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Abstract: We believe it is possible to create the visual subsystem needed for the
RoboCup 2050 challenge – a soccer match between humans and robots – within the
next decade. In this position paper, we argue, that the basic techniques are available,
but the main challenge will be to achieve the necessary robustness. We propose to
address this challenge through the use of probabilistically modeled context, so for
instance a visually indistinct circle is accepted as the ball, if it fits well with the
ball’s motion model and vice versa.

Our vision is accompanied by a sequence of (partially already conducted) exper-
iments for its verification. In these experiments, a human soccer player carries a
helmet with a camera and an inertial sensor and the vision system has to extract all
information from that data, a humanoid robot would need to take the human’s place.

Keywords: computer vision, context, RoboCup, robot soccer

1 Introduction

Soon after establishing the RoboCup competition in 1997, the RoboCup Federation proclaimed
an ambitious long term goal (depicted in Figure 1).

“By mid-21st century, a team of fully autonomous humanoid robot soccer players
shall win the soccer game, comply with the official rule of the FIFA, against the
winner of the most recent World Cup.”

Hiroaki Kitano, Minoru Asada [KA98]

Currently, RoboCup competitions take place every year. Within a defined set of different sub-
competitions and leagues, incremental steps towards this big goal are made [Rob11]. Although
a rapid and remarkable progress has been observed during the first decade of these robot compe-
titions, it is not obvious, if and how the final goal will be reached. There exist rough roadmaps,
e.g. by Burkhard et al. [BDF+02], but in many research areas, large gaps must be bridged within
the next 40 years.

While this is obvious for several areas, e.g. actuator design and control, we claim that the
situation is surprisingly positive for vision:
∗ This work has been supported by Deutsche Forschungsgemeinschaft grant FR2620/1-1 and E.C. project ECHORD
(grant #231143), subproject GRASPY.
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(A) Vision for 2050

Figure 1: The RoboCup vision: An autonomous humanoid robot playing soccer against a human.
Illustration courtesy of M. Görner.

Within the next decade, it will be possible to develop a vision system that is able to
provide all environmental information necessary to play soccer on a human level.

Annual RoboCup competitions are always bound to strict rule sets (defined for the state of the art
of the competing robots) and demand competitive robot teams. Thus only incremental progress
adapting to actual rule changes (which continuously raise the level of complexity) is fostered.
By developing the aforementioned vision system independently of these competitions, we hope
to set a new landmark which could guide the incremental development.

Because a real human level soccer robot will not be available for a long time, our vision is
accompanied by a (partially already conducted) set of experiments that verify our claim without
needing a robot.

This paper is organized as follows: Section 2 roughly identifies the challenges for playing
robot soccer and compares them to the state of the art in robotics. In Section 3 we explain, why
the basic techniques for the vision system are available. We argue, why the remaining challenge
is robustness, for which we present our idea of a solution in Section 4. Finally, a sequence of
experiments to verify our claim is described in Section 5.

2 Challenges for Playing Soccer

The global task of playing soccer consists of several different, interdependent challenges. We
roughly categorize them according to the Sense-Think-Act cycle (see Figure 2). This should be
considered as a possible architecture for illustration. In the following, the challenges are de-
scribed in reverse order but with decreasing degree of difficulty.

2.1 Challenges for Actuation

The largest obvious gap may be observed in the field of actuation. Nowadays, the probably most
advanced humanoid robot, Honda’s ASIMO, is capable of running at a top speed of six kilome-
ters per hour [Hon11]. This is an impressive result, but still more than five times slower than the
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Figure 2: The Sense-Think-Act cycle roughly depicting major tasks for playing soccer with a
humanoid robot.

top speed of a human soccer player. A similar gap regarding kicking velocity has been pointed
out by [HLFH07, HLF+09]. They showed that a state-of-the-art robot arm (with a configuration
comparable to a human leg) is six times slower than required to accelerate a standard soccer
ball to an adequate velocity. It is still an open issue whether today’s motor technology could
be developed further on enough, or if more efficient actuators, e.g. artificial muscles, will be
needed. Since soccer is a contact sport leading to physical human-robot interaction [HLFH07],
not only direct position control but also approaches for compliant motion, such as impedance
control, need to be taken into account. As pointed out by [HLF+09], joint elasticity appears to
be a crucial aspect for velocity as well as for safety.

Additionally, the problems of energy efficiency and power supply need to be solved. The
ASIMO robot for example is, according to [Hon11], capable of walking (with a speed of less
than three kilometers per hour) for 40 minutes.

2.2 Challenges for Thinking

In this area, two different levels may be distinguished: motion planning and high-level multi-
agent coordination. The latter is a research topic in the RoboCup Soccer Simulation League
since a while and has reached a remarkable level. Dealing with the offside rule as well as playing
one-two passes are standard behaviors, complex group tasks as playing keep-away soccer serve
as a test bed for learning algorithms [SSK05]. This area could be considered to be already quite
close to human capabilities.

On the other hand, when playing with real humanoid robots, sophisticated methods for motion
planning are needed. The current research frontier on humanoid motion control is balancing
and dynamic foot placement for walking robots. Algorithms for full-body motion planning exist
[KKN+02], but are subject to restrictions that make them inapplicable to tasks as playing soccer.

Here is a big gap to human level soccer. As an example consider volley-kicking. The player
has to hit the ball exactly at the right time, position, and velocity, with a motion compatible to
the step pattern, allowing balancing, and considering opponents. Last but not least, all this must
happen in real-time.
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(A) Vision for 2050

2.3 Challenges for Sensing

According to [KA98], it is evident that the robots’ sensorial capabilities should resemble the
human ones. The philosophical considerations of [SQH10], who evaluate the compatibility of
the current FIFA rules and potential robot contenders, come to the same conclusion. Thus, we
could assume to deal with data from up to two cameras and an inertial sensor, both mounted
inside a robot’s head, emulating the human eyes and vestibular system. The required information
are estimates of the own position and the positions of the ball and of other players. In case of
tackles or dribbling, the latter will be needed to be recognized in more detail (e.g. the positions
of the feet and limbs).

Current solutions for these tasks and our idea how to bridge the remaining gap are presented
in the following section.

3 The Vision System

Our main thesis is that the “sense” part of the RoboCup 2050 challenge can be realized within a
decade starting from the current state of the art in computer vision. This is remarkable, since the
“act” and “think” parts are apparently far away from reaching human level performance and for
computer vision in general, this is also true. The reason, why we believe such a vision system can
be realized, is that unlike a household robot for instance, a soccer robot faces a rather structured
environment.

3.1 State of the Art

Relevant objects in a soccer match can be classified into two categories, static and dynamic ones.
Line markings and goals are important static features and provide the field’s boundaries. Detec-
tion of these in images is achieved through their known geometric appearance, using classical
Hough transform [Bal81, YPIK89] or more elaborate methods [GS04].

Dynamical objects include players, referees and the ball. For the latter, its simple geometric
appearance allows detection using well-known methods [Bal81, YPIK89]. As the ball might be
accelerated up to 129km/h [Wes02] from an instep kick (and even more when the ball has moved
towards the player prior to the shot) its robust detection might be challenging for current sens-
ing technology. This problem also holds when detecting other players. It is particularly difficult
because we will need not only the general position but the detailed state of motion (articulated
person tracking) for close range tackling and to infer the player’s action for tactical purposes.
For example, biomechanical characteristics of the ball kick [KK07, LAA+10] revealed that the
knee might flex at a velocity of 860◦/s prior to the kick. Such rapid limb movement consider-
ably increases the challenge detecting the full state of the players. Fortunately, people tracking
is an important topic in computer vision with a large body of literature [FAI+05, MHK06].
Approaches which are capable of estimating the body pose as well as the one of the limbs in
general [ARS10] and of sportsmen [RF03] (see Figure 3) have already been presented. Tracking
of multiple persons while the observer is moving are studied in [ARS10, ELG07].

Furthermore, soccer scenes are well lit and lightly colored with green lawn and the players
wearing colored clothes of high contrast. In the RoboCup competition, this idea is taken to an
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Figure 3: Tracking sportsmen and their limbs: Three persons which are running and passing a
ball (left image), one person performing jumping jacks (right image). Both images are results
of [RF03] and are used with permission of Deva Ramanan.

Figure 4: Two images taken and processed by a humanoid soccer robot on a standard RoboCup
field [LR07]. The colored dots and lines indicate perceived parts of goals and field lines; the
recognized ball is bordered by an orange circle.

extreme, where most teams rely on color segmentation on a pixel-per-pixel basis as their pri-
mary vision engine (see Figure 4). This will not be possible for real-world soccer, mainly due
to changing lighting conditions. Still, color can provide a valuable additional cue, at least when
looking below the horizon, where objects are in front of green lawn.

The background above the horizon, including the stadium and the audience is of course also
visible and unfortunately rather undefined. However, if it is relevant for the soccer robot at
all, then not for recognition, but only in the sense of a general landmark. For this purpose
there are nowadays well working techniques, such as the Scale Invariant Feature Transform
(SIFT) [Low04].

Overall, understanding a soccer scene from the player’s perspective seems much easier than
for instance understanding an arbitrary household, traffic, or outdoor scene. Indeed there are
already half-automatic systems in the related area of TV soccer scene analysis, for example
the ASPOGAMO system by [BHB+06, BGB+07], proofing that soccer scene understanding in
general is on the edge of being functional.
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3.2 Open Problems

So, is a vision system for the RoboCup 2050 challenge an easy task? We believe it is not. It is
surprisingly a realistic task but well beyond the current state of the art. The first problem is that
the camera is moving along with the head of the humanoid soccer robot. To predict a flying ball,
the orientation of the camera must be known very precisely. It seems unrealistic that the necessary
precision can be obtained from the robot’s forward kinematic, since unlike an industrial robot,
a humanoid robot is not fixed to the ground. So our solution is to integrate an inertial sensor
with the camera and fuse the complementary measurements of both sensors in a probabilistic
least-squares framework.

The second problem is the player’s perspective. It is much more difficult than the overview
perspective used in TV soccer scene analysis. In the TV perspective, the scale of an object in
the image varies by a factor of about 3 [BHB+06, Figure 5] whereas in the player’s perspective,
it can vary by a factor of 250 assuming the distance to an object ranging from 0.5m to 125m.
Hence, for instance the people detection algorithm must handle both extreme cases, a person
only the size of a few pixels, where an arm or a leg may be thinner than a single pixel and a
person much larger than the camera’s field of view, only partially visible. Indeed, while for far
away players it is probably sufficient to track their position as a point, precise articulated person
tracking is needed for close range tackling and probably the most difficult challenge.

Furthermore, in an image from the player’s perspective, other players will extend beyond the
green lawn of the field into the general background. Hence it is not possible to search for non-
green blobs as an easy first processing step. This can also happen for a flying ball, which is then
particularly difficult to detect.

However, the third and not to be underestimated problem is that although computer vision
systems that operate in natural environments (i.e. not requiring nicely setup scenes and lighting
conditions) are making progress (see [ARS10, ELSG09] for challenging people detection), there
is still plenty of work left to understand the broad range of natural scenes. So, to summarize, for
the vision part of the RoboCup 2050 challenge, we do not need a new level of functionality as
for many other grand challenges, but we need a new level of robustness.

4 Robustness Through Context

We propose to address the question of robustness by utilizing probabilistically modeled con-
text information as a central idea. Conceptually, the overall scene understanding and prediction
problem is formulated as a global likelihood optimization task. Using contextual associations is
not entirely new [Ull95, SAS+07] and recent progress has shown that exploiting context leads
to promisingly robust results. Recent work worth noting includes modeling of object to object
relations as done by [RVG+07]. Here, the authors improved the object categorization accuracy
by integrating a post-processing step that maximizes the object categorization agreement based
on contextual relevance. More generally, [KH05] proposed a hierarchical framework allowing
interaction between objects and regions within the image plane.

Leaving the image plane and therefore 2D models behind, [HEH06] propose a mechanism for
estimating rough 3D scene geometry from a single image which is then used as an additional in-
put to the object detection methods. Therefore, detections which fail to fit into the estimated scene
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geometry at the detected position are rejected from the global scene interpretation (e. g. pedestri-
ans who do not stand on the ground plane). This idea is taken one step further by [ELG07] and
[LSCG08], where the relationships between objects and scene geometry are modeled, allowing
suitable recognition of objects for a mobile robot application.

These promising results show that exploiting context within the image and the scene is partic-
ularly well suited to the task of creating a vision system for RoboCup 2050 and conversely that
this task is well suited to study this methodology. In this paper, we will make this conceptual
viewpoint concrete with the example of ball tracking. Similar thoughts, however in a more com-
plex way, are of course also applicable to other vision tasks, in particular (articulated) people
tracking.

4.1 Data-Driven Bottom-Up Processing

Most current vision systems use a data-driven bottom-up approach [FBH+01, R+05, BGB+07, as
examples]. Usually, low level features are extracted from the image and then aggregated through
several stages to high level information. Each stage may incorporate background knowledge at
its own level but does not take information from higher levels into account. It simply takes some
input from the previous lower level and passes the result of the computation to the next higher
level.

As an example, a classical Hough transform starts by classifying pixels as edge or not
by thresholding the result, for instance, of a Sobel filter. Similarly, the ASPOGAMO system
[BGB+07] starts by classifying pixels as lawn or not on the basis of their color. This is a hard
decision taken on the lowest level without any higher level knowledge, such as the fact that we
are looking for a ball or the ball’s motion model. Such a pixel-wise classification can be very
ambiguous. Often we could, for instance, classify a borderline pixel correctly as belonging to
the ball, although it looks rather greenish, if we considered the context of the ball or its motion
model. However, in conventional vision systems, this knowledge does not exist on the low level
and on the higher level, the fact that this pixel was borderline in the classification is lost due to
committing to a hard decision on the lower level.

To make this idea more concrete, we will now describe a ball tracking system in the con-
ventional data-driven design (Figure 5). We will later discuss how it would look like in the
context-based design we propose in this paper.

In a data-driven approach, a ball finder algorithm is executed on every image yielding the 2D
image circle (position, radius) corresponding to the ball (or several hypotheses thereof). These
circles are passed to a probabilistic estimator, such as Gaussian-Maximum-Likelihood that finds
the mostly likely states, i. e. ball positions and velocities. Such an estimator is based on model
likelihoods, i. e. functions with uncertainty, that specify the following:

1. A camera model defines when the ball was at a certain position, where it would be in the
image. This links 3D positions to 2D circles.

2. A ball motion model defines when the ball was at a certain position having a certain ve-
locity, where it would be and which velocity it would have after one timestep. This links
3D positions and velocities over time.
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(A) Vision for 2050

Figure 5: Information flow in a ball tracker based on the conventional data-driven paradigm (see
text). The ball finder is not part of the optimization loop (gray box).

The estimator then finds the most likely states by minimizing a sum of squared differences, which
indicates how likely an assumed sequence of states is. It consists of 1. the squared differences
between where the ball has been observed by the ball finder and where the ball model would
expect it to be observed if the assumed state sequence was true and 2. the squared difference
between the states predicted by the ball model and the assumed corresponding states.

The models 1. and 2. are Gaussian likelihoods, i. e. formulas with uncertainty, so there is a
wealth of algorithms for handling this kind of problems. In particular, figure 5 is a conceptual
description. Most actual implementations do not minimize over the whole state sequence in
every step but instead use an incremental estimator, such as the Extended or Unscented Kalman
Filter [WB97, Bir08, Kur07]. However, this changes only the computation not the result. The
key point of this approach is that the ball finder, more general the computer vision, is outside
the optimization loop and there is no information flow from the estimator back to the ball finder.
Hence the ball finder cannot take the high level context of the ball’s motion into account when
deciding on the low level, whether something is accepted as a ball or not.
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4.2 Global Likelihood Optimization

A common experience in computer vision research is that many systems are not very robust
regarding object appearance and illumination conditions. We believe that much of this brittleness
originates from the data-driven bottom-up way of committing to hard decisions on an early level
of processing. So our approach for increased robustness is to avoid early decisions and instead
to conceptually take an overall likelihood optimization view on the problem.

The problem is to understand an image sequence, i. e. estimating over time. Indeed, successive
images are linked by a motion model and this provides most of the context we want to build upon.
However, we propose not to use incremental filters, such as EKF, but to look back into the raw
images of the last few seconds at least. This approach has surprising advantages. Imagine the
ball is kicked, but during the first 100ms there is too little contrast to the background so it is not
detected. Now when it is detected, there is new information on where the ball has been before
from the ball’s motion model. The old images are still in memory and tracking the ball back in
time is much less ambiguous than finding the ball without context and will probably succeed.
Paradoxically, once the system has detected the ball, it has already observed it for 100ms. The
first useful prediction is not delayed at all, because prior to that the ball must have been observed
for some time anyway. In the example above, we would realize this (Figure 6) by replacing the
ball finder by

3. a ball appearance model that indicates for a given circle in the image plane how much it
looks like a ball. This links the 2D image circle to the actual image.

In the data-driven approach, the ball finder determines where the ball is and the camera model
computes where the ball should be according to the state. Then both are compared with the
difference indicating the likelihood of the state. In the global likelihood optimization approach,
instead the camera model computes where the ball should be and then the ball appearance model
computes how “ball-like” the image looks there. The difference is, that now the ball appearance
model, i. e. the computer vision, is inside the optimization loop. Now the lower layer does not
have to commit early to a single image circle, but instead it gradually assesses different circles in
the image as requested by the minimization algorithm. In this approach, an indistinct ball would
get a lower likelihood in 3. but this could be compensated by 1. and 2. if it fits well to the context
of a flying ball. This mechanism allows the now implicit ball finder to utilize the context provided
by the ball motion and implement the behavior described above.

At first sight, this approach resembles Multi Hypotheses Tracking (MHT) [CH96], however
the MHT goes only half the way to the behavior in Figure 6. The MHT maintains multiple hy-
potheses on which observation (i. e. a circle) is caused by which target, including the hypothesis
of a false alarm caused by no target. However, it requires the computer vision to commit to a dis-
crete set of observations, which are then input to the MHT. So the discussed example works with
the MHT only if the initial low-contrast ball is still distinct enough to become an observation.

Conceptually, a particle filter can implement the behavior in Figure 6 equivalently, where all
past information is aggregated in the particle set and it is not necessary to store or operate on
past images. In this case, the discussed example requires enough particles such that even the
indistinct initial ball creates some particles which are then selected later when further images
and the context support them. It will be a future question if this is more or less practical than an
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(A) Vision for 2050

Figure 6: Information flow in a ball tracker based on the global likelihood optimization paradigm
(see text). Here, computer vision, i.e. the ball appearance model, is part of the optimization loop
(gray box).

implementation operating on past images.
As a final remark, the provided functionality greatly resembles the priming mechanism known

from psychology [KW03]. This makes us even more believe that the approach of a global like-
lihood optimization directly in the images is an elegant way to greatly increase robustness of
computer vision algorithms.

4.3 Exploiting Semantic Context

Doubtless, if the goal is to track a flying ball, the ball’s motion model provides the most valu-
able context. However, there is other, more semantic information that could be incorporated to
increase robustness. Figure 7 illustrates how a broader context could help distinguishing the real
ball from false responses of the computer vision. We have constructed this example to illustrate
what we believe could happen. It is not based on real computation.

In a), only the first image I1 is considered (p(ball1|I1)). The computer vision gives varying
responses for different image circles. After applying the necessary threshold needed to give a
final result, there are five possible ball locations in the example, namely the true ball and the
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a) p(ball1|I1) b) p(ball9|I9)

c) p(ball9|I1...9,ball model) d) p(ball9|I1...9,ball model,field geometry)

e) p(ball9|I1...9,ball model,field geometry, f) p(ball1|I1...9,ball model,field geometry,
game semantics) game semantics)

Figure 7: An illustration of how different types of context information could help to distinguish
the real ball from things that look like a ball to the computer vision (see text).
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(A) Vision for 2050

player’s head, hands, and both feet together. The same happens in b), where in the example
the 9th image I9 is considered alone (p(ball9|I9)). Now in c) all images I1...9 are considered to-
gether (p(ball9|I1...9,ball model)). The link between the images is provided by the ball motion
model as described in the previous section. In the example, the player’s head and feet could
be ruled out, because their motion does not correspond to the ball motion model. However,
in this example, the two hands remain valid hypotheses, because their side-swinging motion
would actual correspond to a distant flying ball. In d), the additional context of the field geom-
etry is added (p(ball9|I1...9,ball model,field geometry)). This context makes the player’s right
hand being a ball very unlikely, because from the image position and radius of the circle, the
ball would be outside of the field. In e), additional information about game semantics is added
p(ball9|I1...9,ball model,field geometry,game semantics). From the game situation, the system
expects the player to kick the ball towards the camera. A ball flying sideward as the falsely de-
tected left hand is implausible with this context and can be ruled out. Of course, as explained
above, once the system has found a unique ball in image 9, it already knows backwards, via
the ball motion model, which was the correct ball in image 1. This situation is shown in f)
(p(ball1|I1...9,ball model,field geometry,game semantics)). So the system has already observed
the ball for 9 images and can immediately provide a prediction.

How could this example be realized? First of all, using game semantics requires to detect
the players, lines and goals to have information about the game situation. But how could the
semantics of soccer be modeled? The classical AI approach would be to use logic, for instance
ontologies, to describe a soccer match. However, typical ontologies, such as OWL [BHH+04],
express crisp knowledge in some sort of logic and are difficult to combine with the probabilistic
and vague knowledge discussed in the previous section.

While in the long run modeling a rich and complex semantics, as ontologies provide, is de-
sirable, probably the first step would be to start with a shallow semantics that is more easily
integrated with probabilistic motion and perception models. A candidate would be to run a Hid-
den Markov Model (HMM) [HTWM04] for each player to model the different actions (kicking,
running, tackling, etc.) a player may take, maybe subdivided into different phases. Then one
could define how each phase would affect the player’s motion and the motion of the ball. The ad-
vantage is that easy algorithms for inference in HMM exist and even more important that HMM
can be well combined with continuous probabilistic estimation by the Interacting Multiple Model
Filter (IMM) [BLK01, §11.6.6].

Overall, it is obvious that modeling the player’s behavior is essential for understanding a soccer
match as a whole and is helpful even for tracking the ball. However, it is still rather unclear how
the required background knowledge can be modeled in a way that can effectively help a computer
vision system.

5 Proposed Experiments

For a vision to become reality, realistic intermediate steps are necessary. It would not help, if
we build a vision system now but then had to wait until a human level soccer robot is available.
So we propose a sequence of experiments that, without a humanoid robot, ultimately allows to
verify that the proposed system is appropriate for human level soccer (Figure 8).
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Figure 8: Our proposed experiment: Mount a camera and an inertial sensor on the head of a
human soccer player and use them to extract all the information, a humanoid soccer robot would
need to take the human’s place.

5.1 Helmet Camera with Inertial Sensor

The basic idea is to let a human soccer player wear a helmet with a camera and an inertial sensor
and verify that the information extracted by the vision system from the sensor data would allow
a humanoid robot to take the human’s place.

As a first experiment, we propose to record data from a soccer match and run the vision
system on that data offline. Since it is hard to obtain ground-truth data, we would use our expert’s
judgment to assess, whether the result would be enough for a humanoid robot to play soccer. It
is very advantageous to work on recorded data allowing to reproduce results for debugging and
analysis and to run the system even if it is still not real-time. Overall, it allows to first concentrate
on functionality and robustness instead of computation time and integration.

We have already conducted a very first experiment [Kur07, Bir08], where the ball and the
field lines are manually extracted from the recorded images (available on request). The ball’s
trajectory is predicted by least-square estimation using the likelihood functions 1. and 2., as well
as corresponding equations for how the inertial sensor observes the free motion of the camera
(Figure 9). The results indicate that if the ball can be detected in the image with about one pixel
precision, the prediction would be precise enough. We believe that these kinds of studies which
deliberately discard essential aspects, such as integration, real-time computation, or autonomy
are undervalued by the RoboCup community who favors full system approaches. But even from
a full system perspective, it is much more valuable to obtain an extensive result on a subsystem
which then can guide the full system design than to do another increment on a full system.

5.2 Multi-Hypothesis Ball-Tracking

More recently, we presented a computer vision system for tracking and predicting flying balls in
3-D from a stereo-camera in real-time [BF09]. The system consists of two stages. First, a robust
circle detector which avoids hard decisions and thresholds extracts the most ball-like circles
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Figure 9: Predicting the trajectory of a flying ball from a moving camera-inertial system. As
an initial study, the ball, the lines, and the goal corners have been manually extracted from the
images. From this data, the trajectory of the ball is predicted (left). The right plot shows the error
of the predicted touchdown point varying over time. It shows that, even though the camera is
moving, the prediction is roughly precise enough for interception.

from the images. Then, measurements of both images are fused by a probabilistic multiple-
target tracking algorithm and the most probable tracks are returned accounting for appearing and
disappearing balls as well as false and missing measurements. Compared to the global likelihood
optimization approach of Section 4.2, there is still the hard decision of whether a circle makes it
into the measurement list passed to the MHT or not. However, unlike for other circle detectors,
i. e. the Hough-transform, this is the only hard decision.

In the corresponding experiments, four people were throwing up to three volleyballs to each
other (Figure 10). Although the circle detector detected balls with just a rate of 69.4% and the
multiple-target tracker accidentally mis-associated measurements and tracks, the system success-
fully tracked all 32 visible trajectories.

To assess the accuracy of such a system, we conducted lab-experiments and their preliminary
results will be presented here. We used the proposed setup from section 5.1 extended by a second
camera for stereo (1616× 1220 pixels resolution at 25Hz). Several balls where thrown towards
the cameras and tracked by the system described in the paragraph above. Additionally, an infrared
tracking system provided ground-truth by tracking the ball positions independently. The balls
were covered with retro-reflective foil for that purpose. Comparing the predicted trajectories
after each integrated image pair with the ground-truth position of the ball when it passes the
cameras allows us to evaluate the prediction performance. From our results it can be seen that
an accuracy of about 25cm is reached 240ms (six frames) after the ball left the thrower’s hand.
Furthermore, an accuracy below 2cm is achieved when the ball leaves the camera image. Such a
precision is enough to use the proposed system to let a robot catch thrown balls, as we showed
in ongoing research [BSW+11, BFB11].

The above-mentioned system follows the data-driven bottom up approach as outlined in sec-
tion 4.1. Especially the performance in the beginning can be improved by integrating the ball’s
motion as context. Because of imprecise detections in the beginning due to small balls in the im-
age, tracking results are poor. By using the ball’s motion as context these tracking results could
be improved. We already use prediction to guide the search for circles in the image. This greatly
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Figure 10: Camera view of the tracking scenario and overlaid detection results (red circles) and
predicted ball trajectories (coloured circles).

increases tracking robustness but works only for future images. Within the global maximization
approach one could also look for better suiting circles in past images as proposed in section 4.2.
After such a global optimization we expect the tracking performance to be improved, since no
early commitment to possibly wrong measurements is made.

5.3 Motion Capture Suit

Departing from the experiment above, one might ask whether more sensors are needed than
just camera and inertial. Both human and humanoid robot can derive their motion from the
joint angles. This provides the horizontal motion (odometry) and the height over ground. The
horizontal motion facilitates localization and the height derived from vision is much less precise.
Indeed, we experienced that the uncertain height is a major part of the error in Figure 9.

An intriguing idea to solve this gap is to equip the human player with a tracker-less motion
capture suit [Xse07] measuring joint angles. Apart from kinematic information, the inertial sen-
sors in such a suite could also detect collisions between the foot and the ball or between the foot
and the ground thereby providing most of the information that humans and robots obtain from
the haptic senses.

5.4 Virtual Reality Display

The experiments above have the drawback that they are evaluated by an expert looking at the
vision system’s output. The most direct proof that this is all you need for playing soccer would
be to give a human just that output via a head mounted display and see whether s/he can play.

The approach is of course fascinating and direct, but we have some concerns regarding safety.
Anyway, this experiment becomes relevant only after we are convinced in principle, that the
system is feasible. So this is something to worry about later.

6 Conclusion

In this position paper, we have outlined the road to a vision system for a human-robot soccer
match. We claim that, since soccer is a structured environment, the basic techniques are available
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and the goal could be reached within a decade. The main challenge will be robustness, which
we propose to address by optimizing a global likelihood function working on a history of raw
images. We have outlined a sequence of experiments to evaluate such a vision system with data
from a camera-inertial system mounted on the head of a human soccer player.

The reason for being confident such a system can be realized within a decade is the insight
that it does not need general common-sense-reasoning AI. This is good news for the RoboCup
2050 challenge. But it suggests that, even when we meet that challenge, it does not imply we
have realized the dream of a thinking machine, the whole challenge had started with.

That would not be the first time.
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G. Hirzinger. Off-the-Shelf Vision for a Robotic Ball Catcher. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui.
Pp. 1623 – 1629. 2001.

[GS04] D. Guru, B. Shekar. A simple and robust line detection algorithm based on small
eigenvalue analysis. Pattern Recognition Letters 25(1):1–13, 2004.

[HEH06] D. Hoiem, A. A. Efros, M. Hebert. Putting Objects in Perspective. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. 2006.

[HLF+09] S. Haddadin, T. Laue, U. Frese, S.Wolf, A. Albu-Schäffer, G. Hirzinger. Kick it
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