is based
on object-oriented concepts like classes, subtyping and inheritance. A class can have attributes,
and also references that can be used for building graphs, but where values have to be given when
the object is created. Such attributes are called intrinsic attributes in JastAdd, and cannot be
used for general attribute-based computations like JastAdd’s reference attributes. For the visual
specification, DEViL supports so-called visual patterns, which are predefined reusable imple-
mentations of common visual representations, such as lists, graphs, tables and line connections.
These visual patterns are defined using attribute grammars and the language developer can adapt
them by giving additional attribute specifications. DEViL also uses attribute grammars for code
generation. It would be interesting to combine visual patterns with our system.

The Graphical Modeling Framework (GMF) in Eclipse, which has several similarities with
DEViL, generates visual editors from specifications based on meta-models. GMF is built upon
GEF and uses the Eclipse Modeling Framework (EMF) for the abstract structure. In addition to
this, EMF models can be annotated with visual properties, which the tool EuGENia can generate
GMF specifications from.

Bürger et al. [BKWA11] combined RAGs and metamodeling, and used RAGs to define the se-
mantics for EMF models. They described the semantics for a simple imperative textual language
and extended it with a visual state machine language. They used the tool EuGENia to generate
a visual editor, and provided semantic feedback about the reachability for a state. It is, however,
not clear if EuGENia could provide the feedback described in this paper.

While we focus on the semantics, others have focused on defining the syntax for a visual
language with grammars. Examples include constraint multiset grammars [Mar94] and graph
grammars [Min02, RS97]. In these examples, a parser can be generated from a grammar that can
determine if a diagram is valid or not according to the syntax of the language, and even identify
subdiagrams that are valid. One suggested benefit of parsing is that it allows free-hand editing,
that is, the end-user is not restricted to always have valid diagrams - but can temporarily have in-
valid diagrams. Minas [Min02] combines parsers with graph transformations to generate editors
that support both free-hand and syntax-directed editing. Furthermore, he has extended this work
to generate editors based on meta-models, also supporting both editing modes [Min06]. Our
approach contrasts to these approaches by using a simpler syntax that does not constrain the user
very much, and instead define well-formedness criteria by specifying them using RAGs which
can capture arbitrarily complex context-sensitive semantics. Violations of well-formedness cri-
teria, for example connections that break type rules, can then be displayed as errors in the visual
editor, much like compile-time errors can be displayed in textual editors. TIGER [EEHT05] is
another system based on graph grammars, which generates syntax-directed visual editors. It uses
graph transformation rules to define the syntax and possible (complex) editing operations.

Erwig [Erw98] proposed to use an abstract syntax for visual languages to define the semantics

Proc. GTVMT 2013 10 / 13

ECEASST

on. Our work differs from his in that we use a tree as the base structure, instead of a graph, and
we extend the tree to a graph using RAGs. We also define the semantics with RAGs. We think
a tree is useful since it is straightforward to serialize and easy to add new textual syntaxes to.
Moreover, the containment relationship in EMF can be used to form trees [BKWA11].

Modelica is a language for modeling and simulating physical systems, and for which there is
a RAG-based compiler [ÅEH10]. It also has both a visual and textual syntax, but in contrast to
PicoDiagram, its semantics does not depend on layout.

8 Conclusion

In this paper we have demonstrated how visual editors can provide semantic feedback to the user
by reusing the semantics developed for a compiler. In our case study, we use a visual control
language that has both a textual and a visual syntax. Both the batch compiler and the visual editor
reuse the same semantic specification, and the textual syntax is used as the serialization format.
The execution order is dependent on the visual layout, and we have demonstrated how it can be
implemented declaratively using RAGs, based on an abstract syntax that does not rely on explicit
coordinates. The mathematical formulation of this execution order, and its direct translation to
RAGs, has allowed us to reuse these computations to provide semantic feedback to the user,
for example, showing how a block can be moved without changing the execution order. We
have also evaluated the RAG implementation, and compared it to an imperative implementation,
demonstrating that the RAG approach to this problem is feasible in practice.

In the future, we would like to generate the visual editor from a high-level specification instead
of hand-coding it, and we would like to investigate if earlier work can be applied to this problem.
For instance, it would be interesting to combine RAGs with GMF for the PicoDiagram editor.
In the current implementation, all semantic properties are recomputed for each edit, and we plan
to add incremental evaluation [SH12] to be able to reuse unchanged values between edits. We
would also like to add the possibility to edit a diagram both textually and visually at the same
time, where changes are propagated between the views automatically.

Acknowledgements: We would like to thank Ulf Hagberg, Christina Persson and Stefan Sällberg
at ABB for sharing their expertise about the ABB tools for building control systems. This work
was partly financed by the Swedish Research Council under grant 621-2012-4727.

Bibliography

[ÅEH10] J. Åkesson, T. Ekman, G. Hedin. Implementation of a Modelica compiler using Jas-
tAdd attribute grammars. Science of Computer Programming 75(1-2):21–38, 2010.

[BKWA11] C. Bürger, S. Karol, C. Wende, U. Aßmann. Reference attribute grammars for meta-
model semantics. In Software Language Engineering (SLE 2010). Pp. 22–41. 2011.

11 / 13 Volume 58 (2013)

Reusing Semantics in Visual Editors

[CMP+10] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, F. Wagner. Ran-
dom graph generation for scheduling simulations. In International ICST Conference
on Simulation Tools and Techniques. Pp. 60:1–60:10. 2010.

[DKV00] A. van Deursen, P. Klint, J. Visser. Domain-Specific Languages: An Annotated
Bibliography. SIGPLAN Notices 35(6):26–36, 2000.

[EEHT05] K. Ehrig, C. Ermel, S. Hänsgen, G. Taentzer. Generation of visual editors as eclipse
plug-ins. In Proceedings of the 20th IEEE/ACM international Conference on Auto-
mated software engineering. Pp. 134–143. 2005.

[EH07] T. Ekman, G. Hedin. The Jastadd Extensible Java Compiler. In OOPSLA 2007.
Pp. 1–18. ACM, 2007.

[Erw98] M. Erwig. Abstract Syntax and Semantics of Visual Languages. J. Vis. Lang. Com-
put. 9(5):461–483, 1998.

[GBE07] A. Georges, D. Buytaert, L. Eeckhout. Statistically rigorous java performance eval-
uation. In OOPSLA 2007. Pp. 57–76. ACM, New York, NY, USA, 2007.

[Hed00] G. Hedin. Reference Attributed Grammars. In Informatica (Slovenia). 24(3),
pp. 301–317. 2000.

[Hed09] G. Hedin. An Introductory Tutorial on JastAdd Attribute Grammars. In GTTSE
2009. LNCS 6491, pp. 166–200. Springer, 2009.

[HM03] G. Hedin, E. Magnusson. JastAdd: an aspect-oriented compiler construction sys-
tem. Sci. of Comp. Prog. 47(1):37–58, 2003.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold. An
overview of AspectJ. ECOOP 2001, pp. 327–354, 2001.

[Knu68] D. E. Knuth. Semantics of Context-free Languages. Math. Sys. Theory 2(2):127–
145, 1968. Correction: Math. Sys. Theory 5(1):95–96, 1971.

[KV10] L. C. L. Kats, E. Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In OOPSLA 2010. Pp. 444–463. ACM, 2010.

[Mar94] K. Marriott. Constraint multiset grammars. In Visual Languages, 1994. Proceed-
ings., IEEE Symposium on. Pp. 118–125. 1994.

[MHS05] M. Mernik, J. Heering, A. M. Sloane. When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4):316–344, 2005.

[Min02] M. Minas. Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Science of Computer Programming 44(2):157–180, 2002.

[Min06] M. Minas. Generating meta-model-based freehand editors. In Proc. of 3rd Intl.
Workshop on Graph Based Tools. Electronic Communications of the EASST, 2006.

Proc. GTVMT 2013 12 / 13

ECEASST

[RS97] J. Rekers, A. Schürr. Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages and Computing 8(1):27–55, 1997.

[SCK09] C. Schmidt, B. Cramer, U. Kastens. Generating visual structure editors from high-
level specifications. Technical report, 2009.

[SH12] E. Söderberg, G. Hedin. Incremental Evaluation of Reference Attribute Grammars
using Dynamic Dependency Tracking. Technical Report 98, Lund University, April
2012. LU-CS-TR:2012-249, ISSN 1404-1200.

[Wil04] D. S. Wile. Lessons learned from real DSL experiments. Sci. Comput. Program.
51(3):265–290, 2004.

13 / 13 Volume 58 (2013)

	Introduction
	JastAdd
	PicoDiagram—A Visual Control Language
	Tank Regulator Example
	Textual Syntax and Declaration Order

	Execution Order
	Defining the Sink Tree
	Implementing the Sink Tree as Attributes

	Reusing Attributes in the Editor
	Evaluation
	Related Work
	Conclusion

