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Abstract: The aim of concurrent model synchronization is to merge pairs of updates
on interrelated models. For instance, this situation may occur in the context of model
driven software development when the work is distributed between different teams.
A first problem is that, if the updates are in conflict, this conflict is never explicit.
The reason is that the updates do not interfere directly since they are assumed to
modify different models. For this reason, detecting and solving conflicts becomes
already more difficult than in the more standard case of synchronizing concurrent
updates over a given model. Existing general approaches define the solution to this
problem in terms of the solution to the simpler problem of update propagation in
bidirectional model transformation. We call these approaches propagation based.

In this paper, we first state some properties that, in our opinion, must be satisfied
by a concurrent synchronization procedure to be considered correct. Then, we show
how to check whether the given updates are conflict-free and, in this case, we present
a correct synchronization procedure based on this check. Finally, we consider the
case where the given updates are in conflict and we show how we can build solu-
tions that satisfy some of the correctness properties but, in general, not all of them.
Specifically, we present counter-examples that show how some of these properties
may fail.

Keywords: Model synchronization, bidirectional model transformation, model-
driven development

1 Introduction

The aim of concurrent model synchronization is to merge pairs of updates on interrelated models.
For instance, this situation may occur in the context of model-driven software development when
different teams are working on different (related) models of the same software artifact. This
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problem is a generalization of (standard) model synchronization, where updates on one model
must be propagated to its related model. In particular, in standard model synchronization we look
for operations that implement this propagation. However, concurrent model synchronization is
more difficult due to the possible existence of conflicts between the given pair of updates. An
additional complication comes from the fact that these conflicts are not explicit, since the updates
are applied to different models, but they are only apparent when trying to propagate the effects
of the given updates.

The only approaches [XSHT09, XSHT13, HEEO12] that we know that provide a general so-
lution to this problem define concurrent synchronization procedures in terms of the propagation
operations defined for solving the standard synchronization problem. In [XSHT13], the authors
present a procedure for synchronizing conflict-free concurrent updates that roughly works as fol-
lows. Given two interrelated models M and N and two updates u and v on M and N, respectively,
in the first step the procedure propagates u to N in order to check if there are conflicts with v.
This is easy to see, since both v and the propagation of u, prop(u), are updates on the same
model. Then, if there are no conflicts the procedure merges v and prop(u) and propagates back
the result to M. If the procedure finds a conflict, or some other problem, then the procedure
reports an error. The approach presented in [HEEO12] is similar, but allowing for the possi-
bility of handling conflicts using results from [EET11]. In this paper, we say that this kind of
approaches are propagation-based, because their solution is defined in terms of the propagation
operations defined for standard synchronization. As we have seen, their main advantage is that,
since we can put together the given updates and their propagation, we can easily detect conflicts
by making them explicit and, so, we can decide how to handle them. Another advantage is that
these procedures are quite generic: we define them independently of how standard synchroniza-
tion procedures are defined. However, as we will see in this paper, this approach has also some
limitations. For instance, propagation-based procedures are not hippocratic in general.

In this paper, we study at a general level the correctness and the limitations of propagation-
based concurrent synchronization. For this purpose, we provide an abstract and formal view for
propagation based synchronization that covers different existing approaches. Since some of the
well established properties are too restrictive for several applied cases, we present new proper-
ties that overcome these restrictions in an elegant way. Moreover, we present formal properties
concerning additional relevant aspects such as maximal preservation of given updates and sound-
ness (avoidance of side effects). Then, we show how we can check whether the given updates
are conflict-free and, in this case, we also show how we can construct a correct synchronization
(Theorem 1). Moreover, when the given updates are in conflict, we present a propagation-based
procedure for concurrent synchronization and show its correctness concerning most of the prop-
erties (Theorem 3). Finally, we show that existing solutions satisfy some of the correctness
properties but, in general, not all of them. Specifically, we present counter-examples that show
how some of these properties may fail.

The paper is organized as follows. In Section 2, we present an example of model transforma-
tion that will be used to show specific counter-examples in the rest of the paper. In Section 3,
we introduce the basic theoretical framework used in the paper, first our notion of model update
and, then, our assumptions about update propagation operations. In Section 4, we introduce the
problem of concurrent synchronization and the properties that we claim that propagation-based
procedures should satisfy. In Section 5, we present different propagation-based solutions to the
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concurrent synchronization problem, first for the conflict-free case and, then, for the general
case. Finally, in Section 6, we present some related work and present some conclusions.

2 Running Example

To help in providing some explanations and counter-examples we use a very simple example.
Source and target models describe different views of (part of) the information system of a com-
pany. They both describe information about their employees. Following the metamodels, de-
picted in Fig. 1, the source metamodel, on the left, describes the employees of a certain branch
of the given company, for instance the employees of the Barcelona branch. It consists just of
a single class, Employee, with attributes name (the name of the employee), dept (the name of
the department where the employee works), base (the base salary of the employee), and bonus.
The target metamodel, depicted on the right, describes the employees of the whole company. In
particular, the metamodel includes three classes: Employee, Dept and Branch. Branch and Dept
include just a name attribute, but Employee includes three attributes: name, salary (the total
salary received by the employee) and address (the address of the employee). In addition, each
employee must be associated to the branch and to the department where he currently works.

A source and a target model are consistent if the following conditions hold:

• Every employee in the source model is also present in the target model and is associated
to the Barcelona branch. Conversely, every employee associated to the Barcelona branch
in the target model must also be present in the source model.

• The salary of each employee associated to the Barcelona branch in the target model is the
addition of the base and bonus of that employee in the source model.

• The department of an employee in the source model is a string D if and only if that em-
ployee is associated to the department of name D in the target model.

We may notice that source and target models share some information, but also include some in-
formation of their own. For instance, source models include more information about the salaries
of the employees. Conversely, target models include the address of employees, and they also
include information about the employees of other branches different than Barcelona.

Figure 1: Source and target metamodels

Moreover, we assume that updates on the source or target models are propagated as follows:

• If we add an employee to the source model, this modification is propagated to the tar-
get model by including that employee with the address ”XXX” and with a salary that is
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the sum of its base and bonus. Moreover, if the department of the new employee is not
present in the target model, then the new department is also added. Finally, the employee
is associated with its department and the Barcelona branch.

• Conversely, if an employee is added to the target model and it is associated to the Barcelona
branch, the modification is propagated to the source model by adding that employee to-
gether with the corresponding department. Moreover, we set the base and bonus attributes
to 3/4 and 1/4 of the salary, respectively.

• Finally, if an employee is deleted from either the source or the target model, its propaga-
tion consists of the deletion of that employee from the other model (if present), without
any additional side-effects, like the deletion of its associated branch or department. How
that employee is identified depends on specific details of the given models. For instance,
if the models would be represented by a triple graph [SK08] then there would be a cor-
respondence element relating each employee in the source model to the same employee
in the target model. Otherwise, probably a key would identify each employee on the two
models.

In this scenario, source and target updates occurring in parallel can cause several types of
conflicts, which have to be resolved by a concurrent synchronization operation. Consider, e.g.,
the situation depicted in Fig. 2. The source update uS deletes employee e1 and the target update
uT modifies the address of this person. Propagating uS to the current state of the target domain
would remove that person. On the other hand, propagating uT to the source domain would undo
the deletion and create a new person with a base salary of 6000 and a bonus salary of 2000. There
are several possibilities on how the synchronization works in the concurrent case to handle such
conflicts and we will study different properties of concurrent synchronization in this paper.

Figure 2: A parallel update

3 The Basic Framework

This paper is not about some specific kind of models. Instead, we aim to study some properties
and constructions about a wide class of models and model transformations. Obviously, there
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could be some frameworks where our results do not completely apply. In this sense, first, we
present our assumptions about the given model framework and, then, we present a generic notion
of model update or modification, and study some properties of this notion. Thereafter, in the
second subsection, we present our framework of integrated models and the description of the
operations of update propagation, together with the properties that we may expect that they
satisfy.

3.1 Models and updates

We assume that, technically, our model classes form M-adhesive categories [LS05, EEPT06,
EGH10], which roughly means that our models are some kind of structured sets where union,
intersection and set difference can be defined in terms of pushouts, pullbacks and pushout com-
plements. For example, not only sets, but most classes of graphical structures form M-adhesive
categories, e.g., plain graphs, typed attributed graphs, hyper graphs, petri nets, and high-level
petri nets.

Our approach is δ-based [DXC10], which means that, when considering the update of a model,
we do not take into account only the models before and after the update. Instead, we deal with
updates representing explicitly which elements have been added to or deleted from the given
model (for a discussion on the advantages of δ-based approaches in comparison to state based
approaches, see [DXC10]). More precisely, an update or modification [EET11] of a model M,
denoted M⇒ M′ is a span of inclusions (or, in general, injective morphisms) M← M0 → M′.
Intuitively, the elements in M that are not in M0 are the elements deleted by the modification, and
the elements in M′ that are not in M0 are the elements added by the modification. So, M0 consists
of all the elements of M that remain invariant after the modification. Updates u1 : M1⇒M2 and
u2 : M1⇒M2 may be equivalent, denoted u1 ∼ u2, in the sense that they yield the same result,
but that they are technically different, because they are defined as different spans. For instance,
the identity update id : M←M→M is equivalent to any update u : M←M0→M, but id , u if
M ,M0. Intuitively, id neither deletes nor adds any element to M, while u would delete all the
elements in M which are not in M0 and, then, it would add them again.

Updates are closed under composition, i.e., given updates u1 : M1←M0→M2 and u2 : M2←
M′0→M3 there exists the composition u2 ◦u1 : M1←M→M3 defined by the diagram below:

M1 M0oo // M2 M′0oo // M3

M

aa ==
(1)

where (1) is a pullback (intuitively, the intersection of M0 and M′0), i.e. M includes all the
elements of M1 that are neither deleted by u1 nor by u2.

Sometimes, as we will see in the sections below, we are interested, not in the composition of
updates, but in their decomposition. Intuitively, an update u3 : M1 ⇒ M3 can be decomposed
as u2 ◦ u1, denoted u3

d
= u2 ◦ u1, with u1 : M1⇒M2 and u2 : M2⇒M3 if, on the one hand, the

composition u2 ◦u1 coincides with u3 and, on the other hand, the changes included in u1 are not
undone by u2. In particular, this requires that u2 neither deletes any element that is created by
u1 nor it adds back any element deleted by u1. In other words, once an element is created, it

5 / 19 Volume 57 (2013)



On Propagation-Based Concurrent Model Synchronization

will survive the full update, and if an element is deleted it will remain deleted for the full update.
Formally, u3

d
= u2 ◦ u1 if, in the above diagram, (1) is a pullback and a pushout. Obviously, if

u3
d
= u2 ◦ u1 then u3 = u2 ◦ u1, but the converse is not necessarily true. For instance, u1 may be

like u3 but adding some extra elements and u2 may just delete these additional elements. In that
case, we would have that u3 = u2 ◦u1 but not u3

d
= u2 ◦u1. Moreover, we say that u1 decomposes

u3 or that u1 is a submodification of u3, denoted u1 E u3, if there exists u2 such that u3
d
= u2 ◦u1.

We may notice that, according to the previous definitions, the only submodification of the
identity update id : M←M→M is the identity update itself. The reason is that, if there would
be another submodification u1 of id, then either u1 would delete some element from M or it
would add some new element to M. But, then, any u2 such that u2 ◦ u1 = id would need to add
or delete the corresponding elements. Formally, if in the diagram above, M1 = M3 = M, the only
way that (1) is a pushout and a pullback is that M0 = M2 = M′0 = M.

It is easy to define the inverse of an update u : M←M0→M′. It is enough to reverse the span,
i.e. u−1 = M′←M0→M. However, we may notice that u−1 ◦u∼ id but, in general, u−1 ◦u , id.

When several users want to apply different updates on the same model we need to have a
merge operation that combines these modifications into a single one. This problem has been
studied by several authors, but here we essentially follow the work in [EET11]. A main problem
is that there may be conflicts between the given modifications. For instance, an update u1 may
specify the deletion of a certain element e1 and u2 may specify the addition of an element e2 that
needs the existence of e1. This is called a delete/insert conflict in [EET11]. For example, u1 may
specify the deletion of a node in a graph model and u2 may specify the addition of an edge e2
that is connected to e1. Hence, a first problem is how to detect if there are conflicts between the
given modifications.

Two modifications are conflict-free, if none of them deletes an element that is needed by
the other one. This condition is formalised in Definition 1. Intuitively, by defining M as the
pullback of (1), we are defining M as the intersection of M′0 and M′′0 , i.e. u3 deletes from M0
all the elements that are deleted either by u1 or u2. Then, the existence of M′1 and M′2

1 means
that no element added by u1 or by u2 needs the existence of an element deleted by u2 or by u1,
respectively. Finally, if (4) is a pushout, the elements added to M by u1⊗ u2 are the union of
the elements added by u1 and by u2. In the case of conflict-free modifications, we can define the
result of this merging as the modification u3 = u1⊗ u2 : M0 ← M→ M3, where diagram (4) is
a pushout. Notice that, by construction, u1 and u2 are submodifications of u1⊗u2, as we would
expect.

Definition 1 (Conflict-free updates) Let u1 : M0 ← M′0 → M1 and u2 : M0 ← M′′0 → M2 be
two modifications. Let M be constructed via the pullback (1) in Figure 3. Then, u1 and u2 are
conflict-free, if there are objects M′1 and M′2 yielding pushouts (2), (3) and (4).

In case that u1 and u2 are in conflict, solving the conflicts would typically mean finding
conflict-free maximal submodifications u′1 E u1 and u′2 E u2 and merging them, as described
above, where maximality means that if u′1 E u′′1 E u1 and u′2 E u′′2 E u2 and u′′1 and u′′2 are conflict-

1 In adhesive categories, pushout complements along monomorphisms as they appear in graph modifications are
unique. This means that, if they exist, M′1 and M′2 are unique.
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M0

(1)

u1

''

u2

��

M′0

(2)

oo // M1

M′′0

(3)

OO

��

M

(4)

OO

oo //

��

M′1

OO

��

M2 M′2oo // M3

M0
u1 //

u2

��

u3

  

M1

u′2

��
M2

u′1
// M3

Figure 3: Condition for conflict-free modifications u1 and u2

free, then u′1 = u′′1 and u′2 = u′′2 . In this paper, we are not concerned with specific procedures
or strategies for solving conflicts. For example, in [EET11] a procedure is described to find
solutions where delete/insert conflicts are solved giving priority to insertions.

3.2 Integrated Models and Update Propagation

We assume that two classes (categories) of models are given, MS and MT , called the classes
of source and target models, respectively, even if in a bidirectional framework there may be
no specific notion of source or target. And we consider that an integrated model M is just
a pair M = 〈MS,MT 〉 consisting of a source and a target model. In previous work (e.g.
[HEO+11, HEEO12]) we considered that an integrated model is a correspondence, r : MS↔MT ,
that relates the elements of both models. For many purposes, we think that working in terms of
correspondences is more adequate. However, in this paper, we do not make any use of knowing
the relation between the elements of both models. Therefore, for the sake of simplicity we will
assume that the class of integrated models IM is the cartesian productMS×MT .

We also assume that a subclass of consistent integrated models, C ⊆ IM is also given. The
notion of consistently integrated models induces a notion of consistence of models. In particular,
a source model MS (resp. a target model MT ) is consistent if there is a consistent integrated model
〈MS,MT 〉 that includes that model for some target model MT (resp. for some source model MS).

In addition, we assume that our framework is equipped with propagation operations that solve
the basic synchronization problem. This means that, given an integrated model M and an update
on one domain, either MS or MT , these operations propagate the given changes to the other
domain. More precisely, we assume that our framework includes suitable total forward and
backward functions fPpg and bPpg. In the case of fPpg, the input is an integrated model M ∈
IM together with a source model update uS : MS ⇒ M′S, and the output is a target update
uT : MT ⇒M′T . The operation bPpg behaves symmetrically to fPpg. It takes as input M and a
target modification uT : MT ⇒M′T and it returns a source update uS : MS⇒M′S. In principle,
we do not require that the given integrated model, nor the result of the propagation have to be
consistent, i.e. we assume that our propagation operations will provide an output for any possible
update. For instance, the deletion of a given element on the source model may be propagated
to the deletion of some elements of the target model, independently of the consistency of the
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original and the resulting integrated models.
There are several properties that have been proposed by different authors (e.g. [Ste10,

DXC+11b] to consider that propagation operations are correct. Below we can find the main
ones. However, due to lack of space, we just state these properties for forward propagation,
since the corresponding properties for backward propagation are similar. The most basic ones
are the ones that we call Consistency, Identity and Hippocraticness. Consistency states that if the
given update yields a consistent model then the resulting integrated model should be consistent.

1. Consistency: If fPpg(M1,uS : MS
1 ⇒MS

2) = (uT : MT
1 ⇒MT

2 ) and MS
2 is consistent, then

〈MS
2 ,M

T
2 〉 is also consistent.

Identity states that if the given update is the identity and the given correspondence is consistent,
then the propagation operations change nothing.

2. Identity: If 〈MS,MT 〉 is consistent then fPpg(M, IdS) = IdT

Finally, Hippocraticness states that if after the given update the resulting models are already
consistent then propagation should also do nothing. Notice that identity is a special case of
Hippocraticness.

3. Hippocraticness: Given M1 = 〈MS
1 ,M

T
1 〉 and uS : MS

1 ⇒ MS
2 , if 〈MS

2 ,M
T
1 〉 is consistent

then fPpg(M1,uS) = IdT

Another property that has been proposed by several authors is the so called put-put law, stating
the compatibility of propagation with respect to update composition:

4. Compatibility of propagation and update composition: If fPpg(M1,uS
1 : MS

1 ⇒MS
2) =

(uT
1 : MT

1 ⇒MT
2 ) and fPpg(M2,uS

2) = uT
2 then fPpg(M1,uS

2 ◦uS
1) = uT

2 ◦uT
1

However, the put-put law is too strong in general. For instance, in the example described in
Section 2, if we delete an employee from the source model and, then, we add it again, after
propagating both updates, the employee in the target model would have the address ”XXX”.
However, the composition of the two updates is, obviously, equivalent to the identity, whose
propagation is also equivalent to the identity. Hence if the address of that employee in the target
model before the update was not ”XXX”, the put-put law would not be satisfied.

Instead of the put-put law, we propose the following alternative law that states the compatibil-
ity of propagation with respect to update decomposition:

5. Compatibility of propagation with update decomposition: If fPpg(M1,uS
1 : MS

1 ⇒
MS

2) = (uT
1 : MT

1 ⇒MT
2 ) and fPpg(M2,uS

2) = uT
2 and uS

3
d
= uS

2 ◦ uS
1 then fPpg(M,uS

3) = uT
3 ,

with uT
3

d
= uT

2 ◦uT
1

Strong invertibility is a law that is also too strong in many contexts (see, e.g. [FKPT08,
Ste10, DXC+11b, Ste12]. Instead, we may ask for its weaker version of invertibility. Strong
invertibility states that if u′ is the update propagation of u then u must be the update propagation
(in the reverse direction) of u′:
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6. Strong invertibility: If fPpg(M,uS) = uT then bPpg(M,uT ) = uS

A weaker version is invertibility that roughly says that if u2 is the update propagation of u1
and u3 is the update propagation (in the reverse direction) of u2 then u2 must be the update
propagation of u3:

7. Invertibility: If fPpg(M,uS
1) = uT

1 and bPpg(M,uT
1 ) = uS

2 then fPpg(M,uS
2) = uT

1

In [Ste12] the relations between some of these and other properties are studied in detail.

4 Propagation-based Concurrent Synchronization

The aim of concurrent synchronization is to merge pairs of updates (in what follows, parallel
updates) on interrelated models. A first problem is that, if the updates are in conflict, this conflict
is not explicit. The reason is that, here, on the contrary to what we have seen in Sect. 3.1,
the updates do not interfere directly since they are assumed to modify different models. The
conflicts may arise when we try to build a consistent integrated model out of the two updated
models. As we show in Section 5, a simple way of approaching the problem is to use the forward
and backward propagation operations, described in Section 3.2 both to detect conflicts and to
implement the synchronization procedure. We say that this kind of approaches are propagation-
based.

In general, the result of concurrent synchronization is not unique: each possible way of solving
the existing conflicts may be considered a possible solution, where the users may decide whether
each result corresponds to their needs. In particular, given a parallel update u = 〈uS,uT 〉, if there
are conflicts between uS and uT , we may consider that each possible result corresponds to the
merging of two conflict-free submodifications, uS

0 E uS and uT
0 E uT , obtained after backtracking

some of the conflicting operations involved in uS and uT . This condition is addressed in this sec-
tion by the formal properties soundness and maximal preservation. For instance, in the example
described in Section 2, if we have a source update that includes the deletion of an employee and
a target update that includes a change on the salary of that employee, the two updates would be
in conflict. To solve the conflict, we would need to either backtrack the deletion of the employee
from the source model or to backtrack the change of salary of that employee in the target model.

Before studying the problem in more detail, we should note that if MS and MT are M-
adhesive categories then the category of integrated models, IM =MS ×MT , is also M-
adhesive, and its updates are parallel updates u = 〈uS,uT 〉. Therefore we can apply the concepts
and techniques presented in Section 3 to work with these updates.

More formally, we consider that a concurrent synchronization procedure CSync is a nondeter-
ministic function whose input is a pair consisting of an integrated model M and a parallel update
u1 : M⇒M1 and the output are parallel updates u2 : M⇒M2, where uS

2 and uT
2 could be seen

as the result of merging uS
1 and uT

1 or some of its submodifications. Moreover, when we write
CSync(M,u1) = u2 we mean that u2 is a possible result of this synchronization. Our notion of
concurrent synchronization fits the procedure described in [XSHT13]. However, in [HEEO12],
the result of concurrent synchronization is defined in a slightly different way. In that paper, a
result of synchronizing u1 : M⇒M1 is a parallel update u2 : M1⇒M2, such that M2 ∈ C. From
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a practical point of view, the latter notion suggests that, when we start the synchronization oper-
ation, the given updates uS

1 and uT
1 have already been performed, i.e. the given state consists of

the models MS
1 and MT

1 , so the resulting updates uS
2 and uT

2 are applied to that state yielding the
final state 〈MS

2 ,M
T
2 〉. This means that, if conflicts are found in the synchronization process, then

uS
2 and uT

2 would have to undo some of the modifications included in uS
1 and uT

1 . On the contrary,
the current notion suggests that, when the synchronization operation starts, the given updates uS

1
and uT

1 would have not been executed so the current state is still 〈MS,MT 〉. Instead, these up-
dates would have been kept or stored in some way, and the synchronization process would, first,
find the possible conflicts between uS

1 and uT
1 , then, it would compute the resulting updates uS

2
and uT

2 and, finally, it would execute these updates over the initial state, leading to the final state
〈MS

2 ,M
T
2 〉. However, from a theoretical point of view, both notions can be considered equivalent,

in the sense that, in general, from one kind of solution we can construct the other one.
Let us now see what properties should be satisfied by a propagation-based concurrent synchro-

nization procedure CSync when applied to an integrated model M and a parallel update u1. The
first three properties are just the concurrent version of the corresponding properties defined for
propagation operations presented in Section 3.2. The first property states that any result must be
consistent; the second one says that if the given modifications are the identity then the resulting
updates should also be the identity (when the given interrelated model is consistent: otherwise
the former properties would be contradictory); finally the third property is the concurrent version
of hippocraticness. It just says that if the interrelated model after applying two updates is already
consistent, then we may consider that the updates are already synchronized.

1. Consistency: Given the integrated model M and a parallel update u1 : M ⇒ M1, if
CSync(M,u1) = (u2 : M⇒M2), then M2 ∈ C.

2. Identity: If M is consistent and CSync(M,〈IdS, IdT 〉) = u2 then u2 = 〈IdS, IdT 〉.

3. Hippocraticness: Given u : M⇒M1, if M1 ∈ C then CSync(M,u) = u.

The above properties say very little about the relation between the resulting modifications
and the given updates. In particular, a concurrent synchronization procedure that returns some
updates that have nothing in common with the original modifications may satisfy these proper-
ties. Hence, we have to relate the output modifications with the input updates. In the context
of propagation-based concurrent synchronization, we may consider that each update uS on the
source model not only specifies some given modifications on MS, but it also specifies the mod-
ifications included in its propagation f Ppg(M,uS) on the target model, and similarly for target
updates. Therefore, in this framework, we may consider that a concurrent synchronization CSync
is sound if whenever u2 =CSync(M,u1), then all the modifications included in u2 are part of uS

1
and uT

1 or their propagation. This is stated by saying that the resulting updates can be obtained
by merging some submodifications of the input updates and their propagation.

4. Soundness: If CSync(M,u1) = u2 then there are submodifications v1 and v2, such that
v1 E u1, vS

2 E bPpg(M,uT
1 ), vT

2 E f Ppg(M,uS
1), and v1⊗ v2 = u2.

However, this is not enough. A concurrent synchronization procedure that always returns the
identity updates would be considered sound. Obviously, this is not what we want. What we
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may expect is that any resulting update u2 should include as much as possible the modifications
specified by the input update u1. In particular, when there are no conflicts between uS

1 and uT
1 , u2

should include all the modifications specified by uS
1 and uT

1 .

5. Maximal preservation: If CSync(M,u1) = u2, then for all parallel updates v1 :
M ⇒ M′1 and v2 : M ⇒ M′2, such that v1 is conflict-free, v1 E u1, v2 = v1 ⊗
〈bPpg(M,vT

1 ), f Ppg(M,vS
1)〉 and M′2 ∈ C, then if u2 E v2, we have v2 = u2.

Finally, we may consider that, after conflict resolution, we have backtracked certain modifica-
tions included in the given input update u1, so that what we really want is to synchronize some
conflict-free submodification u0 E u1. Then, we may also consider that the resulting update u2
should only include modifications from uS

0 and uT
0 and their propagation.

6. Strong soundness: If CSync(M,u1) = u2 then there is a parallel update u0 E u1, such that
uS

0⊗bPpg(M,uT
0 ) = uS

2, and f Ppg(M,uS
0)⊗uT

0 = uT
2 .

It is not difficult to see that strong soundness implies the properties of soundness and identity:

Proposition 1 If CSync(M,u1) = u2 is a strongly sound solution then it also satisfies the prop-
erties of identity and soundness.

Proof sketch.

• Identity. If u1 is the identity parallel update then, the only update u0 satisfying u0 E u1
is also the identity update. But, if u0 is the identity, according to the Identity property of
basic synchronization, we have that bPpg(M,uT

0 ) = id, and f Ppg(M,uS
0) = id. But this

means that uS
0⊗bPpg(M,uT

0 ), and f Ppg(M,uS
0)⊗uT

0 are also the identity.

• Soundness. Let us suppose that CSync(M,u1) = u2 and there is an update u0, such that
u0 E u1, uS

0 ⊗ bPpg(M,uT
0 ) = uS

2, and f Ppg(M,uS
0)⊗ uT

0 = uT
2 . Then, by the property

of preservation of decomposition of basic synchronization, we have that bPpg(M,uT
0 ) E

bPpg(M,uT
2 ), and f Ppg(M,uS

0) E f Ppg(M,uS
2). Therefore, if we take as submodifications

v1 = u0, vS
2 = bPpg(M,uT

0 ), and vT
2 = f Ppg(M,uS

0), then we have that v1 and v2 satisfy the
conditions stated in the soundness property.

5 Strategies for propagation-based concurrent synchronization

In Section 4, we have seen some conditions that we may consider when reasoning about the
adequacy of a given concurrent synchronization procedure. In this section we study different ap-
proaches to define propagation-based procedures for concurrent synchronization and we analyze
up to which point they satisfy our correctness properties. In particular, in the first subsection
we will study the conflict-free case: we will show how we can check the existence of conflicts
between two updates uS and uT , and we will see that this check immediately tells us how to
define the synchronization of these updates. Moreover, we will see that this procedure satisfies
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all the properties defined in Section 4, except hippocraticness. Then, in the second subsection
we consider the case where uS and uT are in conflict and we show that using propagation and
conflict resolution, as presented in Section 3, we can build solutions that satisfy some of the
above properties, but not all of them.

5.1 Conflict-free concurrent synchronization

The simplest approach to make conflicts explicit in a parallel update u1 is to consider simulta-
neously the given updates, uS

1 and uT
1 , and their propagation over the given integrated model. In

particular, if we define u2 = 〈bPpg(M,uT
1 ), f Ppg(M,uS

1)〉, we can first check if u1 and u2 are
in conflict, according to the notion of conflict studied in Section 3. However, this check only
tells us if all modifications defined by u1 are compatible with the modifications defined by u2,
but it does not tell us if the result of merging u1 and u2, u1⊗ u2, is consistent. In particular, if
it is inconsistent, we should consider that there is also some kind of conflict between u1 and u2.
Hence, a simple procedure to check conflict-freeness of u1 would be:

1. Let u2 = 〈bPpg(M,uT
1 ), f Ppg(M,uS

1)〉.

2. If u1 and u2 are conflict-free and u1⊗u2 : M→M2 with M2 ∈ C then return true; otherwise
return false.

Now, if u1 satisfies the above check, then we can define CSync0(M,u1) = (u1⊗ u2) as the
concurrent synchronization of u1.

Theorem 1 (Properties of conflict-free concurrent synchronization) If u1 = 〈uS
1,u

T
1 〉 is

a conflict-free parallel update over M, then CSync0(M,u1) = (u1 ⊗ u2), where u2 =
〈bPpg(M,uT

1 ), f Ppg(M,uS
1)〉, satisfies the properties of 1) Consistency, 2) Identity, 4) Sound-

ness, 5) Maximal preservation and 6) Strong soundness.

Proof sketch. According to Prop 1, strong soundness implies identity and soundness. Hence, it
is enough to prove the properties of consistency, maximal preservation and strong soundness.

• Consistency. By construction, the result of u1⊗u2 is consistent.

• Maximal preservation. If we have that v1 : M ⇒ M′1 and v1 E u1 this means that
〈bPpg(M,vT

1 ), f Ppg(M,vS
1)〉 E 〈bPpg(M,uT

1 ), f Ppg(M,uS
1)〉, as a consequence of the

compatibility of propagation and update decomposition. But this means that v2 = v1⊗
〈bPpg(M,vT

1 ), f Ppg(M,vS
1)〉 E u2. Therefore, if u2 E v2, we have v2 = u2.

• Strong Soundness. It is enough to take as submodification u0 = u1.

Unfortunately, in general, CSync0 does not satisfy hippocraticness. The reason is that, given
u1 : M⇒ M1, if M1 ∈ C, in general, we cannot expect that u1 = (u1⊗ u2), where u2 is defined
as above. Obviously, we can avoid this problem by checking if M1 is consistent before starting
the whole procedure. However, the rationale of hippocraticness is that synchronization or prop-
agation procedures should perform the least amount of modifications to produce a consistent
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integrated model. Then, by including this additional check, we avoid the extreme case, where no
additional modifications are needed. However, from an informal viewpoint, we may conclude
that propagation-based synchronization approaches are not hippocratic since, when propagating
the given updates, we may be performing more modifications than needed.

In [XSHT13] a conflict-free concurrent synchronization procedure, called SY NC, is defined in
a slightly different way. However, this difference causes that SY NC may fail to deliver a result
in cases when there are no conflicts. Roughly2, given a model M and a parallel update u1, SY NC
builds the resulting update u2 in four steps:

• First, it does a backward propagation of uT
1 .

• Then, if there are no conflicts between uS
1 and bPpg(M,uT

1 ), it merges the two updates
obtaining the source update uS

2 = uS
1⊗bPpg(M,uT

1 ).

• In the third step, it forward-propagates uS
2, obtaining the target update uT

2 = f Ppg(M,uS
2).

• Finally, it checks if the solution found, u2 preserves the given update u1, which essen-
tially means that u2 includes all the modifications specified by u1. If u2 preserves u1, the
procedure returns u2, otherwise it reports an error.

The problem can be seen in the following example. Let us suppose, following Section 2,
that the source update uS

1 consists of the addition of some employee e1 and the target update uT
1

consists of the addition of a different employee e2 that works in the Berlin branch. Obviously,
there is no conflict between the two updates. Now, according to [XSHT13], SY NC would behave
as follows:

• The backward propagation of uT
1 would be the trivial identity update, since e2 is not work-

ing in the Barcelona branch. As a consequence, uS
2 = uS

1.

• uT
2 = f Ppg(M,uS

2), i.e. uT
2 consists just of the addition of e1 to the target model.

• Unfortunately, u2 does not preserve u1, since employee e2 is not added now to the target
model. Thus the procedure would deliver an error.

The problem is related with the properties of invertibility and strong invertibility of (backward)
propagation. In particular, if bPpg is strongly invertible then, if there are no conflicts, SY NC is
always preserving, but if it is not strongly invertible then SY NC may be not preserving and, as
a consequence, it may report an error, when the updates are conflict-free, as shown with the
previous example.

Proposition 2 If uS
1 and uT

1 are conflict-free updates of an integrated model M, bPpg is strongly
invertible, and SY NC(M,u1) = u2 then u1 E u2.

Proof sketch. We know that uS
2 = uS

1⊗bPpg(M,uT
1 ), so by construction (cf. Section 3.1) uS

1 E uS
2.

Let us now show that uT
1 E uT

2 . By construction, we know that there is some target update vT
1 such

2 The approach in [XSHT13] is not δ-based, but state-based. As a consequence, their formulation is slightly different.
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that vT
1 ◦bPpg(M,uT

1 )
d
= uS

2. By the property of compatibility of propagation with update decom-

position, we have that f Ppg(M′,vT
1 )◦ f Ppg(M,bPpg(M,uT

1 ))
d
= f Ppg(uS

2), where M′ is the inte-
grated model obtained after applying the parallel update 〈bPpg(M,uT

1 ), f Ppg(M,bPpg(M,uT
1 ))〉

on M. But, if bPpg is strongly invertible, f Ppg(M,bPpg(M,uT
1 )) = uT

2 implying uT
1 E uT

2 .

5.2 Conflicts and concurrent synchronization

Given an integrated model M, if the given parallel update u1 includes some conflicts, to ensure
the properties of consistency, identity, maximal preservation and strong soundness, we would
need to find (maximal) conflict-free subupdates v E u1. Then, for each such v, we could find
a solution just computing CSync(M,v) as described in the previous section. A simple solution
could consist: a) in computing all subupdates v E u1; b) for each v, checking if it is conflict-
free; and, finally, c) returning the maximal subupdates found. Obviously, the problem of this
kind of approach is that it may be computationally very costly. In what follows we study two
approaches that are more efficient in general, although we may be unable to ensure some of the
above properties.

The first approach was proposed in [HEEO12] and can be seen as a variation (including con-
flict resolution) of the procedure SYNC defined in [XSHT13] and analyzed above. The proposed
procedure, which we will call CSync1 can be described in four steps. We assume to have an in-
tegrated model M and a parallel update u : M⇒M1:

• In the first step, we compute the forward propagation of uS. Now, we have two updates
over MT , uT : MT →MT

1 and f Ppg(M,uS) : MT →MT
0 .

• If there are no conflicts between uT : MT → MT
1 and f Ppg(M,uS) : MT → MT

0 we just
merge these updates, otherwise we find a solution to them. Hence, after this step we
have computed a target update vT : MT →MT

3 that is equal to the merging of conflict-free
subupdates vT

0 E uT and vT
1 E f Ppg(M,uS). Now, we may notice that there must exist an

update wT such that wT ◦ uT is equivalent to vT . The reason is that if wT
0 is the update

such that uT d
= wT

0 ◦ vT
0 and wT

1 is the update such that vT d
= wT

1 ◦ vT
0 , it is enough to define

wT = wT
1 ◦ (wT

0 )
−1. Intuitively, wT first undoes the modifications which are part of uT but

that are not part of vT , and then it applies the additional modifications wT
1 .

• Next, we find a maximal consistent submodel MT
2 of the target model MT

3 . Obviously,
if MT

3 is already consistent then MT
2 = MT

3 . Let now wT
1 : MT

3 → MT
2 be the update that

deletes all the elements in MT
3 which are not in MT

2 .

• Finally, we apply backward propagation of the update wT
1 ◦ wT to M1, leading to a

source model MS
2 . In this context the resulting integrated model after the concurrent

synchronization would be 〈MS
2 ,M

T
2 〉, which means that, in our terms3, CSync1(M,u) =

〈bPpg(wT
1 ◦wT )◦uS,wT

1 ◦ vT 〉.

3 As mentioned in Sect. 4, given M and a parallel update u : M⇒M1, in [HEEO12], it is assumed that the result of
the operation of concurrent synchronization is a parallel update over M1
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It is not difficult to prove that CSync1 satisfies the properties of consistency and identity. In
particular, we know that the resulting model M2 = 〈MS

2 ,M
T
2 〉 is consistent because of the con-

sistency of backward propagation, since, by construction, MT
2 is consistent and M2 is obtained

applying backward propagation to the update that lead to MT
2 . The case of the Identity property

is simpler. It is enough to notice that if the given parallel update u : M ⇒ M1 is the identity,
then all the updates defined in the above procedure, by construction, are also the identity. As a
consequence, we have:

Theorem 2 (Properties of CSync1) CSync1 satisfies the properties of consistency and identity.

However, CSync1 is not sound. Let us consider the example presented in Section 2 that is
depicted in Fig. 2. In that example, the source update uS includes the deletion of an employee
e1 with a base salary of 5000 euro and a bonus of 3000 euro, and the target update uT includes a
change of the address of e1:

• Suppose, that the conflict between the deletion of e1 and its change of address is solved
delivering a target update wT that does not include that deletion, and suppose that the
resulting target model MT

3 is consistent.

• Now, e1 is included in MT
3 with an overall salary of 8000 euros, but it is not included in

MS
1 . Then, the backward propagation of wT would include the addition of e1 to the source

model including a base salary of 6000 euro and a bonus of 2000 euro.

This modification of base salary and bonus is not specified by u, so the synchronization is un-
sound.

The problem with soundness is, in a way, similar to the problem that we found in the previous
section that causes that the procedure in [XSHT13] may be unable to find a synchronization,
even if the given parallel update is conflict-free. However, in this case, if forward propagation is
strongly invertible this does not necessarily mean that CSync1 should be sound. The problem is
in the third step, when constructing the maximal consistent submodel MT

2 of MT
3 we may delete

some elements from the latter model that need not be deleted according to the given update.
The second approach, which we will call CSync2, is an extension, including conflict resolution,

of the procedure presented in Section 5.1. Again, we start assuming that we have a parallel update
u1 : M⇒M1 over an integrated model M.

• First, we compute the parallel update u2 = 〈 f Ppg(M,uS
1),bPpg(M,uT

1 )〉 : M⇒M2.

• If u1 and u2 are conflict-free and u1 ⊗ u2 ∈ C, then we can define the result u =
CSync(M,u1) = (u1⊗ u2), as in the previous section. Otherwise, we look for a maxi-
mal update u : M ⇒ M′ that is a solution to the conflicts and such that M′ is consistent.
How we can find u and M′ depends on the specific framework. In particular, in the case
of working with triple graph grammars, we could use a technique similar to consistency
creation (see, e.g., [HEEO12]).

CSync2 satisfies the properties of consistency, identity, soundness and maximal preservation.
However, the procedure is not strongly sound, as the example below shows:
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• Suppose that the source update uS
1 consists of the addition of a new employee e1, working

at a new department D to MS. So the propagation of this update would include adding e1
and D to the target model MT .

• Suppose that adding e1 to MT creates a conflict with the given target update uT
1 (for exam-

ple, because uT
1 includes the addition of another employee with the same name and it is

forbidden to have in our model two employees with the same name).

• Suppose that the conflict is solved by not adding e1 to MT , which means that we would
backtrack the addition of e1 to MS.

• Now, the fact that adding e1 to the MT creates a conflict, it does not mean that the addition
of D creates any conflict. Hence, in the conflict resolution step we would keep the addition
of D to MT . However, if we have backtracked the addition of e1 to MS, adding D to MT

would not be a consequence of the propagation of the resulting source update, nor of the
original target update. Hence, the procedure would not be strongly sound.

Theorem 3 CSync2 satisfies the properties of consistency, identity, soundness and maximal
preservation.

Proof sketch. CSync2 is consistent since the resulting integrated model is consistent by construc-
tion. If u1 is the identity and M is consistent, then u1 has no conflicts and, as we have seen in
Thm 1, the result of synchronization is the identity. CSync2 is sound since, by construction, all
the modifications included in u1 are, by construction, part of u1 or of u2. Finally, CSync2 also
satisfies maximal preservation because of the construction of u1.

6 Related Work

Incremental model transformation or (standard) model synchronization is a problem that has
been largely studied in different areas of computer science like databases, software engineer-
ing, and programming languages (see, e.g., [DB82, FKPT08, Ste10, HPW11, BPV06, TCC12].
However, to our knowledge, the only approaches that deal with the problem of concurrent syn-
chronization of general models were presented by Xiong et al. [XSHT09, XSHT13] handling
the conflict free case and by Hermann et al. [HEEO12] handling the general case including pos-
sibly conflicting updates. We studied both of them in detail in this paper based on an abstract
framework of for propagation-based synchronization. Other authors have also considered the
problem of concurrent synchronization, albeit in a more restrictive setting. In particular, Foster
et al. [FGK+05] consider this problem, but models are restricted to tree like structures and the
target model is an abstract of the source. Also, Xiong et al.[XHZ+09] consider this problem
when updates are defined in terms of a given set of operations.

Different kinds of synchronization frameworks that are based on the concept of
lenses [BPV06, HPW12] solve the view update problem in the domain of programming lan-
guages. Some of these works considered the put-put law as a major requirement [DXC11a,
GJ12], which ensures compositionality in a rigorous manner. However, as discussed in several
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papers and also for our example, the put-put law is often too restrictive for solving the general
concurrent synchronization problem. Therefore, we presented the properties of soundness and
strong soundness that do not enforce compositionality in general, but only in cases where com-
position of the given updates is compatible with decomposition. This allows us to show that
concurrent synchronization can ensure soundness (Theorem 3) and even strong soundness in the
case of conflict free updates (Theorem 1).

However, propagation-based approaches have also some disadvantages. The main one, which
is not explicit in the paper, is that these procedures may be unable to find some reasonable so-
lutions for the synchronization of a given parallel update. The problem is caused by the fact
that, given an update on a given model (e.g. the source model), there may be different ways of
propagating that update to the target model. However, since propagation operations are supposed
to be deterministic, the operation f Ppg would only implement one of these ways. Hence, given
a parallel update u, the solutions that we may obtain by a propagation-based procedure would
only be built from the specific ways of propagating uS and uT implemented in f Ppg and bPpg.
In particular, if f Ppg and bPpg differ from each other in this sense, then the derived synchro-
nization approaches are not hippocratic [Ste08], which would require that the synchronization
has no effect, if the current integrated model is already consistent. The second problem is related
with the fact that, in case of conflicts, the procedures that we have studied do not satisfy some
of the properties (especially, soundness or strong soundness) that, a priori, we thought that they
should satisfy. However, this is not as important as it may seem to be. Our soundness properties
are based on the idea that the modifications specified by each source or target update consist of
the modifications included in the update and the ones included in its propagation. We believe
that this is reasonable in the context of propagation-based methods, but it would be too strong in
general. The reason is that, according to the ideas discussed above, there may be reasonable solu-
tions to the synchronization problem that are not based on the given propagation operations. As
a consequence, these solutions would probably be unsound, in view of our notion of soundness.

7 Conclusion and Future Work

In this paper, we provided a general and abstract framework for handling the problem of con-
current model synchronization using propagation-based approaches. The use of propagation
operations has mainly two advantages. The first one is that they provide a simple way of check-
ing the existence of conflicts in a given parallel update. The second one is that the operations
for concurrent synchronization are relatively easy to implement, since we may reuse propaga-
tion operations defined for the basic synchronization problem. In our main results (Theorem 1
and Theorem 3), we have shown under which conditions propagation based synchronization ap-
proaches ensure maximal preservation of the given updates and soundness (avoidance of side
effects).

For further work, we believe that it will be interesting to define a concurrent synchronization
procedure that is not propagation-based, studying its feasibility and correctness.
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