
Electronic Communications of the EASST

Volume 62 (2013)

Specification, Transformation, Navigation

Special Issue dedicated to Bernd Krieg-Brückner

on the Occasion of his 60th Birthday

Graph Tuple Transformation

Hans-Jörg Kreowski and Sabine Kuske

23 pages

Guest Editors: Till Mossakowski, Markus Roggenbach, Lutz Schröder

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Graph Tuple Transformation

Hans-Jörg Kreowski1 and Sabine Kuske2∗

1 kreo@informatik.uni-bremen.de, http://www.informatik.uni-bremen.de/theorie
2kuske@informatik.uni-bremen.de,http://www.informatik.uni-bremen.de/∼kuske

Department of Computer Science

University of Bremen, Germany

Abstract: Graph transformation units are rule-based devices to model and compute

relations between initial and terminal graphs. In this paper, they are generalized to

graph tuple transformation units that allow one to combine different kinds of graphs

into tuples and to process the component graphs simultaneously and interrelated

with each other. Moreover, one may choose some of the working components as

inputs and some as outputs such that a graph tuple transformation unit computes

a relation between input and output tuples of potentially different kinds of graphs

rather than a binary relation on a single kind of graphs.

Keywords: Graph transformation, transformation units, graph tuples

1 Introduction

For some decades, many software engineers have dreamt about system development in such a

way that data processing problems and their solution are modeled by means suitable for the ap-

plication domain and then transformed into smoothly and efficiently running and trustworthy

programs. This idea has been discussed under various headings like program transformation and

stepwise refinement (see, e.g., Wirth [Wir71] and Basin and Krieg-Brückner [BK99]). Nowa-

days the term model transformation is quite popular referring to the transformation of platform-

independent models into platform-dependent models (see, e.g., Frankel [Fra03]). As the former

ones are often assumed to be visual models like UML diagrams or Petri nets, some researchers

have proposed graph transformation as a framework for the description of visual models as well

as their transformation (see, e.g., [LT04, Küs06, EEE+07, KKS07, VB07, EE08]).

In this paper, we try to enhance the usefulness of graph transformation as a base of model

transformation by introducing the concept of graph tuple transformation offering the parallel

processing of graph components of arbitrary tuples. The basic idea is that a visual model of

a software system usually does not consist of a single diagram, but of a family of interrelated

diagrams which is better covered by a graph tuple than a single graph. Our particular motivation

is the observation that the area of theoretical computer science provides a wealth of model trans-

formation examples like the transformation of automata into grammars, grammars into some

normal forms, formulas into graphs, etc. where most involved models are tuples of some kind

and their transformation often consists of transformations of the tuple components. We hope

∗ Research partially supported by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic Pro-

cesses: A Paradigm Shift and Its Limitations) funded by the German Research Foundation (DFG).

1 / 23 Volume 62 (2013)

mailto:kreo@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/theorie
mailto:kuske@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/~kuske

Graph Tuple Transformation

that it is worthwhile to exploit the experiences of model transformation in theoretical computer

science.

In more explicit terms, graph transformation units are generalized to graph tuple transforma-

tion units. A graph transformation unit consists of specifications of initial and terminal graphs, a

set of rules, a set of imported graph transformation units, and a control condition. The semantics

is a relation between initial and terminal graphs obtained by the interleaving of rule applications

and calls of imported units in such a way that the control condition holds. If the initial and

terminal graphs are models of some kind, a graph transformation unit specifies a model trans-

formation. Graph transformation units do not depend on specific rule classes, specific classes

of graph class specifications or particular classes of control conditions, i.e., their components

can be taken from an arbitrary graph transformation approach consisting of a graph class, a rule

class, a class of graph class expressions, and a class of control conditions.

The basic components of graph transformation units are recalled in the following section (see

[KK99, KKR08] for more details). The generalization to tuples of graphs is introduced in Sec-

tion 3. The component graphs may be of different kinds like directed or undirected graphs. They

may use different label alphabets. Or they may be of special forms representing strings, numbers

or truth values for example. Corresponding to the different kinds of component graphs, there can

be different kinds of rules available for the various components. The transformation of graph tu-

ples is based on actions being tuples of rules, which can be applied in parallel to the component

graphs. To get more flexibility, we allow also actions where rules may be replaced by calls of

units or by the special symbol −. The latter means that nothing happens in the respective com-

ponents. The former replaces a single rule application by an auxiliary computation of another

unit. Moreover, a mechanism is provided that allows one to choose some of the components of

the graph tuples processed by actions as inputs and some as outputs. Respectively, the semantics

of a graph tuple transformation unit is a relation between input tuples and output tuples given

by an iterated execution of actions. All new concepts are illustrated by various aspects of the

recognition of strings by finite automata. A short and preliminary version of this paper appeared

as [KKK04].

2 Graph Transformation

In this section we recall the main concepts of graph transformation like graphs, rules and graph

transformation units and illustrate them with various small examples. In the literature one can

find many more applications of graph transformation which stress the usefulness from the prac-

tical point of view. These are for example applications from the area of functional languages

([PE93, SPE93]), visual languages (e.g. [BMST99, EG07]), software engineering ([Nag96]),

UML (e.g. [BKPT00, EHHS00, FNTZ00, PS00, EHK01, Kus01, KGKZ09, HZG06]), and agent

systems (e.g. [Jan99, DHK02, GK07, TKKT07]).

Graph transformation comprises devices for the rule-based manipulation of graphs. Given a

set of graph transformation rules and a set of graphs, one gets a graph transformation system in

its simplest form. Such a system transforms a start graph by applying its graph transformation

rules. The semantics can be defined as a binary relation on graphs where the first component of

every pair is some start graph G and the second component is a graph derived from G by applying

Festschrift Bernd Krieg-Brückner 2 / 23

ECEASST

a sequence of graph transformation rules. In general, the application of a graph transformation

rule to a graph transforms it locally, i.e., it replaces a part of the graph with another graph part.

Often one wishes to start a derivation only from certain initial graphs, and to accept as results

only those derived graphs that are terminal. Moreover, in some cases the derivation process

should be regulated in a certain way to cut down the nondeterminism of rule applications. For

example, one may employ a parallel mode of transformation as in L systems, or one may restrict

the order in which rules are applied. Graph class expressions and control conditions are suitable

to restrict the derivation process where the former allow to choose initial and terminal graphs

and the latter require certain derivation steps and forbid others. Altogether, graphs, rules, their

application, graph class expressions, and control conditions are the basic elements of a so-called

graph transformation approach.

2.1 Graphs

One of the most elementary components of a graph transformation system is a class of graphs G .

The graphs of G can be directed or undirected, typed or untyped, labeled or unlabeled, simple

or multiple. Examples for graph classes are labeled directed graphs, hypergraphs, trees, forests,

state graphs of finite automata, Petri nets, etc. The choice of graphs depends on the kind of

applications one has in mind and is a matter of taste.

In this paper, we consider directed, edge-labeled graphs with individual, multiple edges. A

graph is a construct G = (V,E,s, t, l) where V is a finite set of nodes, E is a finite set of edges,

s, t : : E → V are two mappings assigning each edge e ∈ E a source s(e) and a target t(e), and

l : E → C is a mapping labeling each edge in a given finite label alphabet C. A graph may be

represented in a graphical way with circles as nodes and arrows as edges that connect source and

target each, with the arrowhead pointing to the target. The labels are placed next to the arrows.

In the case of a loop, i.e., an edge with the same node as source and target, we may draw a flag

that is posted on its node with the label inside the box. To cover unlabeled edges as a special

case, we assume a particular label ∗ that is invisible in the drawings.

For instance, the graph in Figure 1 is a state graph of a finite deterministic automaton where

the edges labeled with a and b represent transitions, and the sources and targets of the transitions

represent states. The start state is indicated with a start-flag and every final state with a final-flag.

Moreover there is a flag labeled with current at the current state of the state graph of the finite

deterministic automaton.

start

final

final

current

a

a

a

b

b b

Figure 1: The state graph of a deterministic finite automaton

3 / 23 Volume 62 (2013)

Graph Tuple Transformation

Two further instances of graphs are shown in Figure 2. The left one consists of five nodes and

six directed edges (two of which are represented as flags). It is a string graph which represents

the string abba. The beginning of the string is indicated with the begin-flag at the source of the

leftmost a-edge. Analogously, there is an end-flag at the end of the string, i.e., at the target of the

rightmost a-edge.

a b b a
begin end begin end

Figure 2: A string graph (left) and a 4-string graph (right)

If one takes this string graph and removes all occurrences of the labels a and b, one gets the

string graph on the right of Figure 2 which is a graph that is a simple unlabeled path from a

begin-flagged node to an end-flagged node. Such string graphs can be used to represent natural

numbers. Hence, the right string graph in Figure 2 represents the number 4 because it has four

unlabeled edges between its begin-flagged and its end-flagged node. Whenever a string graph

represents a natural number k in this way, we say that it is the k-string graph.

A graph morphism g from a graph L = (V,E,s, t, l) to a graph G = (V ′
,E ′

,s′, t ′, l′) is a pair

of mappings (gV (: V → V ′
,gE : E → E ′) that is structure and label preserving, i.e., gV (s(e)) =

s′(gE(e)), gV (t(e)) = t ′(gE(e)), and l(e) = l′(gE(e)). The graph morphism g is injective if gV

and gE are injective.

2.2 Rules and Rule Applications

To be able to transform the graphs in G , rules are applied to the graphs yielding graphs. Given

some class R of graph transformation rules, each rule r ∈ R defines a binary relation =⇒
r

⊆

G ×G on graphs. If G=⇒
r

H , one says that G directly derives H by applying r.

There are many possibilities to choose rules and their applications. Rule classes may vary

from the more restrictive ones, like edge replacement [DHK97] or node replacement [ER97], to

the more general ones, like double-pushout rules (Corradini, Ehrig, Löwe, Montanari, and Rossi

[CEH+97]), single-pushout rules (Ehrig, Heckel, Korff, Löwe, Ribeiro, Wagner, and Corradini

[EHK+97]), or PROGRES rules (Schürr [Sch97]). In general, all rule classes contain at least a

left-hand side which specifies the part that should be deleted from the graph to which the rule is

applied, and a right-hand side which determines the items that should be added to the graph.

In the examples of this paper, we use a simplified form of double-pushout rules, but it is worth

noting that our approach works for arbitrary rule classes. Every rule (of this simplified rule class)

is a triple r = (L,K,R) where L and R are graphs (the left- and right-hand side of r, respectively)

and K is a set of nodes shared by L and R. In graphical representations, L and R are drawn as

usual, with numbers uniquely identifying the nodes in K. Its application means to replace an

occurrence of L with R such that the common part K is kept.

A rule r = (L,K,R) can be applied to some graph G directly deriving the graph H if H can

Festschrift Bernd Krieg-Brückner 4 / 23

ECEASST

be constructed up to isomorphism (i.e., up to the renaming of nodes and edges) in the following

way.

1. Find an injective graph morphism g from L to G, i.e. a subgraph g(L) that coincides with

L up to the naming of nodes and edges.

2. Remove all nodes and edges of g(L−K), i.e., all nodes and edges of g(L) except the nodes

corresponding to K, provided that the remainder is a graph (which holds if the removal of

a node is accompanied by the removal of all its incident edges).

3. Add R by merging each node v in K with its image g(v) in G.

For example, the rule go(a) in Figure 3 has as left-hand side a graph consisting of an a-edge

from node 1 to node 2 and a current-flag at node 1. The right-hand side consists of node 1,

node 2, the a-edge and a new current-flag at the target of the a-edge. The common part of go(a)
consists of nodes 1 and 2 as well as of the a-edge. The rule go(a) moves a current-flag from

the source of some a-labeled edge to the target of this edge. Its application to the state graph in

Figure 1 results in the same state graph except that the current state is changed to the start state.

go(a) : current
1 2

a

current
1 2

a

::=

Figure 3: The rule go(a)

Another example of a rule is shown in Figure 4. It has as left-hand side a graph consisting of

an a-edge and a begin-flag. The right-hand side consists of the target of a new begin-flag at the

target of the a-edge. The common part of the rule read(a) consists of the target of the a-edge.

The rule read(a) can be applied to the left string graph in Figure 2. Its application deletes the

begin-flag and the leftmost a-edge together with its source. It adds a new begin-flag at the target

of the a-edge. The resulting string graph represents the string bba.

read(a) :

begin

1

a
::=

begin

1

Figure 4: The rule read(a)

2.3 Graph Class Expressions

The aim of graph class expressions is to restrict the class of graphs to which certain rules may be

applied or to filter out a subclass of all the graphs that can be derived by a set of rules. Typically, a

graph class expression may be some logic formula describing a graph property like connectivity,

5 / 23 Volume 62 (2013)

Graph Tuple Transformation

or acyclicity, or the occurrence or absence of certain labels. In this sense, every graph class

expression e specifies a set SEM(e) of graphs in G .

For instance, all refers to all directed, edge-labeled graphs, whereas empty designates the

class consisting of the empty graph EMPTY. Every graph G ∈ G is also a graph class expression

specifying itself. In particular, we also use the graph class expression dfsg specifying all state

graphs of deterministic finite automata as well as the expression START specifying all graphs in

SEM(dfsg) where the current state is the start state. Moreover, the expressions string and nat

specify the set of all string graphs and the set of all k-string graphs, respectively. A further graph

class expression used in the following is bool which specifies the two graphs TRUE and FALSE.

Both graphs consist of a single node with a flag that is labeled true and false, respectively:

TRUE = true FALSE = false

A particular kind of a graph class expression is given by a single graph TYPE ∈ G specifying

the class SEM(TYPE) of all graphs that can be mapped homomorphically to TYPE. These graphs

are called typed graphs in, e.g., [EEPT06].

It is meaningful to require that graph class expressions are decidable, i.e., for any graph class

expression e and any graph G there should be an algorithm that decides whether G ∈ SEM(e). It

is worth noting that this is the case in the presented examples.

2.4 Control Conditions

A control condition is an expression that determines, for example, the order in which rules may

be applied. Semantically, it relates start graphs with graphs that result from an admitted trans-

formation process. In this sense, every control condition c specifies a binary relation SEM(c) on

G . As control condition we use in particular the expression true that allows all transformations

(i.e., all pairs of graphs). Moreover, we use regular expressions as control conditions. They de-

scribe in which order and how often the rules and imported units are to be applied. In particular,

for control conditions C, C1, and C2 the expression C1;C2 specifies the sequential composition

of both semantic relations, C1|C2 specifies the union, and C∗ specifies the reflexive and transi-

tive closure, i.e., SEM(C1;C2) = SEM(C1)◦SEM(C2), SEM(C1|C2) = SEM(C1)∪SEM(C2), and

SEM(C∗) = SEM(C)∗. Moreover, for a control condition C the expression C! requires to apply

C as long as possible, i.e., SEM(C) consists of all pairs (G,H) ∈ SEM(C)∗ such that there is no

H ′ with (H,H ′)∈ SEM(C). In the following the control condition C1| · · · |Cn will also be denoted

by {C1, . . . ,Cn}.

For example, let C1, C2, and C3 be control conditions that specify binary relations on graphs

of a certain type. Then the expression C1!;C∗
2 ;(C3|C1) prescribes to apply first C1 as long as

possible, then C2 arbitrarily often, and finally C3 or C1 exactly once. The precise meaning of a

regular expression is explained where it is used. More about control conditions can be found in,

e.g., [Kus00, HP01, HKK08].

2.5 Transformation Units

A class of graphs, a class of rules, a rule application operator, a class of graph class expressions,

and a class of control conditions form a graph transformation approach based on which graph

Festschrift Bernd Krieg-Brückner 6 / 23

ECEASST

transformation units as a unifying formalization of graph grammars and graph transformation

systems can be defined. More precisely, a graph transformation approach is defined as A =
(G ,R,=⇒,X ,C) where G is a graph class, R is a rule class, =⇒ is a rule application operator

which provides a rule application relation =⇒
r

⊆ G ×G for each r ∈ R, X is a class of graph

class expressions with SEM(e) ⊆ G for all e ∈ X , and C is a class of control conditions with

SEM(c) ⊆ G ×G for all c ∈ C . In the following, the components G , R, =⇒, X , and C of an

approach A are also denoted by GA , RA , =⇒
A

, XA , and CA , respectively.

In general, a graph transformation system may consist of a huge set of rules that by its size

alone is difficult to manage. Transformation units provide a means to structure the transforma-

tion process. The main structuring principle of transformation units relies on the import of other

transformation units or – on the semantic level – of binary relations on graphs. The input and the

output of a transformation unit each consist of a class of graphs that is specified by a graph class

expression. The input graphs are called initial graphs and the output graphs terminal graphs. A

transformation unit transforms initial graphs to terminal graphs by interleaving the applications

of graph transformation rules and imported transformation units. Since rule application is non-

deterministic in general, a transformation unit contains a control condition that may regulate the

graph transformation process.

Let A = (G ,R,=⇒,X ,C) be a graph transformation approach. A graph transformation

unit over A is a system gtu = (I,U,R,C,T) where I and T are graph class expressions in X , U

is a (possibly empty) set of imported graph transformation units over A , R is a set of rules in R,

and C is a control condition in C .

To simplify technicalities, we assume that the import structure is acyclic (for a study of cyclic

imports see [KKS97]). Initially, one builds units of level 0 with empty import. Then units of

level 1 are those that import only units of level 0 but at least one, and units of level n+1 import

only units of level 0 to level n, but at least one from level n.

In graphical representations of transformation units we omit the import component if it is

empty, the initial or terminal component if it is set to all, and the control condition if it is equal

to true, meaning that there is no restriction.

In the following, we present some simple examples of transformation units specifying natural

numbers and truth values. The latter are used in Subsection 3.5 as an auxiliary data type to model

the more interesting examples concerning finite automata. The control condition of each example

unit in this section is equal to true. The examples in Subsection 3.5 contain more sophisticated

control conditions.

The first transformation unit nat0 depicted in Figure 5 constructs all string graphs that repre-

sent natural numbers by starting from its initial graph, which represents 0, and transforming the

n-string graph into the n+1-string graph by applying the rule succ.

The second transformation unit nat1 shown in Figure 6 is a variant of nat0, but now with all n-

string graphs as initial graphs. Consequently, it describes arbitrary additions to arbitrary n-string

graphs by sequentially increasing the represented numbers by 1.

The third transformation unit nat2 is shown in Figure 7. It also transforms string graphs into

string graphs. It has two rules pred and is-zero. The application of the rule pred to the n-string

graph (with n ≥ 1 since otherwise the rule cannot be applied) converts it into the n− 1-string

graph. The second rule is-zero can be applied only to the 0-string graph but does not transform

7 / 23 Volume 62 (2013)

Graph Tuple Transformation

nat0

initial: begin end

1

rules:

succ :
end

1

::=
end

1

Figure 5: The transformation unit nat0

nat1

initial: nat

rules:

succ :
end

1

::=
end

1

Figure 6: The transformation unit nat1

it, which means that this rule can be used as a test for 0.

The transformation unit nat2 imports nat1 so that arbitrary additions can be performed, too.

The rules of nat2 and the imported unit nat1 can be applied in arbitrary order and arbitrarily

often. Hence nat2 converts n-string graphs into m-string graphs for natural numbers m, n. There-

fore nat2 can be considered as a data type representing natural numbers with a simple set of

operations. Our model of the natural numbers is very simple providing just a graphical variant

nat2

initial: nat

uses nat1

rules:

pred :
end

1

::=
end

1

is− zero :
begin end

1

::= begin end

1

Figure 7: The transformation unit nat2

Festschrift Bernd Krieg-Brückner 8 / 23

ECEASST

of the unary representation with the possibility to increase and to decrease a number by 1 as well

as to test for 0. A more sophisticated model of natural numbers is not needed in this paper.

The fourth transformation unit bool0 = (empty, /0,generate-true, true,bool) in Figure 8 has a

single initial graph, the empty graph EMPTY. It does not import other transformation units and it

has one rule generate-true which turns EMPTY to the graph TRUE. The control condition allows

all transformations, meaning that TRUE may be added arbitrarily often to EMPTY. However, the

terminal graph class expression bool ensures that the rule generate-true is applied exactly once to

the initial graph. One can consider bool0 as a unit that describes the type Boolean in its simplest

form. At first sight, this may look a bit strange. But it is quite useful if one wants to specify

predicates on graphs by nondeterministic graph transformation: If one succeeds to transform an

input graph into the graph TRUE, the predicate holds; otherwise it fails. In other words, if the

predicate does not hold for the input graph, none of its transformations yields TRUE.

bool0

initial: empty

rules:

generate-true : empty ::=
true

1

terminal: bool

Figure 8: The transformation unit bool0

2.6 Interleaving Semantics of Transformation Units

Transformation units transform initial graphs to terminal graphs by applying graph transforma-

tion rules and imported transformation units so that the control condition is satisfied. Hence,

the semantics of a transformation unit can be defined as a binary relation between initial and

terminal graphs.

For example, the interleaving semantics of the transformation unit nat2 consists of all pairs

(G,G′) such that G is a k-string graph and G′ is an l-string graph (for some k, l ∈N). In general,

for a transformation unit gtu without import, the semantics of gtu consists of all pairs (G,G′) of

graphs such that

1. G is an initial graph and G′ is a terminal graph;

2. G′ is obtained from G via a sequence of rule applications, i.e., (G,G′) is in the reflexive

and transitive closure of the binary relation obtained from the union of all relations =⇒
r

where r is some rule of gtu; and

3. the pair (G,G′) is allowed by the control condition.

If the transformation unit gtu has a non-empty import, the interleaving semantics of gtu consists

of all pairs (G,G′) of graphs which satisfy the preceding items 1 and 3, and where, in addition

9 / 23 Volume 62 (2013)

Graph Tuple Transformation

to rules, imported transformation units can be applied in the transformation process of gtu, i.e.,

the second item above is extended to:

2’. G′ is obtained from G via a sequence of rule applications and applications of imported

units. This means that (G,G′) is in the reflexive and transitive closure of the binary relation

obtained from the union of all relations =⇒
r

and SEM(u) where r is some rule of gtu and

u is some imported transformation unit of gtu.

More formally, the interleaving semantics of gtu is defined as follows. Let gtu = (I,U,R,C,T)
be a transformation unit. Then the interleaving semantics SEM(tu) is recursively defined as

SEM(tu) = SEM((I,U,R,C,T)) =
SEM(I)×SEM(T)∩ (

⋃
r∈R=⇒

r
∪
⋃

u∈U SEM(u))∗∩SEM(C).

If the transformation unit gtu is of level 0, the semantic relation is well-defined because the

union over U is the empty set. If gtu is of level n+1, we can inductively assume that SEM(u) of

each imported unit u is already well-defined, so that SEM(tu) is also well-defined as a union and

intersection of defined relations.

3 Graph Tuple Transformation

Graph transformation in general transforms graphs into graphs by applying rules, i.e. in every

transformation step a single graph is transformed with a graph transformation rule. In graph

tuple transformation, this operation is extended to tuples of graphs. This means that in every

transformation step a tuple of graphs is transformed with a tuple of rules. The graphs, the rules,

and the ways the rules have to be applied are taken from a so-called tupling base which consists

of a tuple of rule bases where a rule base B = (G ,R,=⇒) is a graph transformation approach

without control conditions and graph class expressions.

3.1 Basic Actions

The iterated application of rules transforms graphs into graphs yielding an input-output relation

on graphs. But in many applications one would like to consider several inputs and maybe even

several outputs, or at least an output of a type different from all inputs. In order to reach such an

extra flexibility, we introduce in this section the transformation of tuples of graphs, which is the

most basic operation of the graph tuple transformation units presented in Subsection 3.4.

Graph tuple transformation over a tupling base is an extension of ordinary rule application in

the sense that graphs of different classes can be transformed in parallel. For example to check

whether some string can be recognized by a deterministic finite automaton, one can transform

three graphs in parallel: The first graph is a string graph representing the string to be recog-

nized, the second graph is a state graph of a deterministic finite automaton, and the third graph

represents the boolean value false. To recognize the string one applies a sequence of rule appli-

cations which consume the string graph while the corresponding transitions of the deterministic

finite state graph are traversed. If after reading the whole string the current state is a final state,

Festschrift Bernd Krieg-Brückner 10 / 23

ECEASST

the third graph is transformed into a graph representing true. This example will be explicitly

modeled in Subsection 3.5.

In graph tuple transformation, tuples of rules are applied to tuples of graphs. A tuple of rules

may also contain the symbol − in some components where no change is desired. The graphs

and the rules are taken from a tupling base, which is a tuple of rule bases TB = (B1, . . . ,Bn).
Let (G1, . . . ,Gn) and (H1, . . . ,Hn) be graph tuples over TB, i.e. Gi,Hi ∈ GBi

for i = 1, . . . ,n. Let

a = (a1, . . . ,an) with ai ∈ RBi
or ai = − for i = 1, . . . ,n. Then (G1, . . . ,Gn)−→

a
(H1, . . . ,Hn) if

for i = 1, . . . ,n, Gi=⇒
ai

Hi if ai ∈ RBi
and Gi = Hi if ai = −. In the following we call a a basic

action of TB. For a set ACT of basic actions of TB, −→
ACT

denotes the union
⋃

a∈ACT −→
a

, and

∗
−→
ACT

its reflexive and transitive closure.

For example, let I be some finite alphabet and let Bbasic
string = (STRING,{read(x) | x ∈ I},=⇒)

and Bbasic
dfsg = (DFSG,{go(x) | x ∈ I},=⇒) be two rule bases such that STRING consists of all

string graphs over some alphabet I and DFSG consists of all state graphs of deterministic finite

automata over I. Let (abba)• be the left string graph of Figure 2, let gr(A,v0) be the state graph in

Figure 1 where A denotes the corresponding finite automaton and v0 is the node with the current-

flag. Then ((abba)•,gr(A,v0))−→
a
((bba)•,gr(A,v1)) for the basic action a = (read(a),go(a))

of tupling base (Bbasic
string,B

basic
dfsg) where v1 is the node with the start-flag.

The transformation of graph tuples via a sequence of basic actions is equivalent to the transfor-

mation of tuples of graphs where every component is transformed independently with a sequence

of direct derivations of the corresponding component. This is expressed in the following propo-

sition.

Proposition 1 Let ACT be the set of all basic actions of TB = (B1, . . . ,Bn). Then

(G1, . . . ,Gn)
∗

−→
ACT

(H1, . . . ,Hn)

if and only if Gi
∗

=⇒
RBi

Hi for i = 1, . . . ,n.

3.2 Graph Tuple Class Expressions

Similarly to graph class expressions, the aim of graph tuple class expressions is to restrict the

class of graph tuples to which certain transformation steps may be applied, or to filter out a

subclass of all the graph tuples that can be obtained from a transformation process. Typically, a

graph tuple class expression may be some logic formula describing a tuple of graph properties

like connectivity, or acyclicity, etc. Formally, every graph tuple class expression e over a tupling

base TB = (B1, . . . ,Bn) specifies a set SEM(e) ⊆ GB1
×·· ·×GBn

of graph tuples in TB. As

graph class expressions, graph tuple class expressions should be decidable.

In many cases, such a graph tuple class expression will be a tuple e = (e1, . . . ,en) where the

ith item ei restricts the graph class GBi
of the rule base Bi, i.e. SEMBi

(ei)⊆ GBi
for i = 1, . . . ,n.

Consequently, the semantics of e is SEMB1
(e1)× ·· · × SEMBn

(en). Hence, each item ei is a

graph class expression as defined for transformation units in Section 2.

11 / 23 Volume 62 (2013)

Graph Tuple Transformation

A typical example of a graph tuple class expression over the tupling base TB3 = (B,B,B)
for some rule base B is the relation of the component graphs of the triple of graphs as used

in triple graph grammars [Sch94, SK08]. Let triple be a constant expression, then SEM(triple)
consists of all triples of graphs (G1,G2,G3) such that G2 is subgraph of G1 and G3 as well.

The graph tuple class expressions mainly used in this paper are tuples of graph class ex-

pressions. A simple example of a graph tuple class expression is (e1, . . . ,en) with ei = all for

i = 1, . . . ,n which does not restrict the graph classes of the rule bases, i.e. SEM((e1, . . . ,en)) =
GB1

×·· ·×GBn
.

3.3 Control Conditions for Graph Tuple Transformation

Similarly to control conditions in graph transformation units, a control condition for graph tuple

transformation is an expression that determines, for example, the order in which transformation

steps may be applied to graph tuples. Semantically, it relates tuples of start graphs with tuples of

graphs that result from an admitted transformation process. In this sense, every control condition

C over a tupling base TB specifies a binary relation SEM(C) on the set of graph tuples in TB.

More precisely, for a tupling base TB = (B1, . . . ,Bn) SEM(C) is a subset of (GB1
×·· ·×GBn

)2.

As control conditions we use in particular actions, regular expressions over control conditions

(i.e. sequential composition, union, and iteration of control conditions), as well as the expres-

sion as-long-as-possible (abbreviated with the symbol !). An action prescribes which rules or

imported units should be applied to a graph tuple, i.e. an action is a control condition that allows

one to synchronize different transformation steps. The basic actions of Subsection 3.1 are exam-

ples of actions. Roughly speaking, an action over a tupling base TB = (B1, . . . ,Bn) is a tuple

act = (a1, . . . ,an) that specifies an n,n-relation SEM(act)⊆ (GB1
×·· ·×GBn

)2. Actions will be

explained in detail in Subsection 3.4.

3.4 Graph Tuple Transformation Units

Graph tuple transformation units provide a means to structure the transformation process from a

tuple of input graphs to a tuple of output graphs. More precisely, a graph tuple transformation

unit transforms k-tuples of graphs into l-tuples of graphs such that the graphs in the k-tuples as

well as the graphs in the l-tuples may be of different types. Hence, a graph tuple transformation

unit specifies a k, l-relation on graphs. Internally, a graph tuple transformation unit transforms

n-tuples of graphs into n-tuples of graphs, i.e. it specifies internally an n,n-relation on graphs.

The transformation of the n-tuples is performed according to a tupling base which is specified in

the declaration part of the unit. The k, l-relation is obtained from the n,n-relation by embedding

k input graphs into n initial graphs and by projecting n terminal graphs onto l output graphs. The

embedding and the projection are also given in the declaration part of a unit.

Graph tuple transformation units generalize the notion of triple grammars as introduced by

Schürr [Sch94] which in turn are a generalization of pair grammars studied by Pratt [Pra71].

Tupling bases, graph tuple class expressions, and control conditions form the ingredients of

graph tuple transformation units. Moreover, the structuring of the transformation process is

achieved by an import component, i.e. every unit may import a set of other units. The transfor-

mations offered by an imported unit can be used in the transformation process of the importing

Festschrift Bernd Krieg-Brückner 12 / 23

ECEASST

unit.

The basic operation of a graph tuple transformation unit is the application of an action, which

is a transformation step from one graph tuple into another where every component of the tuple is

modified either by means of a rule application, or is set to some output graph of some imported

unit, or remains unchanged. Since action application is nondeterministic in general, a transfor-

mation unit contains a control condition that may regulate the graph tuple transformation process.

Moreover, a unit contains an initial graph tuple class expression and a terminal graph tuple class

expression. The former specifies all possible graph tuples a transformation may start with and

the latter specifies all graph tuples a transformation may end with. Hence, every transformation

of an n-tuple of graphs with action sequences has to take into account the control condition of

the unit as well as the initial and terminal graph tuple class expressions.

A tuple of sets of rules, a set of imported units, a control condition, an initial graph tuple

class expression, and a terminal graph tuple class expression form the body of a graph tuple

transformation unit. All components in the body must be consistent with the tupling base of the

unit.

Formally, let TB = (B1, . . . ,Bn) be a tupling base. A graph tuple transformation unit gttu

with tupling base TB is a pair (decl,body) where decl is the declaration part of gttu and body

is the body of gttu. The declaration part is of the form in → out on TB where in : [k]→ [n] and

out : [l] → [n] are mappings with k, l ∈ N.1 The body of gttu is a system body = (I,U,R,C,T)
where I and T are graph tuple class expressions over TB, U is a set of imported graph tuple

transformation units, R is a tuple of rule sets (R1, . . . ,Rn) such that Ri ⊆ RBi
for i = 1, . . . ,n, and

C is a control condition over TB. The numbers k and l of gttu are also denoted by kgttu and lgttu.

Moreover, the ith input class GBin(i)
of gttu is also denoted by ingttu(i) for i = 1, . . . ,k and the jth

output class GBout(j)
by outgttu(j) for j = 1, . . . , l.

As in the case of graph transformation units, we assume that the import structure of graph

tuple transformation units is acyclic.

3.5 Examples of Graph Tuple Transformation Units

In the following we illustrate the concept of graph tuple transformation units with examples from

the area of automata theory.

Example 1 The tupling base of the following example of a transformation unit is the tuple

(Bstring,Bdfsg,Bbool). The rule base Bstring is (STRING,{read(x) | x ∈ I}∪ {is-empty},=⇒),
where the rule is-empty checks whether the graph to which it is applied represents the empty

string. It has equal left- and right-hand sides consisting of a node with an begin- and an end-flag.

is-empty :
begin end

1

::= begin end

1

The rule base Bdfsg is (DFSG,{go(x) | x ∈ I} ∪ {is-final},=⇒). The rule is-final checks

whether the current state of a deterministic finite state graph is a final state, resetting it to the

start state in that case, and can be depicted as follows.

1 For a natural number n ∈ N, [n] denotes the set {1, . . . ,n}.

13 / 23 Volume 62 (2013)

Graph Tuple Transformation

is-final :

start final

current

1 2 start final

current

1 2

::=

The rule base Bbool contains the graph class bool which consists of the two graphs TRUE and

FALSE.

The class of rules of Bbool consists of the four rules

set-to-true :
1

false ::=
1

true is-true :
1

true ::=
1

true

set-to-false :
1

true ::=
1

false is-false :
1

false ::=
1

false

where set-to-true changes a false-flag into a true-flag, set-to-false does the same the other way

round, is-true checks whether a graph of type bool is equal to TRUE, and is-false checks the

same for FALSE.

Now we can define the unit recognize shown in Figure 9. It has as input graphs a string graph

recognize

decl (string,dfsg,−)→ (−,−,bool) on (Bstring,Bdfsg,Bbool)

initial (string,START,FALSE)

rules (RBstring
,RBdfsg

,{set-to-true})

cond a1!;a2! where
a1 = {(read(x),go(x),−) | x ∈ I} and

a2 = (is-empty, is-final,set-to-true)

terminal (string,dfsg,bool)

Figure 9: A unit with empty import

and a state graph of a deterministic finite automaton and as output graph a boolean value. The

mapping in of the declaration part of recognize is defined by in : [2] → [3] with in(1) = 1 and

in(2) = 2. We use the more intuitive tuple notation (string,dfsg,−) for this. The mapping out

is denoted by (−,−,bool) which means that out : [1] → [3] is defined by out(1) = 3. Hence,

inrecognize(1) = STRING, inrecognize(2) = DFSG, and outrecognize(1) = bool.

The initial graph tuple class expression is (string,START,FALSE), i.e. it admits all triples

(G1,G2,G3) ∈ STRING×DFSG× bool where the current-edge of G2 points to the start state

and G3 is equal to FALSE. The rules are restricted to the tuple

(RBstring
,RBdfsg

,{set-to-true}).

Hence, just one rule from Bbool is admitted. The control condition requires to apply first the

action a1 as long as possible and then the action a2 as long as possible, where a1 applies read(x)
to the first component of the current graph tuple and go(x) to the second component (for any

x ∈ I). The action a2 sets the third component to TRUE if the current string is empty, the current

Festschrift Bernd Krieg-Brückner 14 / 23

ECEASST

state of the state graph is a final state, and the third component is equal to FALSE. This is the

case where the string represented by the input string graph can be recognized by the automaton

corresponding to the input state graph. Note that a2 can be applied at most once because of

set-to-true, and only in the case where a1 cannot be applied anymore because of is-empty. In

particular, if the string of the input string graph cannot be recognized by the automaton, the

action a2 cannot be applied at all. The terminal graph tuple class expression does not restrict the

graph types of the tupling base, i.e. it is equal to (string,dfsg,bool). The unit recognize does not

import other units.

Example 2 The unit recognize-intersection shown in Figure 10 is an example of a unit with

a non-empty import component. It has as input graphs a string graph and two state graphs of

recognize-intersection

decl (string,dfsg,dfsg,−,−,−)→ (−,−,−,−,−,bool) on

(Bstring,Bdfsg,Bdfsg,Bbool,Bbool,Bbool)

initial (string,dfsg,dfsg,bool,bool,FALSE)

uses recognize

rules (/0, /0, /0,{is-true},{is-true},{set-to-true})

cond a1;a2! where
a1 = (−,−,−,recognize(1,2),recognize(1,3),−) and

a2 = (−,−,−, is-true, is-true,set-to-true)

terminal (string,dfsg,dfsg,bool,bool,bool)

Figure 10: A unit with imported units combined in an action

deterministic finite state automata. The output graph represents again a boolean value. The

tupling base of recognize-intersection is the six-tuple (Bstring,Bdfsg,Bdfsg,Bbool,Bbool,Bbool).
The mapping in of the declaration part requires to take a string graph from the first rule base

of the tupling base, one state graph from the second and one from the third rule base as input

graphs. The mapping out requires to take a graph from the last rule base as output graph.

The unit recognize-intersection imports the above unit recognize and has as local rules is-true

and set-to-true where is-true can be applied to the fourth and the fifth component of the current

graph tuples and set-to-true to the sixth component. The control condition requires the following.

1. Apply recognize to the first and the second component and write the result into the fourth

component and

2. apply recognize to the first and the third component and write the result into the fifth

component.

3. If then possible apply the rule is-true to the fourth and the fifth component and the rule

set-to-true to the sixth component.

This means that in the first point recognize is applied to the input string graph and the first

one of the input state graphs. In the second point recognize must be applied to the input string

15 / 23 Volume 62 (2013)

Graph Tuple Transformation

graph and to the second state graph of a deterministic finite automaton. These two transfor-

mations can be performed in parallel within one and the same action denoted by the tuple

(−,−,−,recognize(1,2),recognize(1,3),−). (The precise semantics of this action will be given

in the next subsection where actions and their semantics are introduced formally.) The rule ap-

plication performed in the third point corresponds to applying the basic action a2. Since the

initial graph tuple class expression requires that the sixth graph represent false, this means one

application due to set-to-true. The terminal graph tuple class expression admits all graph tuples

of the tupling base.

Example 3 Let I be the alphabet consisting of the symbols a,b, let L,La,Lb be regular lan-

guages, and let subst : I → P(I∗) be a substitution with subst(a) = La and subst(b) = Lb.

The aim of the following example is to model the recognition of the substitution language

subst(L) = {subst(w) | w ∈ L} based on a description of L,La,Lb by deterministic finite au-

tomata. (The model can of course be extended to arbitrarily large alphabets.)

First, consider the unit reduce shown in Figure 11. It takes a string graph and a state graph of

reduce

decl (string,dfsg)→ (string,−) on (Bstring,Bdfsg)

initial (string,START)

rules (RBstring
,RBdfsg

)

cond a1
∗;a2 where

a1 = {(read(x),go(x)) | x ∈ I} and

a2 = (−, is-final)

terminal (string,dfsg)

Figure 11: A unit that returns a modified input graph as output

a deterministic finite automaton as input, requiring through the initial component that the state

graph be in its start state. It then reduces the string graph by arbitrarily often applying actions of

the form (read(x),go(x)), i.e. by consuming an arbitrarily large prefix of the string and changing

states accordingly in the state graph, and returns the residue of the string graph as output, but

only if the consumed prefix is recognized by the state graph, i.e. only if the action (−, is-final) is

applied exactly once.

The unit recognize-substitution shown in Figure 12 makes use of reduce in order to decide

whether an input string graph is in the substitution language given as further input by three state

graphs of deterministic finite automata A,Aa,Ab that define L,La,Lb, in that order. Initially, the

state graphs must once again be in their respective start states and the value in the output com-

ponent is false. The idea is to guess, symbol by symbol, a string w ∈ L such that the input string

is in subst(w). If the next symbol is guessed to be a, the action (reduce(1,3),go(a),−,−,−)
is applied that runs Aa to delete a prefix belonging to La from the input string (reduce(1,3))
and simultaneously executes the next state transition for a in A (go(a)). The second action

(reduce(1,4),go(b),−,−,−) works analogously for the symbol b. Thus, recognize-substitution

is an example of a unit that combines an imported unit (reduce) and a rule (go(x)) in an action.

Festschrift Bernd Krieg-Brückner 16 / 23

ECEASST

recognize-substitution

decl (string,dfsg,dfsg,dfsg,−)→ (−,−,−,−,bool) on

(Bstring,Bdfsg,Bdfsg,Bdfsg,Bbool)

initial (string,START,START,START,FALSE)

uses reduce

rules ({is-empty},RBdfsg
, /0, /0,{set-to-true})

cond (a1|a2)
∗;a3 where

a1 = {(reduce(1,3),go(a),−,−,−),
a2 = {(reduce(1,4),go(b),−,−,−), and

a3 = (is-empty, is-final,−,−,set-to-true)

terminal (string,dfsg,dfsg,bool,bool,bool)

Figure 12: A unit with imported units combined in an action

Finally, a mandatory application of the action (is-empty, is-final,−,−,set-to-true) produces the

output value true, but only if the input string is completely consumed and A is in some final state.

It may be noted that even though the finite state graphs are deterministic, there are two sources

of nondeterminism in this model: The symbols of the supposed string w ∈ L must be guessed as

well as a prefix of the input string for each such symbol. Consequently, the model admits only

tuples with output TRUE in its semantics.

3.6 Semantics of Graph Tuple Transformation Units

Graph tuple transformation units transform initial graph tuples to terminal graph tuples by ap-

plying a sequence of actions so that the control condition is satisfied. Moreover, the mappings in

and out of the declaration part prescribe for every such transformation the input and output graph

tuples of the unit. Hence, the semantics of a graph tuple transformation unit can be defined as a

k, l-relation between input and output graphs.

Let gttu = (in → out on TB,(I,U,R,C,T)) be a graph tuple transformation unit with TB =
(B1, . . . ,Bn), in : [k] → [n], out : [l] → [n], and R = (R1, . . . ,Rn). If U = /0, gttu transforms

internally a tuple G ∈ GB1
×·· ·×GBn

into a tuple H ∈ GB1
×·· ·×GBn

if and only if

1. G is an initial graph tuple and H is a terminal graph tuple, i.e. (G,H)∈ SEM(I)×SEM(T);

2. H is obtained from G via a sequence of basic actions over (R1, . . . ,Rn), i.e. G
∗

−→
ACT (gttu)

H

where ACT (gttu) is the set of all basic actions a = (a1, . . . ,an) of TB such that for i =
1, . . . ,n, ai ∈ Ri if ai 6=− , and

3. the pair (G,H) is allowed by the control condition, i.e. (G,H) ∈ SEM(C).

If the graph tuple transformation unit gttu has a non-empty import, the imported units can also

be applied in a transformation from G to H . This requires that we extend the notion of basic

actions so that calls of imported units are allowed, leading to the notion of (general) actions.

17 / 23 Volume 62 (2013)

Graph Tuple Transformation

Formally, an action of gttu is a tuple a = (a1, . . . ,an) such that for i = 1, . . . ,n we have ai ∈ Ri,

or ai = −, or ai is of the form (u, input,out put) where u ∈U , input : [ku]→ [n] with GBinput(j)
⊆

inu(j) for j = 1, . . . ,ku, and out put ∈ [lu] with outu(out put) ⊆ GBi
. In the latter case, we denote

ai by u(input(1), . . . , input(ku))(out put), and shorter by u(input(1), . . . , input(ku)) if u has a

unique output, i.e. lu = 1 = out put.

The application of an action a = (a1, . . . ,an) to a current graph tuple of n graphs works as

follows: As for rule application, if ai is a rule of Ri, it is applied to the ith graph. If ai is equal

to −, the ith graph remains unchanged. The new aspect is the third case where ai is of the form

(u, input,out put). In this case, the mapping input : [ku] → [n] determines which graphs of the

current tuple of graphs should be chosen as input for the imported unit u. The output out put ∈ [lu]
specifies which component of the computed output graph tuple of u should be assigned to the ith

component of the graph tuple obtained from applying the unit u to the input graphs selected by

input.

For example the action (−,−,−, recognize(1,2), recognize(1,3), −) of the graph tuple trans-

formation unit recognize-intersection has as semantics every pair ((G1, . . . ,G6),(H1, . . . ,H6))
such that Gi = Hi for i ∈ {1,2,3,6}, H4 is the output of recognize applied to (G1,G2), and H5 is

the output of recognize applied to (G1,G3).
Formally, assume that every imported unit u of gttu defines a semantic relation

SEM(u) ⊆ (inu(1)×·· ·× inu(ku))× (outu(1)×·· ·×outu(lu)).

Then every pair ((G1, . . . ,Gn),(H1, . . . ,Hn)) of graph tuples over TB is in the semantics of an

action a = (a1, . . . ,an) of gttu if for i = 1, . . . ,n:

• Gi=⇒
ai

Hi if ai ∈ Ri,

• Gi = Hi if ai =−, and

• Hi = H ′
out put if ai = (u, input,out put) and ((Ginput(1), . . . ,Ginput(ku)),

(H ′
1, . . . ,H

′
lu
)) ∈ SEM(u).

The set of all actions of gttu is denoted by ACT (gttu) and the semantics of an action a ∈
ACT (gttu) by SEM(a).

Now we can define the semantics of gttu as follows. Every pair ((G1, . . . ,Gk),(H1, . . . ,Hl))
is in SEM(gttu) if there is a pair (Ḡ,H̄) with Ḡ = (Ḡ1, . . . ,Ḡn), H̄ = (H̄1, . . . ,H̄n) such that the

following holds.

• (G1, . . . ,Gk) = (Ḡin(1), . . . ,Ḡin(k)),

• (H1, . . . ,Hl) = (H̄out(1), . . . ,H̄out(l)),

• (Ḡ,H̄) ∈ (SEM(I)×SEM(T))∩SEM(C),

• (Ḡ,H̄) ∈ (
⋃

a∈ACT (gttu) SEM(a))∗.

For example, the semantics of the unit recognize consists of all pairs of the form ((G1,G2),(H))
where G1 is a string graph, G2 is a state graph of a deterministic finite automaton with its start

Festschrift Bernd Krieg-Brückner 18 / 23

ECEASST

state as current state, and H = TRUE if G1 is recognized by G2; otherwise H = FALSE. The

semantics of the unit recognize-intersection consists of every pair ((G1,G2,G3),(H)) where G1

is a string graph, G2 and G3 are state graphs of deterministic finite automata with their respec-

tive start state as current state, and H = TRUE if G1 is recognized by G2 and G3; otherwise

H = FALSE. The semantics of the unit reduce contains all pairs ((G1,G2),(G3)) where G1 and

G3 are string graphs and G2 is a state graph of a deterministic finite automaton with its start

state as current state such that G3 represents some suffix of the string represented by G1 and G2

recognizes the corresponding “prefix” of G1. The semantics of recognize-substitution contains

all pairs ((G1,G2,G3,G4),(TRUE)) where G1 represents a string in the substitution language

subst(L), G2 recognizes the language L, and G3 and G4 recognize the languages subst(a) and

subst(b), respectively.

4 Conclusion

In this paper, we have introduced the new concept of graph tuple transformation units, which

is helpful to specify transformations of combinations of various kinds of graphs simultaneously

and in a structured way. To this aim a graph tuple transformation unit contains an import com-

ponent which consists of a set of other graph tuple transformation units. The semantic relations

offered by the imported units are used by the importing unit. The nondeterminism inherent to

rule-based graph transformation can be reduced with control conditions and graph tuple class

expressions. Graph tuple transformation units generalize transformation units [KK99] in the fol-

lowing aspects. (1) Whereas a transformation unit specifies a binary relation on a single graph

type, a graph tuple transformation unit specifies a k, l-relation of graphs of different types. (2)

The transformation process in transformation units is basically sequential whereas in graph tuple

transformation units the component graphs are transformed in parallel.

Further investigation of graph tuple transformation units may concern the following aspects.

(1) We used graph-transformational versions of the truth values, numbers, and strings, but one

may like to combine graph types directly with arbitrary abstract data types, i.e., without previ-

ously modeling the abstract data types as graphs. (2) In the presented definition, we consider

acyclic import structures. Their generalization to networks of graph tuple transformation units

with an arbitrary import structure may be an interesting task. (3) In the presented approach the

graphs of the tuples do not share any common parts and are not directly interrelated with each

other in any other way while the components of the actions can share information and can be

interconnected in this way. But it may also be of interest to consider graph tuple transformation

where some relations (like morphisms) can be explicitly specified between the different graphs of

a tuple. (4) The concepts of pair grammars [Pra71] and triple graph grammars [Sch94] are simi-

larly motivated as graph tuple transformation units so that a close and detailed comparison may

be worthwhile. As our notion of control conditions is very general, it is more or less obvious that

pair and triple grammars are special cases of graph tuple transformation units. But it will need

more considerations to figure out which consequences this observation has. (5) As graph tuple

transformation provides a particular form of parallelism by allowing the simultaneous change of

components, it may be enlightening to compare and relate it with other graph-transformational

approaches to parallelism. (6) Finally, case studies of graph tuple transformation units should

19 / 23 Volume 62 (2013)

Graph Tuple Transformation

also be worked out that allow to get experience with the usefulness of the concept for the model-

ing of (data-processing) systems and of systems from other application areas as well as of model

transformations, in particular.

Acknowledgement We are grateful to the referees for their valuable remarks.

Bibliography

[BK99] D. Basin, B. Krieg-Brückner. Formalization of the development process. In Aste-

siano et al. (eds.), Algebraic Foundations of Systems Specification. IFIP State-of-

the-Art Reports, pp. 521–562. Springer Verlag, 1999.

[BKPT00] P. Bottoni, M. Koch, F. Parisi-Presicce, G. Taentzer. Consistency Checking and Vi-

sualization of OCL Constraints. In Evans et al. (eds.), Proc. UML 2000 - The Unified

Modeling Language. Advancing the Standard. Third International Conference, York,

UK, October 2000, Proceedings. Lecture Notes in Computer Science 1939, pp. 294–

308. 2000.

[BMST99] R. Bardohl, M. Minas, A. Schürr, G. Taentzer. Application of Graph Transforma-

tion to Visual Languages. In Ehrig et al. (eds.), Handbook of Graph Grammars and

Computing by Graph Transformation, Vol. 2: Applications, Languages and Tools.

Pp. 105–180. World Scientific, Singapore, 1999.

[CEH+97] A. Corradini, H. Ehrig, R. Heckel, M. Löwe, U. Montanari, F. Rossi. Algebraic

Approaches to Graph Transformation Part I: Basic Concepts and Double Pushout

Approach. Pp. 163–245 in [Roz97].

[DHK97] F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replacement Graph Grammars. In

Rozenberg (ed.), Handbook of Graph Grammars and Computing by Graph Trans-

formation. Vol. 1: Foundations. Chapter 2, pp. 95–162. World Scientific, 1997.

[DHK02] R. Depke, R. Heckel, J. M. Küster. Formal Agent-Oriented Modeling with UML and

Graph Transformation. Science of Computer Programming 44:229–252, 2002.

[EE08] H. Ehrig, C. Ermel. Semantical Correctness and Completeness of Model Transfor-

mations Using Graph and Rule Transformation. In Ehrig et al. (eds.), Proc. 4th Inter-

national Conference on Graph Transformations (ICGT’08). Lecture Notes in Com-

puter Science 5214, pp. 194–210. 2008.

[EEE+07] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, G. Taentzer. Information Preserving Bidi-

rectional Model Transformations. In Dwyer and Lopes (eds.), Proc. 10th Interna-

tional Conference on Fundamental Approaches to Software Engineering (FASE’10).

Lecture Notes in Computer Science 4422, pp. 72–86. 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer (eds.). Fundamentals of Algebraic Graph

Transformation. Springer, 2006.

Festschrift Bernd Krieg-Brückner 20 / 23

ECEASST

[EG07] K. Ehrig, H. Giese (eds.). Proceedings of the Sixth International Work-

shop on Graph Transformation and Visual Modeling Techniques (GT-VMT

2007). Electronic Communications of the EASST 6. http://eceasst.cs.tu-

berlin.de/index.php/eceasst/issue/archive, 2007.

[EHHS00] G. Engels, J. H. Hausmann, R. Heckel, S. Sauer. Dynamic Meta Modeling: A Graph-

ical Approach to the Operational Semantics of Behavioral Diagrams in UML. In

Evans et al. (eds.), Proc. UML 2000 – The Unified Modeling Language. Advancing

the Standard. Lecture Notes in Computer Science 1939, pp. 323–337. 2000.

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, A. Corradini. Alge-

braic Approaches to Graph Transformation II: Single Pushout Approach and Com-

parison with Double Pushout Approach. Pp. 247–312 in [Roz97].

[EHK01] G. Engels, R. Heckel, J. Küster. Rule-Based Specification of Behavioral Consistency

Based on the UML Meta-model. In Gogolla and Kobryn (eds.), Proc. UML 2001 –

The Unified Modeling Language. Modeling Languages, Concepts, and Tools. Lec-

ture Notes in Computer Science 2185, pp. 272–286. 2001.

[ER97] J. Engelfriet, G. Rozenberg. Node Replacement Graph Grammars. In Rozenberg

(ed.), Handbook of Graph Grammars and Computing by Graph Transformation.

Vol. 1: Foundations. Chapter 1, pp. 1–94. World Scientific, 1997.

[FNTZ00] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A new Graph Trans-

formation Language based on UML and Java. In Ehrig et al. (eds.), Proc. Theory and

Application to Graph Transformations. Lecture Notes in Computer Science 1764,

pp. 296–309. 2000.

[Fra03] D. S. Frankel. Model Driven Architecture. Applying MDA to Enterprise Computing.

Wiley, Indianapolis, Indiana, 2003.

[GK07] H. Giese, F. Klein. Systematic Verification of Multi-Agent Systems based on Rig-

orous Executable Specifications. International Journal on Agent-Oriented Software

Engineering (IJAOSE) 1(1):28–62, 2007.

[HKK08] K. Hölscher, R. Klempien-Hinrichs, P. Knirsch. Undecidable Control Conditions

in Graph Transformation Units. Electronic Notes in Theoretical Computer Science

195:95–111, 2008.

[HP01] A. Habel, D. Plump. Computational Completeness of Programming Languages

Based on Graph Transformation. In Honsell and Miculan (eds.), Proc. Foundations

of Software Science and Computation Structures (FOSSACS 2001). Lecture Notes in

Computer Science 2030, pp. 230–245. 2001.

[HZG06] K. Hölscher, P. Ziemann, M. Gogolla. On Translating UML Models into Graph

Transformation Systems. Journal of Visual Languages and Computing 17(1):78–

105, 2006.

21 / 23 Volume 62 (2013)

Graph Tuple Transformation

[Jan99] D. Janssens. Actor Grammars and Local Actions. In Ehrig et al. (eds.). Pp. 57–106.

World Scientific, Singapore, 1999.

[KGKZ09] S. Kuske, M. Gogolla, H.-J. Kreowski, P. Ziemann. Towards an integrated graph-

based semantics for UML. Software and Systems Modeling 8(3):385–401, 2009.

[KK99] H.-J. Kreowski, S. Kuske. Graph Transformation Units with Interleaving Semantics.

Formal Aspects of Computing 11(6):690–723, 1999.

[KKK04] R. Klempien-Hinrichs, H.-J. Kreowski, S. Kuske. Typing of Graph Transforma-

tion Units. In Ehrig et al. (eds.), Proc. Second International Conference on Graph

Transformations (ICGT’04). Lecture Notes in Computer Science 3256, pp. 112–127.

2004.

[KKR08] H.-J. Kreowski, S. Kuske, G. Rozenberg. Graph Transformation Units – An

Overview. In Degano et al. (eds.), Concurrency, Graphs and Models. Lecture Notes

in Computer Science 5065, pp. 57–75. 2008.

[KKS97] H.-J. Kreowski, S. Kuske, A. Schürr. Nested graph transformation units. Interna-

tional Journal on Software Engineering and Knowledge Engineering 7(4):479–502,

1997.

[KKS07] F. Klar, A. Königs, A. Schürr. Model transformation in the large. In Crnkovic and

Bertolino (eds.), Proc. 6th joint meeting of the European Software Engineering Con-

ference and the ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering. Pp. 285–294. ACM, 2007.

[Kus00] S. Kuske. More about control conditions for transformation units. In Ehrig et al.

(eds.), Proc. Theory and Application of Graph Transformations. Lecture Notes in

Computer Science 1764, pp. 323–337. 2000.

[Kus01] S. Kuske. A Formal Semantics of UML State Machines Based on Structured Graph

Transformation. In Gogolla and Kobryn (eds.), Proc. UML 2001 – The Unified Mod-

eling Language. Modeling languages, Concepts, and Tools. Lecture Notes in Com-

puter Science 2185, pp. 241–256. 2001.

[Küs06] J. M. Küster. Definition and validation of model transformations. Software and Sys-

tem Modeling 5(3):233–259, 2006.

[LT04] J. de Lara, G. Taentzer. Automated Model Transformation and Its Validation Using

AToM 3 and AGG. In Diagrams. Lecture Notes in Computer Science 2980, pp. 182–

198. 2004.

[Nag96] M. Nagl (ed.). Building Tightly Integrated Software Development Environments: The

IPSEN Approach. Lecture Notes in Computer Science 1170. Springer-Verlag, 1996.

[PE93] R. Plasmeijer, M. van Eekelen. Functional Programming and Parallel Graph Rewrit-

ing. Addison-Wesley, 1993.

Festschrift Bernd Krieg-Brückner 22 / 23

ECEASST

[Pra71] T. W. Pratt. Pair Grammars, Graph Languages and String-to-Graph Translations.

Journal of Computer and System Sciences 5:560–595, 1971.

[PS00] D. C. Petriu, Y. Sun. Consistent Behaviour Representation in Activity and Sequence

Diagrams. In Evans et al. (eds.), Proc. UML 2000 – The Unified Modeling Language.

Advancing the Standard. Lecture Notes in Computer Science 1939, pp. 359–368.

2000.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-

formation, Vol. 1: Foundations. World Scientific, Singapore, 1997.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Mayr

et al. (eds.), Proc. 20th Int. Worhshop on Graph-Theoretic Concepts in Computer

Science. Lecture Notes in Computer Science 903, pp. 151–163. 1994.

[Sch97] A. Schürr. Programmed Graph Replacement Systems. Pp. 479–546 in [Roz97].

[SK08] A. Schürr, F. Klar. 15 Years of Triple Graph Grammars. In Ehrig et al. (eds.), Proc.

4th International Conference on Graph Transformations (ICGT’08). Lecture Notes

in Computer Science 5214, pp. 411–425. 2008.

[SPE93] M. R. Sleep, R. Plasmeijer, M. van Eekelen (eds.). Term Graph Rewriting. Theory

and Practice. Wiley & Sons, Chichester, 1993.

[TKKT07] I. J. Timm, P. Knirsch, H.-J. Kreowski, A. Timm-Giel. Autonomy in Software Sys-

tems. In Hülsmann and Windt (eds.), Understanding Autonomous Cooperation &

Control in Logistics The Impact on Management, Information and Communica-

tion and Material Flow. Pp. 255–273. Springer, Berlin Heidelberg New York, USA,

2007.

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 frame-

work. Science of Computer Programming 68(3):214–234, 2007.

[Wir71] N. Wirth. Program Development by Stepwise Refinement. Communications of the

ACM 14(4):221–227, 1971.

23 / 23 Volume 62 (2013)

	Introduction
	Graph Transformation
	Graphs
	Rules and Rule Applications
	Graph Class Expressions
	Control Conditions
	Transformation Units
	Interleaving Semantics of Transformation Units

	Graph Tuple Transformation
	Basic Actions
	Graph Tuple Class Expressions
	Control Conditions for Graph Tuple Transformation
	Graph Tuple Transformation Units
	Examples of Graph Tuple Transformation Units
	Semantics of Graph Tuple Transformation Units

	Conclusion

