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Abstract: Network on Chip (NoC) has emerged as a promising architecture paradigm
for todays many-core systems. As complexity grows in NoCs, functional verifica-
tion and performance prediction in the early stages of the design process are sug-
gested as ways to reduce the fabrication cost. Formal methods have gained more
attention as alternative ways for analyzing NoC designs. In this paper we propose a
method to model different characteristics of the system, and also verify various func-
tional and performance properties by generating the full state space of the model for
different scenarios. We present a formal model for two-dimensional mesh Glob-
ally Asynchronous Locally Synchronous (GALS) NoCs with four-phase handshake
communication protocol, using the actor-based modeling language Rebeca. Func-
tional and timing behaviors, routing algorithm and communication protocol are cap-
tured in the model. Deadlock freedom, message arrival, and end-to-end packet la-
tency are checked. In order to analyze large NoCs we propose a scalable approach
based on compositional verification for estimating maximum end-to-end packet la-
tency. The compositional approach is specific for the XY-routing algorithm. Results
of verification are compared and matched to simulation results of HSPICE using
32nm technology.

Keywords: Network on Chip (NoC), Rebeca, Compositional verification, Actor
model

1 Introduction

Through technology shrinkage, multiprocessor systems on chips (MPSOCs) have emerged as
viable solution to the growing complexity. Network on chip (NoC) is a promising intercon-
nection paradigm for these systems. Fully synchronous design of NoCs faces some problems.
Thus, Globally Asynchronous Locally Synchronous (GALS) NoC [ITR11] has gained attention
in designing of such systems. However, GALS-based NoCs encounter two main challenges: (1)

∗ The work of this author has been partially supported by the project Timed Asynchronous Reactive Objects in
Distributed Systems: TARO (nr. 110020021) of the Icelandic Research Fund.
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functional verification, to check if the desired properties are met, and (2) performance evaluation
in various stages of the design process to choose the proper design parameters.

As fabrication cost is high, it is desirable to tackle the two challenges before having the first
prototype and even in the early stages of design process. To do so, it is required to have a model
of the system with proper details, to perform model -based analysis. Moreover, using a technique
that allows for high abstraction in the model enables the designer to perform a series of analysis
in various stages of design process. However, to the best of our knowledge existing works do
not present a suitable model for a GALS NoC with enough detail to be verified against both
functional and performance properties.

This paper uses model checking to confront both challenges simultaneously and make use of
one model for verifying both functional and performance properties. A formal model for GALS
NoC is presented that can be used for estimating end-to-end packet latency, as well as checking
functional properties like deadlock freedom and successful arrival of packets to their destination.
Functional and timing behaviors, communication protocol, routing and scheduling algorithms
are considered in the model. Based on the properties of interest, the model can be extended to
support more details of the system.

One important point in asynchronous systems is that the lack of a reference clock leads to an
interleaved execution of processes. Therefore, in GALS NoCs, a sent packet might be delayed by
different number of disrupting packets and may have various end-to-end latencies. Thus, timing
analysis in these systems is required to enable making suitable design decisions to avoid deadline
miss for packets travelling through the network. For analysis of such systems it is essential
to consider all possible behaviors of the system and generate the whole state space. However,
existing work based on simulation techniques cannot be applied for exhaustive verification. Also,
ensuring correctness to a certain degree using simulation is highly time-consuming. Formal
methods and more specifically model checking are alternative approaches that can be used for
both performance evaluation and correctness checking and allow us to perform exhaustive search
in the state space [BHHK10].

Using an actor-based [Hew72] model with formal verification support allows us to model
the asynchronous behavior of GALS NoC naturally. Here, Timed Rebeca (Reactive Objects
Language) [SMSB04, KKK +12, SJ11] is used as the modeling language. Timed Rebeca is
an actor-based modeling language capable of modeling functionalities and timing behaviors of
asynchronous systems. In an actor model there are number of actors which are communicating
via message passing. Similarities between the computational model of Rebeca and GALS NoC,
leads us to a natural and easy to understand model.

Due to the asynchronous communication, applying an exhaustive verification on large NoCs
may result in state space explosion. To alleviate this problem we present a method based on
compositional verification. The method computes the maximum end-to-end latency in GALS
NoCs with XY routing algorithm in two steps. It breaks the path of a packet to its destination
into horizontal and vertical sub-paths and then performs latency estimation in each sub-path
separately. At the end, the results for each sub-path are combined to get latency estimation of
the whole path.

As an example of a NoC, we model and analyze ASPIN (Asynchronous Scalable Packet-
switching Integrated Network) [SGM08], which is a fully asynchronous two-dimensional GALS
NoC design using XY routing algorithm. Our experimental results are compared to results of
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simulations for a 4×4 ASPIN. Comparisons show that our results match the results of simula-
tions. In another example we performed some experiments to show how our method can be used
in making design decisions for memory location based on performance evaluation.

A general comparison between alternative analysis approaches, i.e. simulation and classical
analytical performance analysis, is given in [BHHK10]. To be more specific, comparing to the
works based on simulation our model can be used for exhaustive verification of different sizes
of NoC in the early stages of design process. Comparing to the works based on mathematical
and analytical analysis, our model considers hardware features including buffers and link delays,
buffer status and also communication protocol, and captures the asynchronous communication
paradigm. For a comparison with other formal methods that are applied for analyzing NoCs we
shall emphasize both on the modeling and model checking techniques. Our approach has the
advantage of using an actor-based model that due to its asynchronous computation model makes
modeling natural and flexible. Also, the verification tools can efficiently reduce the state space
that need to be checked, because specific actor-based reduction techniques are implemented
within the tools [SMSB04, KKK +12]. The novelty of the present work is proposing a formal
verification approach based on actors for modeling and analyzing GALS NOC. Using Timed
Rebeca and the supporting tools we showed how GALS NOC can naturally be modeled and how
functional correctness, performance measures, and design problems can be easily formulated.
Our experiments show the validity, efficiency and scalability of our approach. In summary, the
contributions of this paper are:

1. Proposing a user-friendly and flexible method for actor-based modeling of GALS NoC using
Timed Rebeca where sufficient details can be added to the model based on the properties to be
verified.

2. Presenting a method for using formal verification tools of Rebeca for checking functional
and performance properties of NoCs which based on experiments has shown to work efficiently.

3. Using ASPIN to show our modeling and verification approach and comparing the results
with simulation-based experiments as a validity check for our approach.

4. Introducing a more scalable method based on compositional verification to predict the
maximum end-to-end latency of a sent packet specific for XY-routing.

The remainder of the paper is organized as follows.Section 2contains related works. In
Section 3preliminaries are introduced, andSection 4presents ASPINs model in Rebeca. The
analysis using model checking as well as our compositional verification method is explained in
Section 5. Results are shown inSection 6and the conclusion is presented inSection 7.

2 Related Work

There exists several works based on simulation for analyzing on-chip communications. Hard-
ware simulators such as Nirgam [NIR] and gem5 [Gem11] can be used for analyzing NoCs.
However, with these tools it is not possible to model the details of GALS NoC functionality
with precise timing information. To the best of our knowledge none of the existing simulation-
based tools can model and analyze asynchronous behaviours in these systems, since they are
non-exhaustive and cannot check all possible behaviours in asynchronous systems.

In various similar works, formal methods have been applied to simultaneously overcome
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the two specified challenges of functional verification and performance evaluation. An excel-
lent overview on joining forces of model checking and performance evaluation is presented in
[BHHK10]. In [Mad09] deadlock detection for applications in MPSoC is performed, and a timed
automata model is used for performance evaluation. A Petri net model is presented in [NB12]
for performance evaluation of asynchronous circuits. In [CSH+10] functional behavior of a NoC
is modeled in Extended Timed Automata, and its router is verified against some functional prop-
erties. A refinement based approach is applied to model a 3-dimensional NoC in [KPSD11].
Timing behavior and also hardware parameters like write and read delays for buffer and link
delay are not considered in the model. In none of the above works GALS NoC was analyzed.

The first work for automatic synthesis of GALS-based systems has been done in 2008 at
Newcastle University [Das08]. In this work the Signal Transition Graph (STG) and System
Transition Synchronous Label are used. However, these models are not suitable for modeling
large systems, since their low level nature makes model of large systems very complicated. Also,
the computational model is not proper for performance evaluation. In [GAE11] Manchester and
Newcastle Universities defined the GAELS project in 2011. In this project they want to model
components of GALS NoC with elastic circuits using Petri net. In addition, in [Bul10, MS10]
Interactive Markov Chain (IMC) and Interactive Probabilistic Chain (IPC) have been used for
performance evaluation of such systems. The models are only used for performance evaluation,
and functional verification was not considered in these works. Moreover, IMC and IPC are used
in [CHLS09] to model a buffer used in NoC design. However, details of hardware timing and link
model are not mentioned. In [FTHJ09] an analytical method based on Markov chain stochastic
processes is proposed for computation of mean latency of the end-to-end communications via
a 2-dimensional mesh NoC. The method approximates the latency of crossing each core in the
path, assuming probabilities for the number of existing disrupting packets that want to pass from
the same output port. Using probabilities reduces the state space at the expense of losing the
buffer analysis.

In this paper, we use formal methods to perform functional verification and performance esti-
mation on GALS NoC on the same model. In contrast to existing works based on formal meth-
ods, our model considers hardware details like link and buffer (read and write) delays. Also, the
model could be easily extended to contain more details in various stages of design flow and can
help the designer to make better architectural choices.

3 Preliminaries

3.1 ASPIN

ASPIN is a fully asynchronous two-dimensional mesh NoC with physically distributed routers
in each core. ASPIN uses the storage strategy of input buffering, and each input port is provided
by an independent FIFO buffer. Packets arrived from different sides (from neighboring routers
on four sides and the local core), are stored in the respective FIFO buffer. If there is more than
one request for an output port, a round robin policy is used for the arbitration.

ASPIN uses XY routing algorithm to route packets from input ports to output ports. Using
this algorithm, packets can only move along X direction first, and then along Y direction to reach
their destination. Communications between routers are established using four-phase handshake

Proc. AVoCS 2013 4 / 16



ECEASST

protocol. The protocol uses two signals namely Req and Ack. To transfer a packet, first, sender
sends a request by rising Req signal, and waits for an acknowledgment from the receiver. All
signals return to zero before the next packet could be sent[SF01].

3.2 Timed Rebeca

Rebeca is an actor-based modeling language with a Java-like syntax. Actors can be considered
as a reference model for concurrent computation. A Rebeca model consists of reactive classes
and a main part that contains instantiation of reactive objects (rebecs) from reactive classes.
Rebecs have encapsulated states and their own execution thread. Each rebec contains a set of
state variables, methods and a set of known rebecs with which it can communicate. States of
a rebec consists of the valuation of state variables. Communication is through asynchronous
message passing. Sending a message to a rebec will cause the invocation of corresponding
message server. Each rebec has an initialization method (like a constructor) with the same name
as the rebec which is executed while instantiating of the rebec. Parameters of this method are
used for initializing the rebec and its known-rebecs. Each rebec has a buffer, called a queue, for
arriving messages. The queues scheduling policy is FIFO. In each step a rebec is executed by
removing a message from the top of its queue and executing its corresponding message server.
The execution of a message server is an atomic execution of its body and may not be interleaved
with other message servers.

Timed Rebeca is an extension to Rebeca, capable of modeling timing and functional behaviors
of distributed reactive systems. In a Timed Rebeca model each rebec has its own local clock. The
local clocks can be considered as synchronized distributed clocks. The execution of message
servers is still atomic and can lead to progress of time in that rebec. To model timing behaviors
of a system like computation time, message delivery, message expiration, and period of event
occurrence the three below constructs are provided:

1. delay (t): this construct causes a delay of t time units.
2. after (t): this construct is paired with an invocation of a message server (method call), and

causes a message to be sent with a delay of t units of time (it does not cause a delay for the caller
rebec).

3. deadline (t): this construct is paired with an invocation of a message server (method call),
and the corresponding message will be purged from the queue after t time units.

4 Modeling NoC Using Timed Rebeca

To use model checking in our analysis, first, the system should be modeled using Timed Rebeca.
In this section, we present ASPIN model in Rebeca as a benchmark to be analyzed inSection 5.
In this work, we check two functional and one performance properties of GALS NoC:

- Deadlock freedom (in an application with specified traffic pattern)
- Successful arrival of each packet at its destination
- Estimation of maximum end-to-end packet latency

Focusing on the above properties we need to consider the topology of the communication, rout-
ing algorithm, buffer status, and communication protocol in the model, we also have to capture
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Figure 1: Pseudo code for Rebeca model of ASPIN

the timing behaviors. Considering these details, the full state space for a specific traffic pat-
tern will be produced and checked for deadlock and the successful arrival of each packet. In
order to estimate maximum end-to-end packet latency, buffer delays and channel delays are also
considered in the model. Using an actor-based modeling language we can efficiently map the
constituents of GALS NoC, to actor model. Different elements of a GALS NoC can be modeled
as follows,

- Router: Each router can be mapped to an actor which communicates with other routers
through message passing. Delay for processing in a router can be modeled by ”delay” construct.
We can define some message servers to model routing algorithms. An actor in Rebeca model
is able to recognize who has invoked its message server, thus the router can understand from
which port a packet entered to a router and then decide to which router the packet should be
sent. Similarly, to model scheduling algorithms we can use message servers. Since ASPIN uses
Round Robin scheduling algorithm, here we simply use the scheduler of Timed Rebeca.
- Buffer : Router buffers can be seen as an array of elements (packets). We can use Rebec
queues to model buffers, and then keep track of the number of packets in the buffer by defining
a state variable as a counter for the number of elements in the buffer. Doing so, we always have
the number of packets in the buffer, thus being able to model adaptive and dynamic routings.
Delay of writing and reading to/from buffers can be modeled by ”after” constructs.
- Packet: Since our work concentrate on analysis of the interconnection we only model a
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packet with its identifier and its destination. We can use ”deadline” construct of Timed Rebeca,
if a packet has a specific deadline.
- Channel (Link) : Channels can be simply modeled by message passing. Delay of passing
through a channel can be modeled using ”after” construct.
- Communication protocol: by defining appropriate message servers, we can model commu-
nication protocols of a GALS NoC.

Figure 1shows a pseudo code for the Rebeca model of ASPIN. The code is available in
[NoC13]. As shown in the pseudo code the model consists of one reactive class Router, and
a main part. Instantiated rebecs of the reactive class Router are declared in the main part (as
shown for routerr00 in Figure 1). The list of known rebecs and the parameters for initializing a
rebec (here, the address of a router) are given in the instantiation statement. In the pseudo code
we only show instantiation of one router, more routers can be defined liker00 to model a larger
NoC. Packets are generated in the Router method (the initial method) of each router. Packets
can be generated at any time. As illustrated in the pseudo code one packet is generated inr00 at
time t1 and another is generated inr20 at timet2. Each packet only has a destination address and
identifier. Packets are transferred through channels, using four-phase handshake communication
protocol. We model channel functionalities by means of message passing in Rebeca. Four-
phase handshake protocol is modeled using three message servers:reqSend, giveAck, andgetAck.
A router calls itsreqSendmessage server to send a request to its neighbors;reqSendrequires
as parameter, a direction (srcPort) that determines in which input buffer the packet is stored,
a destination address (dstX anddstY) that shows the destination of the packet and the packet
Identifier (packId). The functionXY-routingselects which neighbor router the packet should be
sent to, and thengiveAckmessage server of the selected neighbor router is called.

Following four-phase protocol, request signal of the sender is raised until it receives an ac-
knowledgment signal. While waiting for the acknowledgment signal, the router cannot send
any packet from that port. We assignedoutEnableBoolean to each output port of the router
to model this functionality. Whenever a packet is sent from an output port, the corresponding
outEnablebecomes false. For sending the acknowledgment signal thegetAckmessage server is
invoked. ThegiveAckmessage server first checks the address of the destination of the packet. If
the address is the same as the current router, then the rebec will consume the packet. Otherwise,
it checks if the corresponding input buffer has enough capacity to store the packet, if there is
enough capacity the packet will be stored and an acknowledgement is sent to the sender by call-
ing its getAckmessage server. Then, it will be sent to the other neighboring routers calling their
reqSendmessage server. If the buffer is full the packet will not be stored in receiver buffer and
the sender should wait for an acknowledgement from the receiver until the buffer has an empty
space.

To model the behavior of router buffers, we use the rebec queue to store all packets received
by a router and only keep track of the length of North, South, East and West buffers to have
buffer status at all time. Two arraysbuffer andbufferFull are used to store the length of each
buffer and their status. In two message servers,reqSendandgiveAck, the length of buffers are
changed. Writing and reading delays are also considered for buffers. Writing delay points to the
delay between entrance of a packet to an input buffer and the moment that a request is sent for an
output port, i.e. it includes routing delay of the packet. Reading delay refers to the time between
a request to an output port and sending the packet to the neighbor router. In the pseudo code,t3
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is the sum of writing delay, link delay and reading delay andt4 is link delay. To model storage
strategy of input buffering we assigninputEnableBoolean variable to each input buffer to prevent
sending a packet from an input port before getting the acknowledgement of the previously sent
packet.

5 Functional and Performance Analysis

In this phase, the model checker generates the whole state space, and then traces all execution
paths of the system to check if the given property is satisfied. Each execution path shows a
possible order of packet movement in the system. Thus, a model checker checks all possible
orders of packet movement in contrast to simulation techniques that checks random execution
paths, and hence random orders of packet movement.

We use Afra [Reb], the model checker of Rebeca, for verification of the specified functional
and performance properties. Verification of the properties using model checking is discussed in
Subsection 5.1andSubsection 5.2. To tackle the problem of increasing number of states in large
NoCs, a method based on compositional verification is presented inSubsection 5.3.

5.1 Functional Verification

Deadlock Freedom:Verifying the model against deadlock freedom is straightforward in Afra.
Afra traces all possible states of the model to check for deadlock. A model has deadlock if it
contains a state that has no outgoing transition. If a deadlock occurs in a NoC it means that some
packets can no more be transmitted forward.
Successful Packet Sending:We consider two correctness properties regarding successful packet
sending. The first property, called Correctness 1 is to check whether a packet sent from a source
has reached its destination. For checking this property two state variables of type Boolean,
namelypacketSentandpacketReceivedare added to the router model (Figure 1). In each router,
if a predefined packet is sent thenpacketSentbecomes true, and if that packet is received by
its destination thenpacketRecievedof the destination becomes true. Also, it is needed to check
whether all packets in the network were sent through counting the number of sent packets. To
do so, a Boolean state variableallSentshould be declared. It will become ”true” if the number
of sent packets is equal to the number of existing packets in the NoC. This property is referred
to as Correctness 2. To count the number of sent packets we can use a reactive class that is
known by all routers in the system and inform it each time a packet is sent. Therefore, to ensure
the successful arrival of all packets, the model checker traces all execution paths to check if the
following two properties holds in all of them,

Correctness 1: ”If packetSentstate variable of the source router of a packet becomes true, then
packetReceivedstate variable of the destination router will eventually become true.” (It can be
specified in LTL as:G (packetSent→ F(packetReceived) ).)

Correctness 2: ”EventuallyallSentstate variable becomes true.” (Specification in LTL:F(allSent).)

Proc. AVoCS 2013 8 / 16



ECEASST

5.2 Performance Evaluation

Estimation of the Maximum End-to-End Latency: Many packets may be produced in cores
and transferred to other cores. They may make disruption for each other when multiple packets
are competing to gain an output port at the same time; thus a packet may reach its destination
with different latencies. To gain the maximum end-to-end latency of a packet, we can add a
Boolean variable that becomes true when the packet reaches its destination, and then check the
variable after some time. We definedcheckReceivedmessage server and call it with anafter(t)
command, just after sending the packet. Thus the model checker checks if in all execution
paths the targeted packet is received aftert times. InSection 6, some scenarios are introduced
and verified to show how our method considers delays made by disruptions to a target packet.
We also have an example to show how our method can be used in making design decisions.
We evaluate the best memory location in an 8× 8 ASPIN model such that we have the least
maximum memory access time.

5.3 Compositional Method to Estimate Maximum End-to-End Latency

The idea behind this method is to divide the path into sub-paths and then estimate the maximum
latency by evaluating latency of packets in each sub-path. To do so, possible packet paths should
be investigated precisely to find out which packets may make disruption for a transferring packet.
According to the XY routing algorithm a packet path is composed of two main sub-paths; vertical
sub-path and horizontal sub-path. In the following, these sub-paths are investigated to know how
the latency of a packet moving in these sub-paths depends on other moving packets.

Horizontal Sub-path. When a packetP moves along a row, it may be disrupted by two kinds
of disrupting packets as follows:

(a) Dependency 1, Packets moving in the same row: They may make disruption if they want to
get to the same port asP. For example if a disrupting packet arrives at a port just beforeP, it will
occupy the port andP should wait until the disrupting packet leaves the port, because the size of
output buffer is equal to 1. On the other hand because of using input buffering as storage strategy,
P may be delayed by packets that arrive in the input buffer beforeP, until they are sent and their
acknowledgements are received. So, in a row both packets moving in the same direction asP and
in the reverse direction may make disruption to packetP if they try to gain the South or North
ports.

(b) Dependency 2, Packets moving in other rows: A disrupting packet in a row may itself be
delayed by other packets; thus if a disrupting packet wants to turn to a column it may be delayed
by other packets in that column which are originated from other rows. This way, the latency of
P may depend on packets of other rows.

Vertical Sub-path. If a packetP moves in a column, it may be disrupted by packets as below:

(a) Dependency 3,Packets moving in the same column. According to XY routing algorithm,
packets of different rows can enter a column and compete to acquire ports. Only packets that
move in the same direction asP are able to make disruption to packetP, because, there are two
channels with reverse directions connecting two neighbor routers to each other.

(b) Dependency 4,Packets moving in other columns. As discussed before, packets of differ-
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ent rows can enter a column. Because different columns may have impact on the latency of
the packets of a row, latency of packetP while moving in a particular column relates to other
columns.

The compositional method should consider all the specified dependencies to work correctly.
Knowing the generation time of all packets, the compositional method gives an upper bound for
the maximum end-to-end latency of a packetP, initiated from (r1, c1) to reach its destination in
(r2, c2), wherer1, c1 andr2, c2 are row and column numbers of source and destination of the
packet, respectively. The method is composed of two steps as follows:

Step 1 (Decomposition step).In this step all rows of am× n NoC should be modeled as a
1×n NoC (row models only differs from each other in the location and the time for generation
of packets) and then verified separately to determine when packets with their destination placed
in columnc2 will arrive at columnc2. For verification of a row, all possible orders of packets
to gain a port are considered; thus, disruptions of packets moving in the same row asP (r1) are
considered (Dependency 1). As discussed before, the end-to-end latency of packetP may be
influenced by packets of other rows, ifP is stored in an input buffer waiting for other packets in
the same input buffer wanting to turn to a column. We assume that in this situationP waits at
mostt1 time units weret1 is the maximum time in the worst case with respect to the number of
packets moving in that column. In the worst caseP should wait for all packets in that column to
be able to move to the next router in its path. By this approximation we consider the dependency
of packets moving in other rows (Dependency 2). The approximation can be more precise by
respecting the time that packets start moving along the column, but here we only introduce the
method using a simple and upper bound approximation. The same situation may occur for other
packets in other rows and they would make disruption for packetP. For example, inFigure 2, the
congestion caused by packet (6) and (7) results in delay in packet (5) and thus packet (5) makes
disruption for packet (1). To cover these situations, we consider the case where packets of each
row are delayed by some packets turning to a column, byt1 time units (Dependency 4).

Step 2 (Composition step).In this step, columnc2 is verified by taking into consideration all
packets moving in the same direction asP in this column; hence, all disruptions that may be
caused by packets inc2 are respected (Dependency 3).

6 Results

Results for functional verification and estimating the maximum latency are presented inSubsec-
tion 6.1andSubsection 6.2. In Subsection 6.3evaluation of memory location in NoC 8×8 using
our method is explained. In the following, five scenarios are introduced for a 4×4 ASPIN. The
first two scenarios are very similar. We only perform functional verification on them to show
a property violation in the system. The last three are verified against functional properties and
also the maximum end-to-end latency for a target packet, namely packet (1), is estimated. These
scenarios are selected in a way that covers all the dependencies introduced inSubsection 5.3.

Scenario 1: Three packets are generated; two packets sent from routers R00 and one from R10
to R11.
Scenario 2: In this scenario we assume that due to some faults in scenario 1, R10 does not send

Proc. AVoCS 2013 10 / 16



ECEASST

Figure 2: 1) Scenario 4, 2) Scenario 5

Table 1: Results (number of states) for functional verification

Scenario Deadlock f reedom Correctness1 Correctness2

1 12 14 14

2 Not satisfied Not satisfied Not satisfied

3 24 25 25

4 193 194 194

5 2240 2241 2469

an acknowledgement.
Scenario 3: Packet (1) is sent from R00 to R23, and no other packets will make disruption.
Scenario 4: This scenario shows how the packet can be delayed in a row and in a column. Router
R10 generates packet (2) as soon as it receives packet (1), thus packet (2) may cause disruption
to packet (1). On the other hand R02 produces packet (3) in a way it reaches R22 at the same
time as packet (1), so packet (1) may be delayed by packet (3) too (Figure 2).
Scenario 5: Packet (1) is disrupted by packet (2), and packet (2) is itself disrupted because of
congestion in R21 (impact of congestion in a row on other rows). On the other hand, congestion
in R23 leads packet (5) to be blocked until packet (4) leaves the input port of R22. This may
results in disruption of packet (1) by packet (5), if they reach R32 at the same time (impact of
congestion in a column on other columns). (Figure 2)

6.1 Results for Functional Verification

Results for verifying the model against Deadlock freedom and Successful arrival of packets are
shown inTable 1. In each scenario, the model checker traces the full state space. The model
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Figure 3: Comparison of results for estimating latency using simulation, model checking and
compositional methods for scenarios 3 to 5

checking time for each scenario is between 1 to 3 seconds. As illustrated inTable 1scenario 2
contains deadlock, because some packets wait forever. Therefore Correctness 2 property is also
violated and Correctness 1 only is satisfied for the packet sent from R10. All other scenarios
satisfy specified functional properties.

6.2 Results for Estimating the Maximum Latency

We used HSPICE1 simulation to validate our formal and compositional methods. As shown in
this section, the results of simulation match the results from formal and compositional methods
while effort for simulation is much higher. The reason is of course the more details that are con-
sidered in HSPICE. The similarity of the results shows that in spite of the fact that our methods
are not considering the same amount of details they are still eligible for the required measure-
ments. By this comparison we show how using our method in the early stages of design can help
the designer to make suitable architectural decisions according to the performance parameters of
the system.

To compare our results to simulation results, we extract buffer read and buffer write delays
from HSPICE simulation of ASPIN for 32nm CMOS technology and normalized to C-element
Muller gate to convert them from Float to Integer. Delay of read and write operations on a
buffer are considered 19 and 6 time units, respectively. Producing and consuming a packet in
a core cause delays of 10 and 19 time units, respectively. We consider capacity of 2 entries
for input buffers and 1 for output buffers.Figure 3shows results for estimating the maximum
latency of packet (1) in the specified scenarios compared to results of the simulation and results of
estimation using our compositional method. Both formal and compositional approaches consider
all execution paths of the scenarios to find the maximum latency for packet (1). Using Afra tool

1 The lowest level of simulation in hardware domain are done in HSPICE simulator. In this tool all details of
transistors and wires are considered.
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Figure 4: Example of memory locations in an 8×8 ASPIN; Cores C1 to C5 are the cores in which
memory access is a concern; M1, M2 and M3 are the candidate cores for memory placement;
Areas 1 and 2 are highly congested.

we can find the execution path that violates a specified property. We use this capability and
extract the execution path which generates the maximum end-to-end latency. To do so, we can
first use the method presented inSubsection 5.2to find the maximum latency, sayLmax, and
then check the following property: ”The packet arrives at destination in less thanLmax time
units.” Obviously, the path with the maximum latency violates the above property and can be
extracted. Then we execute HSPICE simulator for the specified execution path to get the result
for maximum end-to-end latency for the same packet. Running each scenario in HSPICE that
traces only one path takes more than 24 hours on a system with Corei7, 2.6 GHz processor and
24GB of memory. In contrast running each scenario using formal techniques takes about 1 to 3
seconds. For the compositional method, it takes 1 to 3 seconds for each row and one column.

Results show packet latency increases when disruption occurs, but the amount of increase in
latency is not the same in all three methods (simulation, model checking and the compositional
method). The reason is that some delays in the system like the delay of scheduling have not
been considered in the formal model. In addition delay of routing varies in different scenarios
according to the number of gates being used in the router. Due to considering a fix routing delay
in our formal model, timing results for formal verification of scenario 3 is greater than that of
simulation (routing delay in some routers are less than our assumption). Comparison between
the results of formal method and our compositional method shows that the compositional method
can estimate an upper bound for maximum latency.

6.3 Evaluation of memory location in NoC

We use 8×8 ASPIN model to perform three experiments to evaluate the best memory location,
among three choices. Lets assume that we have five cores for which memory access time is a
concern due to their timing requirements. The goal is to choose the memory location that results
in the least memory access time for these cores, under specific traffic pattern of an application.
For each experiment, we use a different memory location, and thus the traffic pattern is the same
except for memory requests. Packets are almost evenly generated in the network; however the
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Figure 5: Experimental results showing the maximum access times for each core, c1 to c5, in the
three experiments with different memory locations.

congestion rate in areas 1 and 2, shown inFigure 4, is higher than other areas. To perform the
experiments we inject 40 packets in the network and set the packet generation time intervals in
the source cores in a way that results in high congestion in the areas 1 and 2. In the experiments
Exp. 1, Exp. 2, and Exp. 3 the locations M1, M2 and M3 are assumed to be where the memo-
ries are located respectively.Figure 4illustrates the configuration of memory locations and the
cores. Under the specified traffic pattern the model checker verifies all possible order of packet
movement to find the maximum memory access time for each of the cores. Number of states and
transitions grow proportionally with the congestion in the system.

Memory placement will be affected by the routing algorithm and also traffic pattern used by an
application.Figure 5shows that choosing M1 as memory location results in minimum average
maximum access times. Although M2 has the least average distance from the cores, the fact that
it is placed in the congestion area 1, and that we use XY routing algorithm causes the average
maximum latencies to be increased in Exp. 2 compared to Exp. 1. In fact using deterministic
routing algorithm XY leads to increase latency in highly congested traffic patterns. Our method
helps designer make suitable design decisions (e.g. find the best memory locations) according to
other design parameters, and performance requirements.

7 Conclusions

We presented a formal model based on actor model for a GALS NoC that can be analyzed from
two aspects of functionality and performance. The model was verified against two functional
properties, and also for estimating the maximum end-to-end packet latency. To alleviate the
problem of state explosion in the case of large NoCs, we presented a method based on compo-
sitional verification specific for NoCs that uses XY routing, which can be applied to estimate an
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upper bound for the maximum end-to-end packet latency. In an example we showed how our
method can be used in making design decisions for memory location based on performance eval-
uation. Using formal methods enable us to apply an exhaustive verification in the early stages of
design in contrast to methods based on simulation. Comparing to other works based on formal
and mathematical techniques, our model considers hardware concept like buffer and link delays.
Therefore, being able to perform buffer analysis we can model adaptive and dynamic routings.
We used an approximation in our compositional method to predict the impact of a column on the
latency of a packet moving along a row. As a future work the approximation can be more accu-
rate by considering the situation of packets of that column precisely. More work on performance
evaluation for answering more variety of questions is one of the main future directions of this
work.
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