
Electronic Communications of the EASST
Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools

(GraBaTs 2006)

The Graph Rewriting and Transformation Language: GReAT

Daniel Balasubramanian, Anantha Narayanan, Chris vanBuskirk, and Gabor Karsai

8 pages

Guest Editors: Albert Zündorf, Daniel Varró
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

The Graph Rewriting and Transformation Language: GReAT

Daniel Balasubramanian1, Anantha Narayanan1, Chris vanBuskirk1, and Gabor
Karsai1

1Institute for Software-Integrated Systems, Vanderbilt University, Nashville, TN 37235, USA

Abstract: In this paper, we describe the language and features of our graph transfor-
mation tool, GReAT. We begin with a brief introduction and motivation, followed by
an overview of the actual language, the modeling framework, and the tools that were
written to support transformations. Finally, we compare GReAT to other similar
tools, discuss additional functionality we are currently implementing, and describe
some of our experiences with the tool thus far.

Keywords: Model Transformation, Modeling Tools

1 Introduction

Model transformations are a central part of the model based approach to software engineer-
ing. The construction of model transformations using textual languages is time consuming,
costly, and rarely has a formal foundation. Models can be considered as labeled multigraphs.
Thus, model transformations can be accomplished using the techniques of graph transforma-
tions [EER96]. Since graph transformations are grounded in mathematical concepts, we can use
them to formally specify the intended behavior of model transformations. The Graph Rewrit-
ing and Transformation (GReAT) language is a graphical language for the specification of graph
transformations between domain-specific modeling languages (DSMLs). The rest of this paper
describes the GReAT language and toolset, a comprehensive set of tools which can be used to
specify, debug and execute efficient graph transformations between DSMLs.

2 The GReAT Language

The GReAT language consists of three sub-languages: the pattern specification language, the
transformation rule language, and the sequencing or control flow language. Additionally, the
input and the output languages of a transformation are defined in terms of meta-models.

The meta-information of the DSMLs on either side (i.e. input or output) of the transformation
is specified using UML class diagrams. Transformations also often require the ability to maintain
temporary information that may correspond to both paradigms; for instance, a transformation
from a hierarchal state-machine language to one without hierarchy benefits from the ability to
create temporary links between hierarchal states in the first DSML and flat states in the second
DSML. GReAT allows the users to create additional, heterogeneous class diagrams that describe
the cross-domain and temporary associations. Transformations in GReAT are specified over the
set of meta-models and the heterogeneous class diagrams.

1 / 8 Volume 1 (2006)



The Graph Rewriting and Transformation Language: GReAT

Figure 1: An example GReAT rule

2.1 Pattern Specification

GReAT uses the UML classes defined in the input meta-models to specify patterns that will be
matched in the host graph. A pattern graph consists of nodes and edges, and each node and
edge must have a corresponding class and association element in the class diagram of the input
meta-model. For instance, the user might draw a simple pattern that selects all elements of type
‘A’ in a container class that are associated with elements of type ‘B’ in the same container, as
three classes (container, A, B), two containment relations, and one association. In the event that a
pattern requires that a given element not be present in the matching subgraph, the user can set the
pattern cardinality on the containment association of this element to zero, effectively providing
a negative application condition.

2.2 Transformation Rule

The basic transformation entity in GReAT is a production rule. A rule in GReAT has the follow-
ing elements:

• Pattern: a graph with pattern vertices and edges,

• Actions: a mapping of pattern vertices and edges to the set of actions {Bind, CreateNew,
Delete},

• Input interface: a set of distinct input ports that can receive graph objects from previous
rules,

• Output interface: a set of distinct output ports that will transfer graph objects to the next
rule,

• Guard: an expression that evaluates true or false and determines whether a rule actions
should be executed for the matched subgraph,

• Attribute mapping: code that is executed for each valid match to generate the values of
edge and vertex attributes,

Proc. GraBaTs 2006 2 / 8



ECEASST

Figure 2: Rule execution in GReAT

• Match condition: a flag determining whether all matches are executed, or any one, non-
deterministically chosen match is executed.

Figure 1 shows a simple transformation rule in GReAT, with a simple pattern. The objects,
“House” and “PurchaseOrder” are bound to the input ports, which means that they are received as
input from a rule that has already been executed. These bound objects form the initial context for
the rule for subsequent pattern searches, which means that we search for the objects, “Room1”,
“Room2”, and “AdjacentTo” inside this “House” object. Once these elements are found, we
check the guard condition, “HasDoor”, which contains procedural (C++) code that can access
the attributes of objects. If the guard condition is true, then we create a new “OrderItem” object
inside the bound object “PurchaseOrder”, and finally we execute the procedural code contained
in the “AttributeMapping” block.

It is important to note that in GReAT both the LHS and RHS of a transformation rule are
specified together in a composite pattern. The objects marked as “Bound” can be considered as
the LHS of the rule, and the objects marked “CreateNew” or “Delete” are the RHS. This is in
contrast to some other popular approaches in the field, in which the LHS and RHS are specified
separately.

The execution of a production rule assumes that the input interface is bound to some nodes in
the graph. In the case of the first, top-level rule, the user selects which elements from the input
and output graphs are passed in. These bindings for the input (and later for the output) ports form
a packet. When a rule fires, the binding is established, and then a pattern matching algorithm
finds a matching subgraph within the connected neighborhood of the bound nodes. Frequently
many such matches are generated, each match forming a consistent binding for all edges and
nodes in the pattern graph of the rule. These matches will generate packets via the output ports
for downstream rules as described below.

Figure 2 gives an overview of the steps of a single rule execution. Two input packets arrive in
(a). The rule execution begins with the first packet. The rule first binds all incoming objects from

3 / 8 Volume 1 (2006)



The Graph Rewriting and Transformation Language: GReAT

Figure 3: Sequence of rules

the first packet (containing Root R and Parent P1). Suppose that in the input model, P1 contains
two children, C11 and C12. The intermediate packets produced for these two matches are shown
in (b). At this point, a new Actor is created for each match. If a guard had been present, only
those matches for which the guard condition evaluated to true would have been retained. The
rule binds the Root and the Child objects to the output ports. Part (c) shows the output packets
generated by this binding of graph objects to output ports. These packets will be sent to the next
rule after all the input packets to this rule have been processed. Parts (d) and (e) show the rest of
the execution of this rule for the remaining input packet, with part (e) showing the output packets
created by this rule.

2.3 Control Flow

We have seen how a single rule executes in GReAT. GReAT allows the construction of larger
transformations using the following control flow concepts:

1. Sequencing - Rules can be coupled with other rules to execute sequentially. Figure 3 shows
two rules in sequence. Rule 1 executes first, consuming all its input packets. Rule 2 fires
after Rule 1 has completed producing all its output packets.

2. Non-determinism - When rules are not connected sequentially, they can be connected in
parallel, and the order of rule execution will be non-deterministic.

3. Hierarchy - Rules can be composed hierarchically using Blocks. Blocks can contain prim-
itive rules or other blocks. There are two types of blocks in GReAT: Block and ForBlock.
The only difference in their semantics is that in the ForBlock, each input packet passes
through all the contained rules before the next input packet is passed, while in a Block all
packets are consumed by the first rule, then the generated packets are passed to the next
rule, and so on.

4. Recursion - The output of rules can be connected to inputs of blocks higher in the contain-
ment hierarchy, which results in the output packets being sent back as input packets to the
preceding rules (in effect, recursively activating the rules for a subgraph).

5. Conditional execution - GReAT offers special blocks called Test/Case blocks for condi-
tional execution. Test blocks can have multiple Case blocks, and multiple outputs. The
output packets are placed on the output ports determined by the Case that matches suc-
cessfully.

Proc. GraBaTs 2006 4 / 8



ECEASST

3 Tools

3.1 Modeling Framework

GReAT is not a standalone tool; rather, it is used in conjunction with the Generic Modeling
Environment (GME) [Led01]. However, once a transformation has been developed, a standalone
executable can be executed outside of GME. The typical modeling and transformation process
proceeds as follows.

1. A GReAT transformation project is created in GME, the UML meta-models for the input
and the target of the transformation are attached, and the heterogeneous class diagrams
created.

2. The transformation rules are specified by drawing patterns of UML classes from elements
of the meta-models, and the rules are sequenced to form a transformation program.

3. The transformation is executed. Depending on the required level of performance and ma-
turity of the transformation, this can be done using one of three supplied tools: the GR-
Engine, the GR-Debugger, or the code produced by the GR-Code Generator.

3.2 Execution Engines

The GR-Engine provides the fastest way of testing transformation prototypes. The transforma-
tion rules are interpreted by the GR-Engine, and thus the level of performance is not as high as
with compiled code. The GR-Engine is often used early in the development of a transformation
so that results can be tested quickly.

Just as the need for debuggers arises with complex programs written in traditional procedural
programming languages, it often becomes very helpful to have the ability to debug graph trans-
formations as well. The GR-Debugger is built on top of the GR-Engine, and offers the typical
features found in traditional debuggers, e.g., breakpoints, stepping in/over rules, etc. A graphical
window displays a list of the transformation rules, and the user can set breakpoints at any rule
and step through the transformation rule by rule, allowing them to see the results of a particular
rule or see what elements are being matched at any given time. Figure 4 shows the GR-Debugger.

While both the GR-Engine and GR-Debugger rely on an interpreter to execute the transforma-
tion rules, the Code Generator produces the corresponding transformation code in C++ using a
model data structure library called UDM [MBL+03]. Our empirical studies have shown that in
most cases, this results in a 10x-100x improvement in transformation execution time [VAS04].

4 Comparison

Other graph transformation tools include VIATRA, AGG, Fujaba, and PROGRES. [MGVKar]
provides a good comparison and feature summary of the first three, along with GReAT, in the
framework of the taxonomy developed in [MCG05].

Fujaba (From UML to Java And Back Again) is geared toward the creation of Java code from
UML models in such a way that the UML models can be reverse engineered from the generated
Java code by reversing the transformation. Fujaba uses a technique known as story-driven mod-
eling, in which an activity diagram specifies the order in which the graph transformation rules

5 / 8 Volume 1 (2006)



The Graph Rewriting and Transformation Language: GReAT

Figure 4: GReAT Debugger

should be applied. GReAT can also be used to generate non-trivial code from models [NKS+05].
However, transformations in GReAT are unidirectional, and a reverse transformation must be
manually written.

AGG (Attributed Graph Grammar System) is a general purpose graph transformation tool used
in high level Java applications. It uses an algebraic approach to graph transformations. In AGG
a transformation can be performed only within a single domain, while GReAT allows heteroge-
neous transformations. AGG also relies on a graph grammar approach rather than programmed
graph transformations. Using this method, AGG starts with an initial input graph, and then ap-
plies all applicable graph productions in parallel. Thus, this approach may not be viable if the
user requires explicit control over the rule sequencing.

PROGRES (PROgrammed Graph REwriting Systems) is a another general purpose transfor-
mation tool. It is generally used for prototyping process modeling and reengineering tools. PRO-
GRES combines UML-like class diagrams and graph re-write rules which operate on these dia-
grams. Once a transformation is specified, it can be translated into C and Tcl/Tk code for rapid
prototyping. GReAT transformations can be translated into C++ code, but this is mainly done to
increase the performance of the transformation.

VIATRA (VIsual Automated model TRAnsformation) is primarily considered a model verifi-
cation tool that relies on graph transformation techniques, especially in the area of dependability
analysis, although it can also be used areas of model-driven development, such as code gen-
eration. Transformations in VIATRA are specified in a way similar to GReAT. Graph patterns
are defined from a collection of model elements, and then assembled into complex transforma-
tions by using abstract state machine rules. Novel features of VIATRA include generic graph

Proc. GraBaTs 2006 6 / 8



ECEASST

transformation rules, in which type parameters can be passed into a rule, making a transfor-
mations easy to reuse between domains. Currently, GReAT supports only a limited form of
type-parameterization of rules through the use of UML inheritance. For instance, instead of
specifying a specific child class in a transformation, one could match the base class, and then
filter the specific results using guard conditions, which are written in C++.

Recent additions to GReAT, such as the ability to sort the results of pattern matches, and the
distinguished merging of matches (both described in [VNS+05]), are not directly supported in
any of the aforementioned tools, although one could possibly implement them with a sequence of
rules. We believe that adding these features gives support for quickly executing common tasks,
and greatly improves the usability of our tool.

5 Conclusions and Future Work

We have tested the usability and scalability of GReAT with several non-trivial transformations,
including a transformation that generates C code from Simulink models [NKS+05], and a trans-
formation that generates real-time E-Code from a Giotto model [Sze05]. In both cases, we were
able to express the transformation using the existing features of GReAT, although we also found
that additional features would make both transformations easier to define. Thus, we implemented
some of these additional features, such as support for sorting the results of pattern matches and
support for global objects [VNS+05].

Currently, we are working on implementing novel capabilities, such as the ability to move a
(containment) hierarchy of objects contained by one element to be contained by another element.
However, this feature requires a precise definition of the semantics of moving an object’s con-
nections and children objects, and thus does not have a straightforward solution. The challenge
is to decide on an implementation that will make the feature as powerful as possible while still
giving the user a high degree of freedom.

In general, we have found that GReAT is a highly usable tool for quickly specifying model
transformations. In particular, we believe that our explicit rule sequencing saves the user from
dealing with confluence considerations, and our ability to operate on any number of input/output
models during a transformation can save the user from having to define multiple transformations
[AKL03]. We are continuing our research to determine what constructs and operations should
be directly supported by the language so that it is sufficiently expressive, yet still simple enough
to be learned and used efficiently.

Bibliography

[AKL03] A. Agrawal, G. Karsai, A. Ledeczi. An end-to-end domain-driven software develop-
ment framework. In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications.
Pp. 8–15. ACM Press, New York, NY, USA, 2003.
doi:http://doi.acm.org/10.1145/949344.949347

7 / 8 Volume 1 (2006)

http://dx.doi.org/http://doi.acm.org/10.1145/949344.949347


The Graph Rewriting and Transformation Language: GReAT

[EER96] G. Engels, H. Ehrig, G. Rozenberg(eds.). Special Issue on Graph Transformation
Systems. In Fundamenta Informaticae, Vol. 26, No. 3/4, No. 1/2. 1996.

[Led01] A. Ledeczi. Composing Domain-Specific Design Environments. In Computer. 2001.

[MBL+03] E. Magyari, A. Bakay, A. Lang, T. Paka, A. Vizhanyo, A. Agrawal, G. Karsai. UDM:
An Infrastructure for Implementing Domain-Specific Modeling Languages. In The
3rd OOPSLA Workshop on Domain-Specific Modeling, OOPSLA 2003. 2003.

[MCG05] T. Mens, K. Czarnecki, P. V. Gorp. A Taxonomy of Model Transformations.
In Bezivin and Heckel (eds.), Language Engineering for Model-Driven Software
Development. Dagstuhl Seminar Proceedings 04101. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.
<http://drops.dagstuhl.de/opus/volltexte/2005/11> [date of citation: 2005-01-01].

[MGVKar] T. Mens, P. V. Gorp, D. Varro, G. Karsai. Applying a Model Transformation Taxon-
omy to Graph Transformation Technology. (To Appear).

[NKS+05] S. Neema, Z. Kalmar, F. Shi, A. Vizhanyo, G. Karsai. A visually-specified code
generator for Simulink/Stateflow. In IEEE Symposium on Visual Languages and
Human-Centric Computing. 2005.

[Sze05] T. Szemethy. Case Study: Model Transformations for Time-Triggered Systems. In
International Workshop on Graph and Model Transformations (GRaMoT). 2005.

[VAS04] A. Vizhanyo, A. Agrawal, F. Shi. Towards Generation of High-performance Trans-
formations. In Generative Programming and Component Engineering, Vancouver,
Canada. 2004.

[VNS+05] A. Vizhanyo, S. Neema, F. Shi, D. Balasubramanian, G. Karsai. Improving the Us-
ability of a Graph Transformation Language. In International Workshop on Graph
and Model Transformations (GRaMoT). 2005.

Proc. GraBaTs 2006 8 / 8


	Introduction
	The GReAT Language
	Pattern Specification
	Transformation Rule
	Control Flow

	Tools
	Modeling Framework
	Execution Engines

	Comparison
	Conclusions and Future Work

