
Electronic Communications of the EASST
Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems

(AVoCS 2013)

Automated Analysis of Voting Systems with Dolev-Yao Intruder Model

Murat Moran and James Heather

15 pages

Guest Editors: Steve Schneider, Helen Treharne
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Automated Analysis of Voting Systems with Dolev-Yao Intruder
Model

Murat Moran1∗ and James Heather2

1 m.moran@surrey.ac.uk, 2 j.heather@surrey.ac.uk
http://www2.surrey.ac.uk
Department of Computing
University of Surrey, UK

Abstract: This paper presents a novel intruder model for automated reasoning about
anonymity properties of voting systems. We adapt the lazy spy for this purpose, as
it avoids the eagerness of pre-computation of unnecessary deductions, reducing the
required state space for the analysis. This powerful intruder behaves as a Dolev-
Yao intruder, which not only observes a protocol run, but also interacts with the
protocol participants, overhears communication channels, intercepts and spoofs any
messages that he has learned or generated from any prior knowledge.

We make several important modifications in relation to existing channel types and
the deductive system. For the former, we define various channel types for different
threat models. For the latter, we construct a large deductive system over the space
of messages transmitted in the voting system model.

The model represents the first formal treatment of the vVote system, which is planned
for use in 2014 in state elections in Victoria, Australia.

Keywords: Lazy spy, Dolev-Yao, Voting Systems, Model Checking, CSP, FDR

1 Introduction

This paper presents a novel intruder model for automated reasoning about anonymity and secrecy
properties of voting systems. It is much stronger than the passive attacker used in previous work
in [MHS12, MHS13], as it behaves as a Dolev-Yao intruder [DY83]. This type of intruder
not only observes a protocol run, but also interacts with the protocol participants, overhears
communication channels, intercepts and spoofs any messages that he has learned or inferred
from previous knowledge. This approach is inspired by lazy spy (perfect spy) [RG97], which
is designed for cryptographic protocol analysis, and called ‘lazy’ as it avoids the eagerness of
pre-computation of unnecessary inferences. To apply this intruder model to voting systems,
several important modifications are needed in relation to existing channel types and the deductive
system. For the former, we benefit from Creese et al. [CGRZ03, CGH+05], who defined various
channels for different threat models in ubiquitous computing environments. For the latter, we
construct a larger deductive system over the space of messages transmitted in the model.

The basis for our model is the vVote voting system, which is based on Prêt à Voter (‘PaV’)
[Rya04], and is under development for use in Victorian Electoral Commission (VEC) elections
∗ This author is sponsored by the Ministry of Education Republic of Turkey

1 / 15 Volume 66 (2013)

mailto:m.moran@surrey.ac.uk
mailto:j.heather@surrey.ac.uk
http://www2.surrey.ac.uk

Automated Analysis of Voting Systems

in 2014 [BCH+12a, BCH+12b, Cul13] in Victoria, Australia. These elections typically take over
three million votes, electing 88 legislative assembly and 40 legislative council representatives,
using a mixture of the alternative vote1 (AV), and the single transferable vote (STV). Most of
the key features of PaV are retained in the vVote system. However, to adapt the system to such
a complex election setup, a number of modifications have been necessary in the system design;
for instance, the inclusion of distributed ballot generation, an electronic ballot marker (EBM) to
assist the voter in filling out the ballot, and print-on-demand ballots for voters who are voting
away from their registered polling station.

In the literature, there has to date been no successful automated anonymity verification of
voting systems using the Dolev-Yao intruder model. For example, Backes et al. [BHM08]
analysed voting systems mechanically in terms of verifiability properties. However, no auto-
mated analysis of anonymity property was provided as the ProVerif tool employed was unable
to cope with algebraic equivalences, and hence, a hand proof was given. Similarly, Delaune et
al. [DRS08, DKR10] and Smyth [Smy11] verified vote privacy of the FOO voting system with
an additional compiler (ProSwapper), but these lacked a proof of its soundness — we understand
this as that the framework may produce false negatives. Chadha et al. [CCK12] managed to
verify the anonymity of the FOO voting system using a prototype, Active Knowledge in Security
Protocols (AKISS), which was written in the OCaml programming language and implemented
to check equivalences; however, the tool used was inefficient, and an important part of the anal-
ysis, the termination of the saturation procedure as required for deciding trace equivalences, was
merely conjectured rather than proven.

This paper makes two important contributions. First, we adapt the lazy spy intruder model
to voting system analysis, as it is very efficient in terms of cutting down unnecessary states
as well as being flexible for usage with other privacy-related properties. Secondly, in order to
demonstrate the suitability of this intruder model for evaluating voting systems, we model and
analyse a real-world voting system that is set to be employed on a large scale next year.

The rest of the paper is structured as follows. Section 2 presents an overview of the vVote
voting system. In Section 3, the vVote voting system is modelled in CSP and the lazy spy intruder
model is further extended for the analysis of voting systems. Section 4 analyses the system model
regarding the formal specification of anonymity given in [MHS12], and then investigates the
analysis of the model under alternative assumptions, such as the presence of a corrupt election
authority. Section 5 presents conclusions and discusses the findings.

2 vVote System Outline

Over the last few decades many trustworthy voting systems have been proposed. However, only a
few have been deployed in large-scale real elections. The vVote voting system, to be used in state
elections in Victoria, Australia, is a paper-based electronic voting system based on PaV [Rya04].
However, a number of modifications have been made to the original PaV system. The main
difference is the electronic ballot marker (EBM) deployed in order to facilitate accommodating
a candidate list with over 30 candidates on the ballot forms. This also helps voters to indicate
their preferences among many other candidates.

1 also called instant-runoff voting (IRV)

Proc. AVoCS 2013 2 / 15

ECEASST

Check your preferences
online at
VEC.VIC.GOV.AU/WBB2014
Your code is: NTH:1

Figure 1: A slip example—the front face

ballot. Instead, they are recorded on the WBB, and
there is a QR code on the LHS front face of the bal-
lot to refer to the corresponding onions. On the front
face of the ballot form, there is another QR code in
the RHS which records the permutation of the can-
didate ordering of the entire ballot. Each QR code
merely reproduces in machine-readable form exactly
the information that is available in human-readable
form on the same side of the ballot.

We now describe how the onions are constructed
in different sections of the ballot form. In this paper,
we use Êpk(m) to denote that m is encrypted using
exponential ElGamal, and Epk(m) denotes that m is
encrypted using normal ElGamal.

For the LA section, we use the Baudron counter
[CFSY96, BFP+01, BCH+12] to encode these onions
as follows: suppose there are k candidates in the LA
election, we first select a value M where M > k (e.g.
M = k+1). Then we associate M0 with the first can-
didate in the ballot draw order, M1 with the second
candidate, and so on. The onion for the i-th candi-
date will be encrypted using the exponential ElGamal
cipher as Êpk(M i−1) = (gM

i−1

yr, gr). This allows us
to absorb all these onions as well as their associated
preferential rankings into a single ciphertext using

the homomorphic property. Hence it will speed up
the tallying process.

For the LC-ATL section, we simply select a
value in Gq to represent each party/group name,
and the onion is encrypted using the ElGamal
cipher Epk(m) = (myr, gr). For example, if
α, β, γ are values in Gq to represent the parties
A,B, C respectively, their corresponding onions will
be Epk(α), Epk(β), Epk(γ).

For the LC-BTL section, we use the Baudron
counter again to encode the onions. Suppose there
are l candidates in the LC-BTL section, we select a
value L where L > l (e.g. L = l + 1). Then we
associate L0 with the first candidate in the ballot
draw order, L1 with the second candidate, and so on.
The onion for the j-th candidate will be encrypted
as Êpk(Lj−1) = (gL

j−1

yr, gr). However, we will show
in a later section that the tallying method for this
section has to be slightly different.

2.2 Ballot Generation

In Prêt à Voter, privacy depends on maintaining the
secrecy of the candidate order that corresponds to
a particular receipt. Since a printer actually has to
print both sides of the form, and hence can recog-
nise the receipt subsequently and recall the candidate
order, privacy depends on very strong assumptions
about the printer’s data being properly generated and
destroyed. We emphasise that this affects privacy,
not integrity, because the correctness of printing can
be audited.

Ballot generation must satisfy two main require-
ments:

• The ballot’s candidate ordering and the values
used for encryption must be random and not gen-
erated by any single party. (Otherwise a mali-
cious printer can use the receipt to leak informa-
tion about the votes via a kleptographic attack
[GKK+06].)

• As much as feasible, the ballot’s random data,
and the plaintext candidate list corresponding
to each RHS, must be secret.

We will use the distributed ballot generation of
[RT10], in which the candidate list mixers succes-
sively shuffle a list of encrypted candidate names for
each vote. This protocol guarantees the first condi-
tion above if at least one participant is honest. This
produces a list of encrypted ballots on the WBB,
each one consisting of a serial number, the list of

4

Figure 1: vVote ballot form [Cul13]

The vVote ballot form illustrated in Figure 1 is simi-
lar to a PaV one. On one side there is a randomly per-
muted candidate list and a QR code at the bottom that
records the permuted candidate order; on the other are
marking boxes, a unique serial number and another QR
code, corresponding to the cryptographic value that em-
beds the candidate order. The ballot form can be split into
two, down the middle, and the right-hand side shredded;
the remaining left-hand side then represents an encrypted
vote, in the sense that without knowledge of the random
candidate ordering it reveals nothing about the content of
the vote.

2.1 Election Phases

We now explain the election phases covering the voting
ceremony, and the vVote system components.

Pre-election The pre-election phase covers the prepara-
tion of election material before the polling station opens.
In this period, digital ballots are generated in a distributed
fashion that are encrypted under the print-on-demand
(POD) service’s and the election authority’s public key,
before being committed to the public bulletin board. Ad-
ditionally, mixnets are set up, and key generation is per-
formed in this phase.

Vote Casting This phase starts with polling stations opening and lasts until the election is
closed, with no further votes being allowed to be cast. The POD service allocates and transfers
pre-prepared digital ballots to a print station in the polling booth during the election. Once the
voter has registered with the poll worker, the voter or the poll worker interacts with the POD
service to get a ballot paper as illustrated in Figure 1. The POD client will derive the permuted
candidate list on the ballot form when it is actually being printed in the polling station. The
print-out also contains a QR code that contains a serial number and the candidate ordering. The
voter scans this barcode into the EBM, and can now see and cast her ballot form electronically.
The EBM is a new front-end component that interacts with the web bulletin board (WBB) to
submit the vote and receive a digitally signed receipt for it, which is then printed for the voter for
verification purposes by a receipt printer in the booth. The WBB commits, records and broad-
casts the ballot data generated during the election, and also signs the serial numbers allocated by
the ballot manager; this signature is included in the voter’s receipt. Once the voter has cast her
vote and received her receipt, she then leaves the polling station.

Post Election Post election is the phase where the cast votes are mixed by the mixnets, de-
crypted and tallied by a set of key sharers, in such a way that only a threshold set of these sharers

3 / 15 Volume 66 (2013)

Automated Analysis of Voting Systems

can perform the decryption. The results are then announced on the bulletin board.

2.2 Ballot Generation

Ballot generation can be realised on the machine that prints the ballot form in the booth or
in a distributed fashion, i.e. a number of candidate list mixers shuffle the encrypted candidate
names for each vote, which ensures that the candidate ordering is random and not generated by a
single party. In the distributed version, a list of encrypted ballots, including a serial number, the
cryptographic value encoding the candidate list, and the list of encrypted candidate names for
the printer with a proof of correspondence is produced. The printers’ (POD client’s) candidate
list is encrypted under a threshold key shared across a set of candidate list key sharers, called
the Print-on-Demand (POD) service. Hence, in order for a printer to obtain the candidate list,
it generates a blinding factor, encrypts it under the POD service public key, and sends it to the
POD service with a proof of knowledge. Afterwards, having received the encrypted candidate
list blinded by itself, the printer removes the blinding factor, and prints the candidate list.

2.3 vVote POD Service and Protocol

The POD service provides distribution of digital ballots in a distributed manner to the polling
stations in any district. As the digital ballots are prepared and committed to the WBB before the
election, this service facilitates the print-on-demand ballot distribution in real time. (The details
about the POD service and any other part of the vVote system can be found in the software design
technical report [Cul13]. The core design is stable, though minor design aspects might change
before the system goes live.)

In the ballot generation procedure, the randomised candidate order of a ballot is encrypted
under the election public key pkEA and it is then transformed to an encryption under the POD
service’s public key pkPS without revealing the underlying message, as described in [Jak99]. The
same transformation technique is also used in the POD protocol to transform the encryptions
on the digital ballots into the designated POD client’s public key pkPC and these transformed
ciphertexts cannot be decrypted by anyone other than the designated printer.

In this new system, the electronic ballot marker (EBM) is particularly interesting as it forms
the key distinctive characteristic of vVote, being the only device in the system that knows how a
particular voter has voted. That is, when the voter transfers her actual ballot form to the EBM, the
candidate list on her form is also transferred to the EBM, while it is destroyed and kept secret in
traditional PaV. One of the assumptions made in [BCH+12a, BCH+12b, Cul13] is that the POD
client, where physical ballot form is printed, and the EBM, are located in a private environment,
such as a voting booth.

3 vVote and Intruder Model

Security protocols consist of two or more agents sending messages to each other via a shared
medium or on direct communication channels. The vVote voting system is modelled in terms
of a number of agent processes that run in parallel, each modelling a different component of
the system. Although the aim here is to obtain a model that reflects real system behaviour as

Proc. AVoCS 2013 4 / 15

ECEASST

closely as possible, there are a few assumptions that need to be made in order to avoid state
explosion, which also result in abstractions in some of the features of this voting system. For
instance, although vVote supports the AV and STV electoral methods, we will here model only
plurality voting, or first-past-the-post (FPTP). Additionally, in the original vVote system, ballot
generation is performed in a distributed fashion, and similarly the bulletin board is a threshold-
based service, which signs messages by co-operation, whereas in the model these threshold
parties are treated as single entities. The purpose of the thresholding is to ensure that the service
guarantees correct behaviour as long as some threshold number of the servers remain honest;
the appropriate abstraction here is thus to model the distributed service as a single trusted entity,
whose behaviour corresponds to the overall behaviour of the distributed service provided that the
threshold assumption is met.

3.1 Datatypes, Messages and Channels

We follow the typical formal approach to modelling of security protocols, and treat cryptographic
primitives, such as encryptions and signatures, as symbolic operations with the appropriate al-
gebraic properties—for instance, public key encryption: Epk(f), decryption: Dsk(f), signature:
Ssk(f), where pk and sk are the corresponding public secret keys, respectively. A message in-
cluding a serial number s, and an encrypted candidate list l (called raw ballots here) is denoted
as Raw(s,Epk(l)), and a digital ballot message formed by a signed serial number and an en-
crypted candidate list is modelled as DigB(Ssk(s),Epk(l)). Similarly, a ballot form consisting
of a candidate list, a serial number, and an index value Ind.i, is B(l,s, Ind.i); a message with a
serial number and an index value forming the marking boxes on the ballot form, demonstrated as
RHS(s, Ind.i); and a receipt is denoted as R(Ssk(RHS(s, Ind.i))). Finally, a message consisting
of an index value and an encrypted candidate list is called a vote and shown as V(Ind.i,Epk(l)).

In order to compose these messages, the model consists of several finite sets of facts, F, as
listed below. The abbreviation W stands for the web bulletin board, T is Tom, the poll worker,
EA is the election authority, PS and PC are the print-on-demand service and client respectively,
and BM is the ballot manager. For convenience, names are abbreviated as follows: the set of
candidates as C, voters as V, agents as A, serial numbers as S, nonces as N, the set of all possible
candidate lists as L, the set of indices as I, and public keys and secret keys as PK and SK

respectively.

C = {Zoe,Victor} V= {Alice,Bob,James} S= {s1,s2,s3} N = {na,nb,nc}
PK= {pkW , pkT , pkPS, pkPC, pkBM, pkEA} SK= {skW ,skT ,skPS,skPC,skBM,skEA}
A=

⋃
(V,{Tom,authority,wbb, teller, podservice, podclient,ballotmngr,ebm, printer})

The agents send various kinds of messages to each other, which need to be defined in terms of
datatypes. The messages mentioned above form the message set M.

The framework used in [Ros97, RSG+00] involves only insecure communication channels,
and hence, any message can be manipulated in many ways by the intruder. Such an assumption
is too strong for voting systems that require an environment for the voters to be able to vote
privately, such as a voting booth, at least if the action of receiving a ballot form is modelled as
a message. This is also the case for most of the remote voting systems, where it is assumed that
no one is watching over the voter’s shoulder while she is marking her ballot paper. Hence, this

5 / 15 Volume 66 (2013)

Automated Analysis of Voting Systems

necessitates the existence of private channels in the voting system model. To this end, the agents
in the model are enabled to communicate over a secure channel, called scomm, on which the
intruder has no power at all. In addition, from the observations made throughout the analysis
(which will be explained further in Section 5), it is assumed that at least two eligible honest
voters are able to vote, and the cast votes are tallied at the end of the election. This assumption
requires that there is a channel in the voting system model such that the communications made
by these two honest voters with the other agents are No Spoofing and Blocking (NSB) channels
modelled as nsbcomm here. On such channels the intruder can overhear the communication, but
cannot block its occurrence and spoof any messages. Creese et al. [CGRZ03, CGH+05] describe
various kinds of channels for pervasive computing environments. The insecure communication
channels are not expressed as a proper channel type here, but instead is modelled as a special
power given to the intruder in his CSP process definition, where he can overhear, block and
spoof messages. (It could equally be modelled such that all channels are insecure, and the NSB
and private channels are the subset of these insecure channels, whereby the intruder would be
restricted to define what he is capable of doing as in [CGRZ03, CGH+05]. However, in this
modelling, it is more convenient, first, to model the private and NSB channels, restricting the
intruder and then give him more power to model the insecure communications. That is, instead
of defining what he cannot block or spoof in a model, here, what he can do in the system is
specified.)

The channels have the form A.A.M, where A is the set of agents and M is the set of messages
that agents may transmit over the channels. For example, the private channel on which Alice
sends a sensitive message m1 (possibly scanning the ballot form) to the electronic ballot marker
(EBM) is modelled as scomm.Alice.ebm.m1. Alternatively, nsbcomm.podclient.Bob.m2 is an
example for the insecure NSB channels on which the printer prints a ballot form for Bob.

It is also important to define the set of messages that make sense to the protocol (they are from
real communications between agents), called comms, which is defined as the union of sets of
data objects for each message type. For instance, the following defines the vote messages sent
by one agent to another.

commVotes = {a.b.m | m← votes,a←A,b←A,a 6= b}

These are useful when the intruder is afforded the ability to modify the messages on the insecure
channels or not to block and fake certain data from specific agents as it may be confusing as to
whether the message is already known or has just been learned from the real communication that
the intruder overhears.

3.2 Honest Participants

The vVote model developed for this work is defined by the processes illustrated at the top of
Figure 2. All the processes are involved in the protocol by sending and receiving messages on
the synchronised channels. For brevity, we give the full CSP only of the voter process here, but
see [Mor13] for the full CSPM code of the vVote model and analysis, and sanity checks.

The parameterised process Voter(v,c) models a voter v ∈ V voting for a chosen candidate
c ∈ C. There are two honest voters, Alice and Bob, and a misbehaving one, James, who behaves
honestly in the model at first, but his secret will be shared with the intruder later on, and whose

Proc. AVoCS 2013 6 / 15

ECEASST

P
ol
l
W
or
ke
r
P
O
D

S
er
vi
ce

P
O
D

C
lie
n
t

A
u
th
or
it
y

B
al
lo
t
M
n
gr

W
B
B

V
ot
er

E
B
M

P
ri
n
te
r

T
el
le
r

ID

S
sk

T
(n
on

ce
)

S
sk

P
S
(n
on

ce
)

n
on

ce

S
sk

P
C
(n
on

ce
) S
sk

P
S
(n
on

ce
)

S
sk

B
M
(S

er
ia
lN

o,
n
on

ce
)

S
sk

W
(S

er
ia
lN

o,
n
on

ce
)

S
sk

W
(S

er
ia
lN

o,
n
on

ce
)

S
sk

W
(S

er
ia
lN

o,
n
on

ce
)

R
aw

(S
er
ia
lN

o,
E
p
k
E
A
(C

a
n
d
L
is
t)
)

R
aw

(S
er
ia
lN

o,
E
p
k
P
S
(C

a
n
d
L
is
t)
)

D
ig
B
(S

sk
P
S
(S

er
ia
lN

o)
,E

p
k
P
C
(C

a
n
d
L
is
t)
)

B
(C

a
n
d
L
is
t,
In
d.
0,
S
sk

P
S
(S

er
ia
lN

o)
)

B
(C

a
n
d
L
is
t,
In
d.
0,
S
sk

P
S
(S

er
ia
lN

o)
)

In
d.
i

R
H
S
(S

sk
P
S
(S

er
ia
lN

o)
,I
nd

.i
)

R
(S

sk
W
(R

H
S
(S

sk
P
S
(S

er
ia
lN

o)
,I
nd

.i
))
)

R
(S

sk
W
(R

H
S
(S

sk
P
S
(S

er
ia
lN

o)
,I
nd

.i
))
)

V
(I
nd

.i
,E

p
k
E
A
(C

a
n
d
L
is
t)
)

Z
O
E
.m

,
V
IC
T
O
R
.n

Fi
gu

re
2:

vV
ot

e
sy

st
em

m
od

el

7 / 15 Volume 66 (2013)

Automated Analysis of Voting Systems

communications, even the private and NSB ones, are used by the intruder. Once a voter has
authenticated herself on the NSB channel with Tom, the poll worker, the voter receives a ballot
form from the POD client with the candidate list printed on it and scans her ballot data to the
EBM on the secure channel, where she can see her ballot in an electronic environment. After
indicating her preference by sending the index value (Ind.i) to the EBM that corresponds to the
candidate she wants to vote for — the index i is found by using the function find(c, l), which
finds the candidate c in the sequence of candidates, l — , she then receives her signed receipt and
leaves the polling station.

All eligible voters, Alice, Bob and James, follow this protocol, which is modelled as the
interleaving of all individual voter processes, Voters =̂ ‖v,cVoter(v,c).

Voter(v,c) =̂nsbcomm.v.Tom.v→

2
l∈L
s∈S

scomm.podclient.v.B(l,SskPS(s), Ind.0)→
scomm.v.ebm.B(l,SskPS(s), Ind.0)→

2
i:=find(c,l)

 nsbcomm.v.ebm.Ind.i→
nsbcomm.printer.v.R(SskW (RHS(SskPS(s), Ind.i)))→
STOP

3.3 Adapting Lazy Spy

Lazy spy [RG97] is an efficient CSP implementation of the Dolev-Yao intruder model as it avoids
state explosion by following only its findings (deductions through the messages he has seen or
from his initial knowledge). This intruder model provides active attacks against the system by
not only observing the communication channels, but also blocking messages or generating and
sending fake messages to any agents on the system. We show here how to alter the model so
it can work with cryptographic voting systems. In particular, the vVote voting system model
is equipped with a number of system-specific messages as well as the cryptographic ones, and
this necessitates defining further deduction rules so that the intruder can process these messages
appropriately. Secondly, the initial knowledge of the intruder IK is also model-specific, and
needs to be defined according to the voting system model. Lastly, because of the introduction of
various channel types in the analysis of voting systems, the intruder model needs to be amended
so that the private channels stay private and NSB channels are not blocked or spoofed by the
intruder.

In order to allow the intruder to compose messages, there are a number of deduction rules.
A deduction is a pair (X , f), where X is a finite set of facts and f is the fact that can be learnt,
provided that the intruder possesses X ; if the intruder is able to make this deduction then we
write ‘X ` f ’. The deduction rules regarding this analysis D are defined in Table 1 (the de-
duction rules are system-specific and cover all legitimate messages sent over the network, and
inconsistent messages cannot be sent to an agent). The new deduction rule BALLOT-COMP
enables ballot forms to be composed if the intruder possesses the set {l,Ssk(s), Ind.i}, where l
is the candidate list, s is serial number and Ind.i is the index value, corresponding to the chosen
candidate; conversely, the deduction rule BALLOT-DCMP helps the intruder to decompose bal-
lot forms and obtain all the data on it. Similarly, the intruder can also work on any composition
and decomposition of any other messages in the model. For instance, RHS-COMP and RHS-
DCMP are the deduction rules related to cast ballot forms, consisting of an index value and a

Proc. AVoCS 2013 8 / 15

ECEASST

signed serial number {Ind.i,Ssk(s)}. VOTE-COMP and VOTE-DCMP are the deduction rules
related to the votes, in the form of V(Ind.i,Epk(l)) (note that these do not contain a serial num-
ber). The deduction rules regarding the digital ballots, consisting of a signed serial number and
an encrypted candidate list, {Ssk(s),Epk(l)}, are DIG.BLT-COMP and DIG.BLT-DCMP. Simi-
larly, RAW.BLT-COMP and RAW.BLT-DCMP are the two deduction rules that help the intruder
compose and decompose the raw ballots, {s,Epk(l)}, and IND-COMP and IND-DCMP are the
index-related rules.

The set comms needs to be defined for all messages in M so that the intruder can justify that a
message being heard is actually from a real communication between agents. As in the protocol,
no agent ever sends any message to himself.

SYM-ENC. {k,m} ` Ek(m)
SYM-DEC. {k,Ek(m)} ` m

ASYM-ENC. {pk,m} ` Epk(m)
ASYM-DEC. {sk,Epk(m)} ` m

SIGN-SIG. {sk,m} ` Ssk(m)
SIGN-EXT. {pk,Ssk(m)} ` m

BALLOT-COMP. {l,Ssk(s), Ind.i} ` B(l,Ssk(s), Ind.i)
BALLOT-DCMP. {B(l,Ssk(s), Ind.i)} ` l,Ssk(s), Ind.i

RHS-COMP. {Ind.i,Ssk(s)} ` RHS(Ind.i,Ssk(s))
RHS-DCMP. {RHS(Ssk(s), Ind.i)} ` Ind.i,Ssk(s)

VOTE-COMP. {Ind.i,Epk(l)} ` V(Ind.i,Epk(l))
VOTE-DCMP. {V(Ind.i,Epk(l))} ` Ind.i,Epk(l)

DIG.BLT-COMP. {Ssk(s),Epk(l)} ` DigB(Ssk(s),Epk(l))
DIG.BLT-DCMP. {DigB(Ssk(s),Epk(l))} ` Ssk(s),Epk(l)

RAW.BLT-COMP. {s,Epk(l)} ` Raw(s,Epk(l))
RAW.BLT-DCMP. {Raw(s,Epk(l))} ` s,Epk(l)

IND-COMP. {i} ` Ind.i
IND-DCMP. {Ind.i} ` i

Table 1: Deduction rules capturing the properties of cryptographic primitives and the vVote
voting system messages (sk and pk).

comms = {a.b.m | m←M,a←A,b←A,a 6= b}

The messages in the model that make sense to the intruder are: comms, all the messages from
real communications; Nsbcomms, the set of messages that can be overheard but not blocked or
spoofed; and Ucomms, the set of insecure messages for which he can act as a Dolev-Yao intruder.

9 / 15 Volume 66 (2013)

Automated Analysis of Voting Systems

As all honest participants communicate on the NSB channels, not including a message type in
Nsbcomms means that the intruder cannot even overhear that kind of message and this is how we
introduce the private channels. Hence, the messages in the form of a ballot are not included in
this set, as the intruder should not be able to observe any communication involving a ballot form
between honest participants (denoted as commBallots); in fact, we have Nsbcomms = comms \
commBallots — commBallots forms the private channels. Additionally, the insecure messages
that the intruder can overhear, block or use in any way in the line of Dolev-Yao model, are
defined with the set Ucomms as follows. It should be noted that the set in the analysis of vVote
covers all the messages that are communicated by the dishonest voter James.

Ucomms =
⋃
({a.a′. f | a.a′. f ← comms,a←{James},a′← agents},
{a.a′. f | a.a′. f ← comms,a← agents,a′←{James}})

The adaptation of the intruder model to voting systems analysis has been made by introducing
different channel types, introduced in this section, and the CSP definition of the lazy spy intruder
model is kept intact. Hence, the lazy spy intruder model, which is called Intruder here and
defined in terms of the channels learn and say, is not covered in detail in this paper, but further
details can be found in [Ros97].

3.4 Putting the Network Together

Figure 3 illustrates how the intruder is connected to the dishonest voter James and the honest
voter Alice: Alice’s private channel scomm is kept private, but her insecure NSB channels can be
observed by the intruder, whereas all the channels of James are under the control of the intruder.

take.j.a.f

nsbcomm.j.a.f
 scomm.j.a.f

fake.a.j.f

nsbcomm.a.j.f
 scomm.a.j.f

sa
y.f

ns
bc

om
m
.j.

a.
f

sc

om
m
.j.

a.
f

James

ns
bc

om
m
.a
.j.

f

sc

om
m
.a
.j.

f

lea
rn

.f

lea
rn

.f

Alice

nsbcomm.f

nsbcomm.f

nsbcom
m
.f

Intruder

nsbcom
m
.f

say.f

scomm.f

Figure 3: Intruder’s communication channels with the dishonest voter James and honest Alice.

The processes that construct the voting system model and the intruder model are connected
by using the renaming operator. That is, nsbcomm.a.b.m and learn.m channels are renamed to
a take.a.b.m channel, and the nsbcomm.b.a.m and say.m channels are renamed to a fake.b.a.
channel from the agent a’s point of view. Similarly, the intruder process is also renamed and the
aim is to connect them as is done in Figure 3. To this end, a renaming function r for the process
P and agent name p can be defined as follows:

Proc. AVoCS 2013 10 / 15

ECEASST

r(P, p) =̂ P[[nsbcomm.p, take.p/nsbcomm.p,nsbcomm.p]]
[[nsbcomm.a.p, f ake.a.p/nsbcomm.a.p,nsbcomm.a.p | a ∈A]]

[[scomm.p, take.p/scomm.p,scomm.p]]
[[scomm.a.p, f ake.a.p/scomm.a.p,scomm.a.p | a ∈A]]

The renamed voter process for the voter v, for instance, can be defined with r(Voter(v,c),v). Note
that, the private channel scomm is renamed to the take and f ake channels, because this models
the malicious behaviour of a corrupt voter, and secondly it may seem like that the intruder can
take and fake private channels at the moment, but this is prevented later on when we define
renamed intruder. Similarly, the other processes that construct the vVote voting system model
are renamed as in the above example. Consequently, the voting system model, Model, which is
ready to be modified by the intruder, is defined as the parallel composition of all those renamed
processes.

Model =̂rVoters ‖ rPollworker ‖ rAuthority ‖ rEBM ‖ rPodservice ‖ rPrinter
‖ rBallotmanager ‖ rPodclient ‖ rWBB ‖ rTeller

The parallel composition above is constructed in a way that the processes only synchronise on the
nsbcomm and scomm channels on which they send messages to each other, leaving the insecure
channels (take, f ake) vulnerable to be used by the intruder. The following shows how two
processes are put in parallel; the above parallel composition of Model should be interpreted
along these lines.

Model =̂ rVoters ‖
X

rPollworker ‖ . . .

where X = {|nsbcomm.v.Tom,nsbcomm.Tom.v,scomm.v.Tom,scomm.Tom.v | v← V |}
Similarly, the intruder process is prepared by renaming as below so that the intruder can over-

hear the messages on the insecure NSB channels (Nsbcomms) and act as the Dolev-Yao intruder
on the insecure channels (Ucomms), but keep the private channels private.

rIntruder =̂ Intruder[[say, learn/say,say]]

[[nsbcomm.a.a′. f , take.b.b′. f/learn. f , learn. f |
a.a′. f ∈ Nsbcomms,
b.b′. f ∈ Ucomms,
a 6= a′,b 6= b′

]]

[[f ake.a.a′. f/say. f | a.a′. f ∈ Ucomms, a 6= a′]]

The process SystemvVote is then defined in terms of the parallel composition of Model and rIn-
truder, which synchronise on the channels they share.

SystemvVote =̂ Model ‖{
nsbcomm, take, f ake

} rIntruder

4 Analysis

In this section, the first fully automated analysis of the vVote voting system is presented under a
Dolev-Yao intruder model and using the anonymity definition given in [MHS12] as the specifica-
tion. It requires that when the two channels c.x and d.x are swapped over for all values of x, if the

11 / 15 Volume 66 (2013)

Automated Analysis of Voting Systems

resulting process is indistinguishable from the original one, then the process provides anonymity
on those channels. To this end, we first allow the intruder to control the dishonest voter James by
renaming his individual voter process as rVoter(James,c) for some candidate c. However, Alice
and Bob are able to vote on the NSB channels. Subsequently, for the anonymity specification,
the two systems, which are expected to be indistinguishable, are defined as two separate system
behaviours without using the renaming operator: on the one hand, say System′vVote, Alice votes
for Zoe, Bob votes for Victor and James can vote for either Zoe or Victor; whereas on the other
hand, say System′′vVote, Alice votes for Victor, Bob votes for Zoe and again James can vote for ei-
ther. The systems are modelled in such a way that the intruder can manipulate everything James
does, including his private messages, whilst Bob and Alice can vote freely without any blocking
or spoofing. However, the intruder can still overhear the public NSB channels.

In order to avoid false positive attacks where the intruder can distinguish two ciphertexts,
even if he does not know the secret key, we deploy a masking function maskFact. The function
renames all messages encrypted under a public key, whose corresponding secret key is not known
by the voter, to a dummy ciphertext; if the secret key is in the intruder’s initial knowledge, then
he is allowed to differentiate two ciphertexts by not masking them.

maskFact(Epk(m)) = if dual(pk) ∈ IK then Epk(m) else ciphertext

The masking function mask(P) can also be defined for the processes, which masks all encrypted
facts of a given process, P, using the maskFact function for all the data that appears in this
process. (No keys are ever sent over the network, so if the intruder does not know a secret key at
the beginning, he will not learn it later.)

mask(P) =̂ P[[achannel.a.a′.DigB(Ssk(s),maskFact(Epk(l)))/achannel.a.a′.DigB(Ssk(s),Epk(l))]]

[[achannel.a.a′.Raw(s,maskFact(Epk(l)))/achannel.a.a′.Raw(s,Epk(l))]]

[[achannel.a.a′.V(Ind.i,maskFact(Epk(l)))/achannel.a.a′.V(Ind.i,Epk(l))]]

where achannel ∈ {nsbcomm, take, f ake}, the serial number s ∈ S, the candidate list l ∈ L and
the index value i ∈ I.

After applying the masking to both System′vVote and System′′vVote, they are ready for analysis
under the anonymity specification. To this end, the anonymity requirement of this voting system
model is checked with the following equivalence in which the private channels are hidden:

mask(System′vVote) \ {|scomm |} ≡T mask(System′′vVote) \ {|scomm |}

Failures-Divergence-Refinement (FDR) [GGH+] verifies that the two systems refine each other,
meaning that they are trace equivalent and hence that the intruder cannot distinguish them. We
conclude that the vVote voting system model provides anonymity under the Dolev-Yao intruder
model. The analysis was performed using the FDR 2.94 version on a machine with GenuineIntel
CPU family 6, model 2, 1.86GHz, and 34GB RAM (4GB allocated to FDR). With the restricted
Dolev-Yao model, the intruder can only block or spoof a subset (James’s communications) of all
messages. The restriction is modelled with the existence of private and NSB channels. More-
over, the verification of this model with three voters and two candidates takes 20m29s to check
16,063,214 states. However, with an additional corrupt voter, the state space explosion escalates
quickly due to too much data to work on. Hence, FDR cannot handle such scenarios. Intuitively,
the results scale up with the number of agents, but more thoughts are needed.

Proc. AVoCS 2013 12 / 15

ECEASST

5 Further Analysis and Conclusion

Although the framework used in the previous section provides a firm foundation for analysis of
voting systems, it is also important to see whether the framework supports further extensions
to those assumptions made previously, because one of the important challenges in electronic
voting systems may be to maintain requirements in the presence of corrupt agents. Such analyses
are possible with slight modifications in this framework. The following paragraph presents an
analysis of vVote in the presence of a corrupt POD service.

Corrupt POD Service The POD service is an important part of the print-on-demand protocol.
It receives raw ballot data including a serial number s and candidate list encrypted under pkPS,
and sends the digital ballot by signing the serial number to the POD client. If the POD service
is corrupt, which we model here by giving the POD service’s secret key to the intruder, the raw
ballot received by the POD service, say Raw(s3,EpkPS(Sq.〈Zoe,Victor〉)), can be captured and
decrypted by the intruder. Hence, the intruder can extract the candidate list Sq.〈Zoe,Victor〉 and
deduce its association with the serial number s3. Following this, when he observes that Alice’s
receipt with the index value Ind.1 has the serial number s3 on it, he is then able to infer that Alice
has voted for the first candidate of the candidate list Sq.〈Zoe,Victor〉, which is Zoe. Therefore,
the intruder distinguishes the two systems as Alice cannot have voted for Victor. This counter-
example is produced by FDR automatically and illustrated by the following partial trace.

〈. . .
nsbcomm.authority.wbb.Raw(s3,ciphertext),
nsbcomm.authority.podservice.Raw(s3,EpkPS(Sq.〈Zoe,Victor〉)),
nsbcomm.podservice.podclient.DigB(SskPS(s3),ciphertext),
enterBooth.Alice,
nsbcomm.Alice.ebm.Ind.1〉

Although no one is supposed to be observing voter interaction with the EBM, we assumed here
that the index value sent from voter to the EBM can be observed, as it will be observed anyway
once she takes her receipt from the receipt printer. Thus, the two counter-examples above were
found by FDR when the intruder could observe these index values. If the intruder was not
allowed to do so, the counter-examples would still appear once the voter had taken her receipt.

There are numerous possible corruption scenarios that can be modelled and analysed using
this framework. In particular, the one presented here emphasises the importance of the case of
a corrupt entity, where the voters are at a high risk of losing their anonymity. The vVote voting
system’s solution to this is to have this service distributed, so that as long as the thresholded ser-
vice is not corrupt overall, then the voter’s anonymity will be preserved. A similar consideration
applies to distributed ballot form generation. However, if the other trusted entities, like the EBM,
are acting dishonestly, the system is vulnerable to various attacks.

We have also analysed the model under the full Dolev-Yao intruder model that can overhear,
intercept and spoof any messages on all channels other than the private channels. From this
analysis, the following counter-example was produced, which shows that with such an intruder
the vVote voting system is open to anonymity attacks.

13 / 15 Volume 66 (2013)

Automated Analysis of Voting Systems

〈. . .
scomm.podclient.Alice.B(Sq.〈Zoe,Victor〉,SskPS(s1), Ind.0),
comm.Alice.ebm.Ind.1,
scomm.podclient.Bob.B(Sq.〈Zoe,Victor〉,SskPS(s2), Ind.0),
comm.Bob.ebm.Ind.2,
closeElection,
comm.wbb.teller.V(Ind.2,ciphertext),
take.wbb.teller.V(Ind.1,ciphertext),
comm.teller.wbb.Zoe.0〉

This tallies with the observation made in [KR05] about the FOO voting system [FOO92]. Here,
the intruder blocks all the other votes except Bob’s with the channel take. In this case, Alice has
voted for Zoe with the index value Ind.1 and Bob has voted for Victor with Ind.2 on the private
channels. (The candidate lists on the private channels scomm are hidden in the analysis and they
are revealed here just for illustration.) The intruder intercepts the vote with the index value Ind.1,
and waits until Bob’s vote is counted. Having seen that no one has voted for Zoe, the intruder
then deduces that Bob has voted for Victor. This is a genuine and generic attack, not only on
vVote, but applicable to any voting system. However, as it is not likely in a real system that the
intruder can block all votes but one, it was assumed in our analysis that at least two honest votes
are tallied at the end of the election.

In this paper, we have proposed a formal approach to modelling and analysis of cryptographic
voting systems. In order to validate the suitability of the framework, the vVote voting system
was analysed against an anonymity specification. To do so, an extensive number of other such
rules regarding voting systems have been defined. These enable the intruder to learn and deduce
further from his knowledge so as to able to use it to break the protocol objectives. Moreover,
we introduced special channel types, private and NSB channels, in order to reason about voting
systems under appropriate assumptions, as it has been observed that no voting system model
can provide anonymity under an unrestricted Dolev-Yao intruder model. The framework can be
applied to other voting systems providing that a CSP model of the system that is compatible with
the framework is produced, and system-specific deduction rules are given.

Acknowledgements. The authors would like to thank Steve Schneider for useful discussions
on the technical content.

References
[BCH+12a] C. Burton, C. Culnane, J. Heather, T. Peacock, P. Y. A. Ryan, S. Schneider, S. Srinivasan,

V. Teague, R. Wen, Z. Xia. A Supervised Verifiable Voting Protocol for the Victorian Elec-
toral Commission. In Electronic Voting. Pp. 81–94. 2012.

[BCH+12b] C. Burton, C. Culnane, J. Heather, T. Peacock, P. Y. A. Ryan, S. Schneider, S. Srinivasan,
V. Teague, R. Wen, Z. Xia. Using Prêt à Voter in Victoria State Elections. In EVT / WOTE.
2012.

[BHM08] M. Backes, C. Hritcu, M. Maffei. Automated Verification of Remote Electronic Voting Pro-
tocols in the Applied Pi-Calculus. In CSF. Pp. 195–209. 2008.

Proc. AVoCS 2013 14 / 15

ECEASST

[CCK12] R. Chadha, S. Ciobaca, S. Kremer. Automated Verification of Equivalence Properties of
Cryptographic Protocols. In Seidl (ed.), Programming Languages and Systems. LNCS 7211,
pp. 108–127. Springer Berlin Heidelberg, 2012.

[CGH+05] S. Creese, M. Goldsmith, R. Harrison, B. Roscoe, P. Whittaker, I. Zakiuddin. Exploiting
Empirical Engagement in Authentication Protocol Design. In SPC. Pp. 119–133. 2005.

[CGRZ03] S. Creese, M. Goldsmith, B. Roscoe, I. Zakiuddin. The Attacker in Ubiquitous Computing
Environments: Formalising the Threat Model. In FAoC. 2003.

[Cul13] C. Culnane. Software Design for VEC vVote System. Technical report CS-13-01, University
of Surrey, 2013.

[DKR10] S. Delaune, S. Kremer, M. Ryan. Verifying Privacy-Type Properties of Electronic Voting
Protocols: A Taster. In Towards Trustworthy Elections. Pp. 289–309. 2010.

[DRS08] S. Delaune, M. Ryan, B. Smyth. Automatic Verification of Privacy Properties in the Ap-
plied pi Calculus. In Karabulut et al. (eds.), Trust Management II. IFIP - The International
Federation for Information Processing 263, pp. 263–278. Springer US, 2008.

[DY83] D. Dolev, A. C. Yao. On the Security of Public Key Protocols. IEEE Transactions on Infor-
mation Theory 29(2):198 – 208, mar 1983.

[FOO92] A. Fujioka, T. Okamoto, K. Ohta. A Practical Secret Voting Scheme for Large Scale Elec-
tions. In AUSCRYPT. Pp. 244–251. 1992.

[GGH+] P. Gardiner, M. Goldsmith, J. Hulance, D. Jackson, B. Roscoe, B. Scattergood, B. Arm-
strong. FDR2 User Manual. http://www.fsel.com/documentation/fdr2/html/index.html.

[Jak99] M. Jakobsson. On Quorum Controlled Asymmetric Proxy Re-encryption. In Proc. of the
Second Int’l Workshop on Practice and Theory in Public Key Cryptography. 1999.

[KR05] S. Kremer, M. Ryan. Analysis of an Electronic Voting Protocol in the Applied Pi Calculus.
In ESOP. Pp. 186–200. 2005.

[MHS12] M. Moran, J. Heather, S. Schneider. Verifying Anonymity in Voting Systems Using CSP.
Formal Aspects of Computing, pp. 1–36, 2012.

[MHS13] M. Moran, J. Heather, S. A. Schneider. Automated Anonymity Verification of the ThreeBal-
lot Voting System. In IFM. Pp. 94–108. June 2013.

[Mor13] M. Moran. CSP codes for CVS, ThreeBallot, Prêt à Voter and vVote Voting Systems. May
2013. http://muratmoran.wordpress.com/publications/.

[RG97] A. Roscoe, M. Goldsmith. The Perfect ”spy” for Model-checking Cryptoprotocols. In DI-
MACS workshop on the design and formal verification of cryptographic protocols. 1997.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1997.

[RSG+00] P. Y. A. Ryan, S. A. Schneider, M. H. Goldsmith, G. Lowe, A. W. Roscoe. The Modelling
and Analysis of Security Protocols : the CSP Approach. Addison-Wesley Professional, first
edition, 2000.

[Rya04] P. Y. A. Ryan. A variant of the Chaum Voter-verifiable Scheme. Technical report CS-TR-
864, University of Newcastle upon Tyne, 2004.

[Smy11] B. Smyth. Formal Verification of Cryptographic Protocols with Automated Reasoning. PhD
thesis, School of Computer Science, University of Birmingham, 2011.

15 / 15 Volume 66 (2013)

http://www.fsel.com/documentation/fdr2/html/index.html
http://muratmoran.wordpress.com/publications/

	Introduction
	vVote System Outline
	Election Phases
	Ballot Generation
	vVote POD Service and Protocol

	vVote and Intruder Model
	Datatypes, Messages and Channels
	Honest Participants
	Adapting Lazy Spy
	Putting the Network Together

	Analysis
	Further Analysis and Conclusion

