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On the whereabouts of CSP-CASL – A survey
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Abstract: CSP-CASL is but one of the many languages for which Bernd Krieg-
Brückner (BKB) had a great deal of influence throughout its development process:
from the initial idea of working towards an integration of the process algebra CSP

with the algebraic specification language CASL, to the design of the concrete syntax,
and also to tool support for CSP-CASL, where the theorem prover Isabelle should
provide the common platform. In all this, BKB provided inspiration and guidance,
funding, and also a helping hand when needed.

This paper provides a survey on the technology developed so far for CSP-CASL,
covering results of a theoretical nature, an industrial case study, theorem proving
support as well as a testing approach. In honour of BKB’s 60th birthday, this survey
documents what has become out of one of BKB’s visions.

Keywords: CSP, CASL, CSP-CASL, Modelling, Verification, Theorem Proving,
Testing.

1 Introduction

Distributed computer applications like flight booking systems, web services, and electronic pay-
ment systems such as the EP2 standard [EP208] involve the parallel processing of data. Conse-
quently, these systems exhibit concurrent aspects (e.g., deadlock-freedom) as well as data aspects
(e.g., functional correctness). Often, these aspects depend on each other. The algebraic specifi-
cation language CASL alone can deal with data aspects, while the process algebra CSP is quite
capable of modelling concurrent systems. The mutual dependencies between processes and data,
however, require a new type of language: e.g., CSP-CASL [Rog03, Rog06]. The novel aspects
of CSP-CASL include the combination of denotational semantics in the process part and, in par-
ticular, loose semantics for the data types covering both concepts of partiality and sub-sorting.

CSP-CASL is equipped with a refinement notion based on refinements developed in the context
of the single languages CSP and CASL. For system development one is often interested in liberal
notions of refinements, which allow substantial changes in the design. For system verification,
however, it is important that refinement steps preserve properties. The latter concept allows one
to verify properties already on abstract specifications – which in general are less complex than
the more concrete ones. The properties are then preserved over the design steps.

Based on previous publications, this paper provides a survey on the technology currently avail-
able for CSP-CASL. Section 2 presents the language and the basic ideas underlying its seman-
tics, [Rog03, Rog06]. We then review a major industrial case study, namely, how to model
the electronic payment system EP2 in CSP-CASL, [GRS05]. Section 4 reports on parsing and
statically analysing CSP-CASL, [Gim08]. CSP-CASL refinement [KR09, Kah10] is the topic
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of Section 5: Besides its obvious use for system development, refinement is the fundamental
means to analyse systems within the CSP-CASL context, e.g., in order to check a specification for
deadlock-freedom. Section 6 documents the construction of CSP-CASL-Prover [O’R08, OIR09],
which offers theorem proving support for checking CSP-CASL refinement. With this technology
around, we mechanically verify parts of the EP2 system in Section 7: we prove that the formal
specifications representing the different layers of the EP2 system are related via refinement, and
demonstrate how to prove deadlock-freedom of typical EP2 dialogues. Modelling and formally
analysing a system improves the quality of the design process, however, there still is no direct
link between specification and implementation. Sections 8 and 9, finally, present a framework
for black-box testing from CSP-CASL specifications, [KRS07, KRS08], and a testing framework
for EP2 [Kah10].

1.1 Related approaches

As process algebras tend to lack the ability to handle data, there have been various approaches
towards the integration of processes and data: [ABR99] provides a survey on such integrations.

For CASL, various reactive extensions have been defined. They include CCS-CASL [SAA01]
and CASL-CHARTS [RR00], which combine CASL with reactive systems of a particular kind,
the semantics of which are defined in terms of set theory. CASL extensions such as COCASL
[MRS03] (being much simpler than full set theory) and CASL-LTL [RAC00] provide more
of what one might call a meta-framework: for example, the process algebra CCS has been
formalised in both these languages.

Initial or concrete data types underlie LOTOS [ISO89], E-LOTOS [ISO01], and also CSPM

[Ros98]. This has the shortcoming that data needs to be fixed the moment the modelling is
done. A step forward in this respect is the specification language µCRL [GP95]. Here, data
types have loose semantics and are specified in equational logic with total functions. CASL, and
thus CSP-CASL, offers a more expressive logic for the specification of data, namely many-sorted
first order logic with sort-generation constraints, partiality, and sub-sorting. On the process side,
µCRL employs a branching time semantics based on bisimulation. CSP-CASL offers the choice
between the various trace semantics defined in the context of CSP, i.e., CSP-CASL provides a
linear time view on systems.

A different approach towards data is taken in CSP-OZ [Fis97]. Here, the object-oriented
state-based formalism Object-Z is combined with the process algebra CSP. Its formal semantics
is given in terms of CSP’s failures-divergences model. In contrast, CSP-CASL’s semantics is
generic with respect to the underlying CSP model.

While the above approaches, including CSP-CASL, keep data and processes distinct, Cir-
cus [WC01, WC02] provides a deeper integration of data specified in Z with processes written
in CSP. While this has advantages for methodology, with deep integration it is difficult to re-use
existing tools and established theoretical results from the constituent languages.

Our testing approach is closely related to the work by Cavalcanti and Gaudel for CSP [CG07]
and Circus [CG11]. While we study an implementation relation from a specification to the
system under test (SUT) in the physical world, Cavalcanti and Gaudel make the assumption
that the SUT behaves like some unknown specification and characterize refinement between two
mathematical objects using a test suite.
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2 The design of CSP-CASL

CSP-CASL [Rog03, Rog06, Gim08] is a comprehensive language which combines processes
written in CSP [Hoa85, Ros98] with the specification of data types in CASL [Mos04]. The
general idea is to describe reactive systems in the form of processes based on CSP operators,
where the communications of these processes are the values of data types, which are loosely
specified in CASL. All standard CSP operators are available, such as multiple prefix, the various
parallel operators, operators for non-deterministic choice, and communication over channels.
Concerning CASL features, the full language is available to specify data types, namely many-
sorted first order logic with sort-generation constraints, partiality, and sub-sorting. Furthermore,
the various CASL structuring constructs are included, where the structured free construct adds
the possibility to specify data types with initial semantics.

Syntactically, a CSP-CASL specification with name N consists of a data part Sp, which is
a structured CASL specification, an (optional) channel part Ch to declare channels, which are
typed according to the data part, and a process part P written in CSP, within which CASL terms
are used as communications, CASL sorts denote sets of communications, relational renaming is
described by a binary CASL predicate, and the CSP conditional construct uses CASL formulae
as conditions:

ccspec N = data Sp channel Ch process P end

See below for concrete instances of this scheme. Semantically, such a CSP-CASL specification
defines a family of process denotations for a CSP process, where each model of the data part Sp
gives rise to one process denotation.

The various CSP semantics are built relative to a fixed set of communications, where the
semantic clauses involve various test functions over this set. To this end, CSP-CASL’s semantical
construction provides what we call a data type of communications, which, besides an alphabet
of communications, defines the following functions:

• test on equality for arbitrary CASL terms
(can two communications synchronise?),

• test on membership for a CASL term concerning a CASL sort
(does a communication belong to a certain subset of the alphabet of communications?),

• test whether a binary predicate holds between two CASL terms
(are the terms in a renaming relation?), and

• satisfaction of a CASL first order formula
(is the formula of the conditional construct true?).

These test functions, living on the alphabet, can be lifted to formulae in CASL. Figure 1 il-
lustrates this setting. This data type of communications make the language CSP-CASL generic
in the choice of a specific CSP semantics. The above listed, seemingly small set of test opera-
tions allows for all denotational semantics described in [Ros98], namely trace-semantics, failure-
divergence-semantics and stable-failure-semantics.
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CSP process P

?
denotes

Set of traces over A

?
is parameter for

Set of communications A

{
Tests over A :
a = b?,a ∈ X?,aRb?,ϕ?

CASL specification Sp

?
has as semantics

Subsorted signature (S,TF,PF,P,≤)
Class of Σ-models M; (Ms)s∈S family of carrier sets

m Interface: Alphabet construction m

Figure 1: Translating data into an alphabet of communications.

The data types specified by algebraic specification consist of many-sorted algebras. The data
type of communications required by the process algebraic semantics is a one-sorted algebra.
Thus, in order to integrate data into processes, we need to turn a many-sorted algebra into one
set of values such that the above described tests are closely connected with the original data type.
We illustrate our construction here for the example of many-sorted total algebras:

There are two natural ways to define the alphabet of communications in terms of the carrier
sets of a CASL model: union and disjoint union of all carrier sets. To illustrate the effect of both
possibilities, consider the following CSP-CASL specification:

data sorts S,T
ops c : S; d : T

process c→ SKIP || d→ SKIP

Its data part, written in CASL, provides two constants c and d of type S and T , respectively.
The process part, written in CSP with CASL terms denoting communications, combines two
processes by the synchronous parallel operator, i.e., they have to agree on all actions.

The question is, may c and d synchronise or not? In all the various CSP semantics, c and d
synchronise iff they are equal. Now consider two isomorphic CASL models A and B of the data
part:

A (S) = {∗}, A (T) = {+}, A (c) = ∗, A (d) = +
B(S) = B(T) = {]}, B(c) = B(d) = ]

Choosing the union of all carrier sets as alphabet has the effect, that c and d do not synchronise for
algebra A while they synchronise for algebra B. Thus, isomorphic algebras give rise to different
behaviour. Therefore, we define the alphabet to be the disjoint union — with the consequence
that c and d do not synchronise.
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Similar ‘experiments’ for partiality, subsorting, and the combination of both – see [Rog06] –
finally lead to an alphabet construction

A(M ) := (
⊎
s∈S

Ms∪{⊥})/∼.

Here M is a CASL model and S is the set of all sorts declared in the data part. The special
element ⊥ encodes partiality, while ∼ is an equivalence relation which – on the alphabet level –
deals with subsorting.

3 The first challenge: Modelling EP2

In [GRS05] we describe the formal specification of a banking system using CSP-CASL. The
system in question is called EP2, which stands for EFT/POS 2000, short for ‘Electronic Fund
Transfer/Point Of Service 2000’; it is a joint project established by a consortium of (mainly
Swiss) financial institutes and companies in order to define EFT/POS infrastructure for credit,
debit, and electronic purse terminals in Switzerland1.

...

· · · · · ·

...

· · · · · ·

Architectural
Level

Abstract
Component

Level

Concrete
Component

Level

Csp-Casl
Spec Sp0

Csp-Casl
Spec Sp1

Csp-Casl
Spec Sp2

Informal Design
Process

Formal Design
Process

Informal Refinement

Modelling

Figure 2: Formalising specifications at various levels of abstraction.

1 www.eftpos2000.ch
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At the architectural level, the system consists of seven autonomous entities centred around
the EP2 Terminal (see Figure 2, which shows several of these entities), a hardware device con-
cerned with processing card details and authorising financial transactions. The other entities are
the Cardholder (i.e., customer), Point of Service/POS (i.e., cash register), Attendant, POS Man-
agement System/PMS, Acquirer, Service Center, and Card. These entities communicate with
the Terminal, and to a certain extent one another, mostly via XML messages over TCP/IP; the
messages contain information about authorisation, financial transactions, and initialisation and
status data. Each component is thus a reactive system, and there are both reactive parts and data
parts which need to be modelled, with these parts heavily intertwined.

The EP2 specification, a typical informal specification as used in industry, consists of twelve
documents. These documents are written using a number of different specification notations:
plain English; UML-like graphics (use cases, activity diagrams, message sequence charts, class
models, etc.); pictures; tables; lists; file descriptions; encoding rules. In these regards it is entirely
typical of a modern industrial strength system specification.

With such a document structure, the information required to understand a particular aspect
of the system is contained in several different documents, each of which has its own things to
say about the situation in question. For example, the SI-Init interface between Terminal and
Acquirer is documented in the Terminal Specification, the Acquirer Specification, the Interface
Specification, and the Data Dictionary. In general, as we found, this results in a specification
which is difficult to understand, and which easily leads to inconsistencies and ambiguities.

As such, this is exactly the kind of system we would like to specify formally, with all the as-
sociated benefits of tool support that this brings. When [GRS05] was written, such tool support
for CSP-CASL was unavailable; nonetheless, we were able to specify in CSP-CASL a number of
aspects of the system at varying levels of abstraction, as indicated in Figure 2, and correspond-
ing to different views used in the informal specification documents. In particular, we wrote an
architectural specification providing the system overview, and abstract component specifications
of several elements including the SI-Init interface between Terminal and Acquirer. In doing
so, we identified a number of ambiguities and even contradictions in the EP2 specification. For
example, the order of communications over the SI-Init interface was specified in two contra-
dictory ways in two different documents. Thus, the very act of writing specifications in a formal
language required a level of rigour at which such problems were forced into the light.

With our specifications we were then able to perform (relatively simple) proofs on paper — for
example, we proved deadlock-freedom of part of our SI-Init specification. It quickly became
clear, however, that in order to deal with the full complexity of a specification of this sort, tool
support would be absolutely essential.

4 From blackboard language to tool support

For quite a while, CSP-CASL existed only as a ‘blackboard language’: while the subject of
several papers, its syntax and semantics remained malleable, allowing experimentation and dis-
cussion. In order to achieve its full promise, however, it was clear that tool support would be
required. The first step towards such tool support was to fix CSP-CASL’s syntax and static seman-
tics, and to implement them within an appropriate tool. This work is described fully in [Gim08].
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Element Machine readable Pretty printed Precedence
Named process P(t1,...,tn) P(t1, . . . , tn) 0
Skip SKIP SKIP 0
Stop STOP STOP 0
Div DIV DIV 0
Run RUN(es) RUN(es) 0
Chaos CHAOS(es) CHAOS(es) 0
Term prefix t->p t→ p 1
Internal prefix choice |˜|x::s->p ux ::s→ p 1
External prefix choice []x::s->p 2x ::s→ p 1
Channel send c!t->p c!t→ p 1
Channel non-deterministic send c!x::s->p c!x ::s→ p 1
Channel receive c?x::s->p c?x ::s→ p 1
Sequential composition p;q p ; q 2
Internal choice p|˜|q p u q 3
External choice p[]q p 2 q 3
Interleaving p|||q p ||| q 4
Synchronous p||q p‖q 4
Generalised parallel p[|es|]q p|[es]|q 4
Alphabetised parallel p[es1||es2]q p|[es1||es2]|q 4
Hiding p\es p\es 5
Renaming p[[R]] p[R] 5
Conditional if ϕ then p else q ifϕ thenpelseq 6

Figure 3: Summary of CSP-CASL process terms.

CSP-CASL is presented as a CASL extension language; its syntax and static semantics extend,
and refer to, those of CASL; as such, they are formalised in a style matching that of CASL found
in [Mos04]. The abstract and concrete syntaxes are written in the normal BNF-like style (see
Figure 3 for an informal overview of the concrete syntax of process terms), whereas the static
semantics is in the style of natural semantics [Kah87]. As a representative example, here is the
static semantics rule for a conditional process term:

(Σ,G∪L) ` F � ϕ

Σ,Λ,G,L ` P1 � p,αp

Σ,Λ,G,L ` P2 � q,αq

Σ,Λ,G,L ` condition-proc F P1 P2 � ifϕ thenpelseq,αp∪αq∪ sorts(ϕ)

The rule shows how to devolve the static check on an abstract syntax element for a conditional
process term (condition-proc F P1 P2), into checks on the condition (a CASL formula
F) and processes (P1 and P2) involved. It operates within some context (a CASL signature Σ; a
so-called CSP-CASL signature Λ, containing process and channel declarations; and global and
local variable bindings G and L), elements of which then provide context for the devolved rules.
Note that the FORMULA rule for analysing the text F is found in the CASL static semantics. If

7 / 21 Volume 62 (2013)



On the whereabouts of CSP-CASL – A survey

the devolved checks succeed, they yield semantic objects representing the formula (ϕ), process
terms (p, q) and the process terms’ constituent alphabets (αp, αq), which are combined into the
semantic objects yielded as the overall product of the rule: an object representing the entire
conditional term, and an object representing its constituent alphabet, itself the subject of later
checks, at the process equation level.

The syntax and static checks are implemented within the framework of the heterogeneous
toolset, HETS [MML07]. CASL sits at the centre of a family of related specification languages –
its extensions and sublanguages – and the language HETCASL [Mos05] then provides a frame-
work for heterogeneous specification over this family2. That is, it enables specification using a
mix of languages, rather than requiring all aspects of a system to be specified using the same
formalism. HETS then provides tool support for heterogeneous specification in this setting. It
consists of a general framework for working with specifications across multiple logics, with fa-
cilities for parsing, static analysis, error reporting, translation between logics, and integration
with proof tools; logics for the various CASL-family languages (including CSP-CASL) are im-
plemented within this framework.

5 Refinement and property verification in CSP-CASL

Our notions of refinement for CSP-CASL [Rog06, KR09, Kah10] are based on refinements de-
veloped in the context of the single languages CSP and CASL. For a denotational CSP model
with domain D , the semantic domain of CSP-CASL consists of families of process denotations
dM ∈D over some index set I,

(dM)M∈I

where I is a class of CASL models over the same signature. Intuitively, a refinement step, which
we write here as ‘;’, reduces the number of possible implementations. Concerning data, this
means a reduced model class, concerning processes this means less non-deterministic choice.

Definition 1 (Model class inclusion) Let (dM)M∈I and (d′M′)M′∈I′ be families of process deno-
tations.

(dM)M∈I ;D (d′M′)M′∈I′ ⇔ I′ ⊆ I ∧ ∀M′ ∈ I′ : dM′ vD d′M′ .

Here, I′ ⊆ I denotes inclusion of model classes over the same signature, and vD is the re-
finement notion in the chosen CSP model D . In the traces model T we have for instance
P vT P′ :⇔ traces(P′) ⊆ traces(P), where traces(P) and traces(P′) are prefixed closed sets
of traces. Given CSP-CASL specifications Sp = (D,P) and Sp′ = (D′,P′), by abuse of notation
we also write

(D,P);D (D′,P′)

if the above refinement notion holds for the denotations of Sp and Sp′, respectively. On the syn-
tactic level of specification text, we additionally define the notions of data refinement and process
refinement in order to characterise situations, where one specification part remains constant. In

2 In fact, HETCASL is generic in its language family, and could be used as a heterogeneous specification framework
in an entirely different setting.
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a data refinement, only the data part changes:

(D,P) data
; (D′,P) if Σ(D) = Σ(D′) and Mod(D′)⊆Mod(D)

In a process refinement, the data part is constant:

(D,P) proc
;D (D,P′) if for all M ∈Mod(D) : den([[P]]M)vD den([[P′]]M)

Here, den([[P]]M) is the denotation of the process P over the model M in the chosen CSP de-
notational model. Clearly, both these refinements are special forms of CSP-CASL refinement in
general, for which the following holds:

Theorem 1 Let Sp = (D,P) and Sp′ = (D′,P′) be CSP-CASL specifications, where D and D′

are data specifications over the same signature. Let (D′,P) be a new CSP-CASL specification
that consists of the process part P of Sp and the data part D′ of Sp′. For these three specifications
holds:

(D,P);D (D′,P′)
⇐⇒

(D,P) data; (D′,P) and (D′,P) proc;D (D′,P′)

This result forms the basis for the CSP-CASL tool support, see Section 6. In order to prove
that a CSP-CASL refinement (D,P) ;D (D′,P′) holds, first one uses proof support for CASL

alone, see [MML07], in order to establish Mod(D′) ⊆Mod(D). Independent of this, one has
then to check the process refinement den([[P]]M)vD den([[P′]]M) for all M ∈Mod(D′) – see the
next section for a discussion on tool support.

For system development one is often interested in liberal notions of refinements, which al-
low for substantial changes in the design. For system verification, however, it is important that
refinement steps preserve properties. This allows the verification of properties on abstract speci-
fications which in general are less complex than the more concrete ones. Here, we show how to
perform deadlock-freedom analysis using refinement.

In the CSP context, the stable failures model F is best suited for deadlock analysis. The model
F records two observations on processes: the first observation is the set of traces a process can
perform, this observation is given by the semantic function traces; the second observation are the
so-called stable failures, given by the semantic function failures. A failure is a pair (s,X), where
s represents a trace that the process can perform, after which the process can refuse to engage in
all events of the set X. Let A be the alphabet. The process STOP, which represents deadlock in
the CSP context, has

traces(STOP) = {〈〉}, failures(STOP) = {(〈〉,X) | X ⊆ AX}

as its denotation in F , i.e., the process STOP can perform only the empty trace, and after the
empty trace the process STOP can refuse to engage in all events3.

A CSP-CASL specification is deadlock-free, if it enforces all its possible implementations to
be deadlock-free. On the semantical level, we capture this idea as follows:

3 X /∈ A is a special event signalling successful termination, AX = A∪{X}.
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Definition 2 Let (dM)M∈I be a family of process denotations over the stable failures model,
i.e., dM = (TM,FM) ∈F (A(M)) for all M ∈ I, where A(M) is the alphabet induced by the model
M, see Section 2.

• A denotation dM is deadlock-free if (s,X) ∈ FM implies that X 6= A(M)X.

• (dM)M∈I is deadlock-free if for all M ∈ I it holds that dM is deadlock-free.

Deadlock can be analysed through refinement checking: The most abstract deadlock-free CSP-
CASL specification over a CASL signature Σ with a set of sort symbols S = {s1, . . . ,sn} is defined
as:
ccspec DFS =

data . . . declaration of Σ . . .
process DF = (us:S

x : s→ DF) u Skip
end

We observe that DFS is deadlock-free. This result on DFS extends to a complete proof method
for CSP-CASL deadlock analysis:

Theorem 2 A CSP-CASL specification (D,P) is deadlock-free iff DFS ;F (D,P). Here S is
the set of sorts of the signature of D.

Similar ideas allow to employ the notion of refinement to check for divergence-freedom, see
[KR09].

While in this section we have illustrated refinement notions for CSP-CASL over the same
signature, [Kah10] defines refinement notions, proof support and property analysis (deadlock
and livelock), which allow for arbitrary change of signature.

6 CSP-CASL-Prover

CSP-CASL-Prover [O’R08, OIR09] exploits the fact that CSP-CASL refinement can be decom-
posed into first a refinement step on data only and then a refinement step on processes, see the pre-
vious section. The basic idea is to re-use existing tools for the languages CASL and CSP, namely
for CASL the tool HETS [MML07] and for CSP the tool CSP-Prover [IR05, IR06, IR07, IR08],
both of which are based on the theorem prover Isabelle/HOL [NPW02]. The main issue in
integrating the tools HETS and CSP-Prover into a CSP-CASL-Prover is to implement – in Is-
abelle/HOL – CSP-CASL’s construction of an alphabet of communications out of an algebraic
specification of data written in CASL. In CSP-CASL-Prover, we choose to prove the relation ∼
– see Section 2 – to be an equivalence relation for each CSP-CASL specification individually.
This adds an additional layer of trust: complementing the algorithmic check of a static property,
we provide a proof in Isabelle/HOL that the construction is valid. The alphabet construction, the
formulation of the justification theorems (establishing the equivalence relation), and their proofs
can all be automatically generated.

The architecture of CSP-CASL-Prover is shown in Figure 4. CSP-CASL-Prover takes a CSP-
CASL process refinement statement as its input. The CSP-CASL specifications involved are
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CSP-CASL Prover

Hets
-

Translator

Hets +

Theory Files
+

Isabelle
-

Theorem
Prover

CSP-Prover

Refinement
Holds / 

Doesn’t Hold

Translated
Process & Data

Refinement
([Sp’],[P]) <= ([Sp’],[P’])

Process & Data
Refinement

(Sp’,P) <= (Sp’,P’)

Interactive 
Theorem
 Proving

Figure 4: Diagram of the basic architecture of CSP-CASL-Prover.

parsed and transformed by CSP-CASL-Prover into a new file suitable for use in CSP-Prover.
This file can then be directly used within CSP-Prover to interactively prove if the CSP-CASL

process refinement holds.
The alphabet construction discussed in Section 2 depends on the signature of the data part of

a CSP-CASL specification, e.g., on the set of sorts S, see Section 2. HETS, however, produces
a shallow encoding of CASL only, i.e., there is no type available that captures the set of all
sorts of the data part of a CSP-CASL specification. Consequently, it is impossible to give a
single alphabet definition within Isabelle/HOL which is generic in the data part of a CSP-CASL

specification. Instead, CSP-CASL-Prover produces an encoding individually crafted for the data
part of any CSP-CASL specification.

7 Property verification of EP2

We consider two levels of the EP2 specification, namely: the architectural level (ARCH) and
the abstract component level (ACL). We choose a dialogue between the Terminal and the Ac-
quirer. In this dialogue, the terminal and the acquirer are supposed to exchange initialisation
information. For presentation purposes, present specifications at high levels of abstraction only
and we study a nucleus of the full dialogue only. This setting, however, already exhibits the full
interplay of processes and data. Furthermore, it is a strength of CSP-CASL to be able to capture
these abstraction levels at all.

Our notion of CSP-CASL refinement mimics the informal refinement step present in the EP2
documents: There, the first system design sets up the interface between the components (archi-
tectural level), then these components are developed further (abstract component level). Here,
we demonstrate how we can capture such an informal development in a formal way, see Figure 5.

We first specify the data involved using CASL only. The data specification of the architectural
level (D ARCH GETINIT) requires only that there is a set of values available:

spec D ARCH GETINIT = sort D SI Init end
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Figure 5: Refinement in EP2.

In the EP2 system, these values are communicated over channels; data of sort D SI Init is
interchanged on a channel C SI Init linking the terminal and the acquirer. On the architectural
level, both these processes just ‘run’, i.e., they are always prepared to communicate an event
from D SI Init or to terminate. We formalise this in CSP-CASL:
ccspec ARCH INIT =
data D ARCH GETINIT
channel C SI Init : D SI Init
process

let Acquirer = EP2Run Terminal = EP2Run
in Terminal |[C SI Init ]|Acquirer

end
where EP2Run = (C SI Init ? x : D SI Init→ EP2Run) 2 SKIP. On the abstract component
level (D ACL GETINIT), data is refined by introducing a type system on messages. In CASL,
this is realised by introducing subsorts of D SI Init. For our nucleus, we restrict ourselves to
four subsorts, the original dialogue involves about twelve of them.
spec D ACL GETINIT =

sorts SesStart,SesEnd,DataRequest,DataResponse < D SI Init
ops r : DataRequest; e : SesEnd
axioms ∀x : DataRequest; y : SesEnd.¬(x = y); ∀x : DataRequest; y : SesStart.¬(x = y);

∀x : DataResponse; y : SesEnd.¬(x = y); ∀x : DataResponse; y : SesStart.¬(x = y)
end

In the above specification, the axioms prevent confusion between the different sorts. Using
this data, we can specify the EP2 system in CSP-CASL. In the process part the terminal (TerInit)
initiates the dialogue by sending a message of type SesStart; on the other side the acquirer
(AcqInit) receives this message. In AcqConf , the acquirer takes the internal decision either to
end the dialogue by sending the message e of type SesEnd or to send another type of message.
The terminal (TerConf ), waits for a message from the acquirer, and depending on the type of this
message, the terminal engages in a data exchange. The system as a whole consists of the parallel
composition of terminal and acquirer:
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ccspec ACL INIT =
data D ACL GETINIT
channels C Acl Init : D SI Init
process

let AcqInit = C Acl Init ? session : SesStart→ AcqCon f
AcqCon f =C Acl Init ! e→ Skip

uC Acl Init ! r→C Acl Init ? resp : DataResponse→ AcqCon f
TerInit = C Acl Init ! session : SesStart→ TerCon f
TerCon f =C Acl Init ? con f Mess →

(if (con f Mess : DataRequest) then C Acl Init ! resp : DataResponse→ TerCon f
else if (con f Mess : SesEnd) then SKIP else STOP)

in TerInit |[C Acl Init ]|AcqInit
end

Theorem 3 ARCH INIT ;σ

T ACL INIT

Proof. Using tool support, we establish this refinement by introducing two intermediate specifi-
cations RUN ARCH and SEQ INIT:
ccspec RUN ARCH =

data D ARCH GETINIT
channel C SI Init : D SI Init
process EP2Run

end
ccspec SEQ INIT =

data D ACL GETINIT
channels C Acl Init : D SI Init
process

let SeqStart =C Acl Init ! session : SesStart→ SeqCon f
SeqCon f =C Acl Init ! e→ Skip

uC Acl Init ! r
→C Acl Init ! resp : DataResponse→ SeqCon f

in SeqStart
end

With CSP-CASL-Prover we proved: ARCH INIT =T RUN ARCH. Now we want to prove that
RUN ARCH ;σ

T SEQ INIT. Using HETS we showed:

D ARCH GETINIT
data
;σ D ACL GETINIT. Now, we formed the specification

(D ACL GETINIT,PSEQ INIT) and showed in CSP-CASL-Prover that, over the traces model T ,
this specification refines to SEQ INIT. Here, PSEQ INIT denotes the process part of SEQ INIT.
[OIR09] proves ACL INIT =F SEQ INIT. As stable failure equivalence implies trace equiva-
lence, we obtain ACL INIT =T SEQ INIT. Figure 5 summarises this proof structure.

As ACL INIT involves parallel composition, it is possible for this system to deadlock. Further-
more, the process TerConf includes the CSP process STOP within one branch of its conditional.
Should this branch of TERCONF be reached, the whole system will be in deadlock. The di-
alogue between the terminal and the acquirer for the exchange of initialisation messages have
been proven to be deadlock-free in [OIR09]. Specifically, it has been proven that the following
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refinement holds: SEQ INIT
proc
;F ACL INIT, where SEQ INIT is a sequential system. Sequen-

tial systems are regarded to be deadlock-free. With our proof method from Section 5, we can
strengthen this result by actually proving that SEQ INIT is deadlock-free. To this end, we proved
with CSP-CASL-Prover that DFS

proc
;F SEQ INIT, where DFS is the least refined deadlock-free

specification. Details of the various proof can be found in [Kah10].

8 Specification based testing

The fundamental question when dealing with testing based on formal specifications is the fol-
lowing: which are the intentions or properties formulated in the specification text? In the end,
each test case reflects some intentions described in the specification.

In order to study the above question for CSP-CASL, in [KRS07] we undertake a specifica-
tion exercise in modelling a one-bit calculator. It has two input buttons and can compute the
addition function only. Whenever one of the buttons is pressed on the calculator, the integrated
control circuit displays the corresponding digit in the display. After pressing a second button,
the corresponding addition result is displayed and the calculator returns to its initial state.

In a first high-level specification we might want to abstract from the control flow and just
specify the interfaces of the system:
ccspec BCALC0 =

data sort Number
ops , : Number;

+ : Number× Number→? Number
channel Button,Display : Number
process P0 = (?x : Button→ P0) u (!y : Display→ P0)

end
Relatively to BCALC0, the process

T0 = Button!0→ Button!0→ STOP

encodes ‘left open’ behaviour: The specification says that the process P0 internally decides if it
will engage in an event of type Button or in an event of type Display. Thus, if the environment
offers to press the zero button twice, a legitimate implementation of BCALC0 can in one experi-
ment refuse to engage in this behaviour (by deciding internally that initially it engages in an event
of type Display), while in a second run it engages in it. A more refined version requires that the
first displayed digit is echoing the input, and the second displays the result of the computation:
ccspec BCALC1 =

data sort Number
ops , : Number;

+ : Number× Number→? Number
channel Button,Display : Number
process P1 =?x : Button→ Display!x→ ?y : Button→ Display!(x+ y)→ P1

end
Relatively to BCALC1, now the process T0 encodes ‘forbidden’ behaviour as it does not alternate
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between pressing buttons and display of digits. The process

T1 = Button!0→ Display!0→ Button!1→ Display!1→ STOP

however, again represents ‘left open’ behaviour: We haven’t yet specified the arithmetic proper-
ties of addition, i.e., it is undecided yet if 0+1 = 1 or 0+1 6= 1. This underspecification can be
resolved by adding suitable axioms:
ccspec BCALC2 =

data sort Number
ops , : Number;

+ : Number× Number→? Number
axioms += ; += ; += 

channel Button,Display : Number
process P2 =?x : Button→ Display!x→ ?y : Button→ Display!(x+ y)→ P2

end
Relatively to BCALC2, T1 represents ‘required’ behaviour.

We encode the intention of a test case with respect to a specification by a colouring scheme.
Intuitively, green test cases reflect required behaviour of the specification. Red test cases reflect
forbidden behaviour of the specification. A test is coloured yellow if it depends on an open design
decision, i.e., if the specification does neither require nor disallow the respective behaviour.
Internal non-determinism and underspecification are the sources of yellow tests.

Formally, a test case is just a CSP-CASL process in the same signature as the specification,
which may additionally use first-order variables ranging over communications. The colour of a
test case T with respect to a CSP-CASL specification (Sp,P) is a value c ∈ {red,yellow,green}.
[KRS07] provides, besides a mathematical definition of test colouring, also a syntactic charac-
terisation of test colouring in terms of refinement. This enables the use of CSP-CASL-Prover in
order to check the colour of a test case.

We call a CSP-CASL refinement ‘;’ well-behaved, if, given specifications (D,P); (D′,P′)
with consistent data parts D and D′, the following holds for any test process T over (D,P):

1. colour(T) = green with respect to (D,P) implies
colour(T) = green with respect to (D′,P′), and

2. colour(T) = red with respect to (D,P) implies
colour(T) = red with respect to (D′,P′).

This means: If a test case T reflects a desired behavioural property in (D,P), i.e., colour(T) =
green, after a well-behaved development step from (D,P) to (D′,P′) this property remains a de-
sired one and the colour of T is green. If a test case reflects a forbidden behavioural property
in (D,P), i.e., colour(T) = red, after a well-behaved development step from (D,P) to (D′,P′)
this property remains a forbidden one and the colour of T is red. A well-behaved develop-
ment step can change only the colour of a test case T involving an open design decision, i.e.,
colour(T) = yellow. For the various CSP-CASL refinements holds: CSP-CASL data refinement
is well-behaved; CSP-CASL process refinement based on the CSP models T is not well-behaved;
CSP-CASL process refinement based on CSP models N and F is well-behaved, provided the
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processes involved are divergence-free. [KRS08] studies preservation of test colourings under
enhancement.

In terms of refinement, for the above specifications holds: BCALC0 ;F BCALC1 ;F

BCALC2. The first step is a process refinement based on F , the last one is a data refinement,
i.e., both refinement steps are well behaved.

In [KRS07, KRS08], we develop these ideas towards a testing framework: Given a test and its
colour, its execution on a system under test (SUT) is defined algorithmically. The test result is
obtained by comparing intended and actual behaviour of a SUT, where the test verdict is either
pass, fail or inconclusive. Intuitively, the verdict pass means that the test execution increases our
confidence that the SUT is correct with respect to the specification. The verdict fail means that
the test case exhibits a fault in the SUT, i.e., a violation of the intentions described in the specifi-
cation. The verdict inconclusive means that the test execution neither increases nor destroys our
confidence in the correctness of the SUT.

In an industrial cooperation with Rolls-Royce, Derby, UK, our testing approach has success-
fully been applied to the control software of aeroplane engines, see [HKRS09].

9 Testing framework for EP2

In order to test a concrete EP2 terminal against our CSP-CASL specifications, we built an au-
tomatic testing framework Testing EValuator (TEV) [Chu05, Kah10]. TEV is a hardware-in-a-
loop on-the-fly testing framework, designed to test an EP2 terminal.

Hardware-in-a-loop testing (HIL) is a well established approach to validate complex systems,
where the correct integration of software with its underlying hardware is essential. HIL has been
deployed in the defence and aerospace industries as early as the 1950s [NBAR04], nowadays it
is an established testing technique. HIL is heavily used in verifying critical system in projects
such as the power and thermal control unit of the X-ray satellite “ABRIXAS” [SMH99] and
for cabin management controllers for Airbus families [Pel02] and more. Figure 6 illustrates the
hardware-in-the-loop testing framework for EP2.

Figure 6: Hardware in the loop testing for EP2.
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TEV takes as input a test case protocol, executes the test case and computes the test verdict.
The test case protocol contains the following information: the colour of the test case, the EP2
components which are to be tested, timeout information and the actual test case to be executed.
In the next section we describe the scenario of a typical test case execution of EP2.

The test verdict is obtained during the execution of the SUT from the expected result defined
by the colour of the test process. In [KRS07] we have defined an algorithm which allows to
determine the test verdict on the fly. We have implemented this algorithm in TEV, details can be
found in [Kah10].

Figure 7: EP2 testing framework in action.

The test execution is conducted in a network environment, where two different machines are
connected with a crossed Ethernet cable. Figure 7 illustrates this setting. Here, the EP2 terminal
software is running on the black laptop (Windows OS), where a pinpad is attached on the serial
port. TEV is running on the white laptop (Mac OS).

10 Summary and future work

Figure 8 provides an overview of the CSP-CASL technology discussed: Given an informal system
description such as the EP2 documents, we mirror informal specifications by formal ones written
in CSP-CASL. In this process, the static analysis of CSP-CASL specifications provides valuable
feedback and helps to avoid modelling errors. Then, we analyse if a CSP-CASL specification
exhibits desired properties, e.g., deadlock-freedom. On the theoretical side, we showed that
– for some fundamental system properties – such an analysis can be carried out by studying an
equivalent refinement problem. Thus, on the practical side, CSP-CASL-Prover offers mechanised
proof support for the analysis. Additionally, we mirror the informal development steps present in
such a system description by CSP-CASL refinement relations. Using CSP-CASL-Prover, we can
verify if these refinement relations actually hold. Properties are guaranteed to be preserved within
a development step provided a suitable CSP-CASL refinement holds, e.g., deadlock-freedom is
preserved under CSP-CASL-stable-failures refinement. Finally, using testing [KRS07, KRS08],
we link the formal specifications with actual implementations. CSP-CASL refinement relations
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Figure 8: The CSP-CASL verification approach.

ensure that test cases which are designed at an early stage can be used without modification for
the test of a later development stage. Hence, test suites can be developed in parallel with the
implementation. Also testing has tool support in terms of CSP-CASL-Prover, e.g., in order to
colour test cases.

Recently, the CASL institution independent structuring mechanisms have been made avail-
able to CSP-CASL, supported by calculi for compositional reasoning on structured CSP-CASL

specifications [OMR11a, OMR11b]. It is future work to implement these proof calculi as part
of CSP-CASL-Prover and to develop and support a semantically well founded connection from
CSP-CASL to distributed programming, e.g., in Java.
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