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Abstract: Constructing traceable Event-B models from requirements is crucial in
the system development process. It enables the validation of the model against the
requirements and allows to identify different refinement levels, which is a key to
successful formal modelling with a refinement-based method. Our objective is to
present an approach based on the use of semi-formal structures to bridge the gap
between requirements and Event-B models and retain traceability to requirements
in Event-B models. The presented approach makes use of the UML-B and Atom-
icity Decomposition (AD) approaches. UML-B provides UML graphical notation
that enables the development of an Event-B formal model, while the AD approach
provides a graphical notation to illustrate the refinement structures and assists in
the organisation of refinement levels. The AD approach also combines several con-
structor patterns to manage control flows in Event-B. The intent of this paper is to
harness the benefits of the UML-B and AD approaches to facilitate constructing
Event-B models from requirements and provide traceability between requirements
and Event-B models.

Keywords: Event-B, Traceability, UML-B, Atomicity Decomposition

1 Introduction

We present an approach for incrementally constructing a formal model from informal require-
ments with the aim to retain traceability to requirements in models. The approach helps to
identify the modelling elements from requirements, assists the construction of a formal model,
and facilitates layering the requirements and mapping the informal requirements to traceable for-
mal models. Traceability supports the process of validation of the model against the requirement
document and allows missing requirements to be easily accommodated in the model.

Our approach is based on the Event-B formal method [Abr10]. Event-B is a refinement-based
formal method with good tool support for developing various kinds of systems. Event-B covers
a range of approaches to support a formal modelling.

In our approach, we make use of UML-B [SB06] and Atomicity Decomposition (AD) [But09a,
FBR12] approaches. UML-B provides a graphical modelling environment (UML notation)
which enables the development of an Event-B formal model. The AD approach provides a
graphical notation to structure refinement and describes the ordering between events. The visual
view of the system provided by the UML-B and AD assists in the development of the refinement
strategy before the actual work on modelling is performed. The combined AD diagrams, which
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show the overall refinement structure of the system, can be modified until an acceptable refine-
ment structure is reached. In addition, the AD approach provides several constructor patterns
that can be used to manage the flow of events and define event ordering. Moreover, Event-B
models corresponding to AD diagrams and UML-B diagrams can be generated automatically by
the AD and UML-B tool.

The presented approach comprises of three stages, which are shown in Figure 1. The first

Figure 1: Steps for constructing a traceable formal models

step in our approach is requirement classification. Requirements are classified based on Event-
B components. The classification consists of five classes: data-oriented, constraint-oriented,
event-oriented, flow-oriented, and others. Data-oriented requirements represent attributes and
relationships between attributes, constraint-oriented requirements represent conditions that must
remain true in the system, event-oriented requirements represent the activities of the system and
its components, flow-oriented requirements represent relationships between events, and “others”
represent other requirements that do not fit into the previous classes.

The second step consists of three stages. Firstly, we use semi-formal artifacts described using
UML-B, AD diagrams and structured English to represent requirements. The UML-B is used to
represent data-oriented requirements. The AD is used to represent flow-oriented requirements.
The structured English is a way of breaking down constraint and event-oriented requirements
into shorter sub-requirements and mapping each sub-requirements to the proper class (constraint
or event-oriented). The semi-formal artifacts serve as an intermediate representation between
requirements and the Event-B formalism. Representing requirements using semi-formal artifacts
is reasonably simple, and at the same time the movement from the semi-formal artifacts to the
Event-B is straightforward. Secondly, we merge the fragmented structured English of a single
event together to facilitate tracing the event components. Thirdly, we combine AD diagrams and
use these diagrams to assist the process of developing the refinement strategy.

The third step is to use the UML-B tool and the AD tool to generate Event-B models and also
write manually the corresponding Event-B from the structured English representation.

This paper is structured as follows: Section 2 gives an overview of the Event-B formal method,
UML-B, and AD approach. The description of the presented approach is introduced in Section
3. Section 4 introduces some related works in requirement traceability. Conclusions are drawn
in Section 5 and Future work is presented in Section 6.
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2 Preliminaries

2.1 Event-B

Event-B is a formal method developed by Jean-Raymond Abrial, which uses set theory and
first order logic to provide a formal notation for the creation of models of discrete systems and
the undertaking of several refinement steps. An abstract Event-B specification can be refined
by adding more detail and bringing it closer to an implementation. A refined model in Event-
B is verified through a set of proof obligations expressing that it is a correct refinement of its
abstraction. Event-B may be used for parallel, reactive or distributed system development, and
has shown success in the development of different complex real-life systems [But09b, BA05].
The Event-B notation contains two constructs: a context and a machine. The context is the static
part of a model in which the data of the model (sets, constants and axioms) is defined. The
dynamic and functional behaviour of a model is represented in the machine part, which includes
variables to describe the states of the system, invariants to constrain variables, and events to
trigger the behaviour of the machine.

Rodin [ABHV06, ABH+10] is a platform for modelling and proving in Event-B models.
Rodin exhibits many features and can be extended further with supportive plug-ins. Relevant
to this work is the Atomicity Decomposition (AD) plug-in, which provides a graphical nota-
tion to structure refinement and to manage flows in Event-B models. An overview of the AD
approach is given in Section 2.3.

2.2 UML-B

UML-B is a diagrammatic notation based on UML and Event-B. It provides a graphical mod-
elling environment that allows the development of an Event-B formal model through the use of
UML graphical notation. There are four types of UML-B diagrams, namely package diagrams,
context diagrams, class diagrams and state machine diagrams. Package diagrams represent the
structure and the relationships between Event-B contexts and machines. A context diagrams
describes the context part of an Event-B model. Class diagram and state machine diagrams de-
scribe state and behaviour and are used in Event-B machines. Class diagrams in UML-B may
contain attributes (variables), associations (relationships between two classes), events and state
machines (transitions between events). State machine diagrams describe the behaviour of in-
stances of classes as transitions linked to events.

UML-B assimilates the notion of refinement. It is possible to introduce a class in a refined
machine that refines a class of its abstract machine. A refined class can keep all attributes of
its abstract class, corresponding to the case where a refined machine keeps all the variables of
an abstract machine. It is also possible that a refined class drops some of the attributes of the
abstract class, corresponding to the case of removing variables through performing data refine-
ment. Moreover, a refined class can introduce new attributes in the class diagram, corresponding
to the case of introducing new variables in the refinement levels.

A UML-B tool [SB08] has been developed for the Rodin platform which can be used to gen-
erate an Event-B model corresponding to a UML-B development.
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2.3 Atomicity Decomposition Approach

Although refinement in Event-B provides a flexible approach to modelling, it has the weakness
that it cannot explicitly represent the relationships between abstract events and new events in-
troduced in a refinement level. The Atomicity Decomposition (AD) approach addresses this
limitation. The idea is to augment Event-B refinement with a graphical notation that is capable
of representing the relationships between abstract and concrete events explicitly. Using the AD
approach has another advantage, namely that it allows event ordering to be represented explic-
itly. Figure 2 illustrates these two features of the AD graphical notation. Assume machine M1

machine M1 refines M0  sees C0 

variables Event1 Event2
invariants

@inv1 Event1 ⊆ PAR_SET
@inv2 Event2 ⊆ Event1
@inv3 Event2 = AbstractEvent

event INITIALISATION then
@act1 Event1 ≔ ∅

@act2 Event2 ≔ ∅

end

event Event1 any par  where
@grd1 par ∉ Event1 

then
@act1 Event1 ≔ Event1 ∪ {par} 

end

event Event2 refines AbstractEvent
any par where

@grd1 par ∈ Event1
@grd2 par ∉ Event2

then
@act1 Event2 ≔ Event2 ∪ {par}

end

AbstractEvent (par)

Event1 (par) Event2 (par)

The sub events are read from left to right and indicate sequential control 

A dashed line: refines skip  A solid line: refines AbstractEvent

Root, abstract event, is decomposed into sub events   

Figure 2: Atomicity decomposition diagram

on the left hand side of Figure 2 refines some machine M0 which contains the abstract speci-
fication of AbstractEvent. The machine M1 encodes its control flow (ordering between Event1
and Event2) via guards on the events. This control flow is made explicit in the AD diagram
presented on the right hand side. This diagram explicitly illustrates that the effect achieved by
AbstractEvent at the abstract level, machine M0, is realized at the refined level, machine M1, by
the occurrence of Event1 followed by that of Event2. The ordering of the leaf events is always
from left to right (this is based on JSD diagrams [Jac83]). The solid line indicates that Event2
refines AbstractEvent while the dashed line indicates that Event1 is a new event which refines
skip. In the Event-B model of machine M1 on the left hand side, Event1 does not have any ex-
plicit connection with AbstractEvent, but the diagram indicates that we break the atomicity of
AbstractEvent into two sub-events in the refinement. The parameter par in the diagram indicates
that we are modelling multiple instances of AbstractEvent and its sub-events. Events associated
with different values of par may be interleaved, thus modelling interleaved execution of multiple
processes. The effect of an event with parameter par is to add the value of par to a set control
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variable with the same name as the event, i.e., par ∈ Event1 means that Event1 has occurred with
value par. The use of a set means that the same event can occur multiple times with different
values for par. The guard of an event with parameter par specifies that the event has not already
occurred for value par but the previous event has occurred, e.g., the guard of Event2 says that
Event1 has occurred and Event2 has not occurred with value par.

3 Steps for Constructing Traceable Event-B Models

This paper presents an approach for constructing traceable Event-B models using UML B and
the AD approach. We do not address the question of how requirements are arrived at. Require-
ments could have been arrived at using use cases [KG12]. In use cases, the system’s functionality
is described through structured stories in easy-to-understand text form, from which requirements
can be derived. Our objectives are to provide a link between requirements and formal models
and to facilitate building traceable Event-B formal models from requirements. The following
subsections describe the steps proposed to achieve these goals.

3.1 Step 1: Classify Requirements

We classify requirements into the following five classes, based on the structure of Event-B mod-
els: data-oriented requirements, constraint-oriented requirements, event-oriented requirements,
flow requirements, and other requirements. Each requirement can be placed in at least one cat-
egory. A detailed description of the requirement classification, with examples of lift controller
requirements taken from [Rob10], is given below.

Data-oriented requirements: requirements that describe attributes of nouns and the relation-
ships between nouns. Here are three examples of this requirement class:

REQ1 Each floor has one button for requesting travelling to another floor
REQ2 The lift-door can be closed or opened
REQ3 The lift can be moving or stopped

The nouns “ floor” and “button” in the requirement REQ1 are identified as data-oriented require-
ment. The noun “lift-door” and the attributes “closed” and “ opened” in the requirement REQ2
are also identified as data-oriented requirement since they describe states of the door. Similarly,
the noun “lift” and the attributes “moving” and “stopped” in the requirement REQ3 are identified
as data-oriented requirement since they describe states of the lift.

Constraint-oriented requirements: requirements that describe properties about the data that
should always remain true. They are normally identified by keywords such as never, must not,
always etc. The following is a constraint-oriented requirement:

REQ4 The lift door of a moving lift must be closed

REQ4 describes a system property relating the position of the lift door and the lift motion.
Event-oriented requirements: requirements that describe a function or activity of the sys-

tem or its components. Events are normally identified by the “verbs”, such as the following
requirement:
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REQ5 People on a floor press a button to request a lift

The verb “request” denotes that REQ5 is of event-oriented type. The part of an event-oriented
requirement that describes conditions under which an event can happen is called a guard require-
ment, whereas the part of an event-oriented requirement that describes how the data defining the
state is going to change is called an action requirement.

Flow requirements: requirements that describe the flow of events. We can classify flow
requirements generally into three types: sequence requirements which describe sequencing be-
tween operations, selection requirements which describe “if-then-else” structure to indicate the
selection between two or more operations, and repetition requirements which describe the itera-
tion of a particular operation multiple times. Table 1 provides examples of flow requirements:

Flow require-
ments

Example Description

sequencing
requirements

REQ6 The floor door closes be-
fore the lift is allowed to move

The relationship between the door closing
operation and the lift moving operation
can be seen as a sequence. After the lift-
door closes, the lift is allowed to move.

selection re-
quirements

REQ7 If a lift is stopped then
the floor door for that lift may be
open

In this requirement the lift door can be ei-
ther opened or left closed when the lift is
stopped.

repetition re-
quirements

REQ8 There might be more than
one external floor request in a
particular floor, the lift will re-
spond to them (stop) only once

Here, “more” indicates the iteration of the
floor request operation.

Table 1: Description of flow requirements

The above classification seems to be more prevalent to many case studies. Nevertheless,
flow requirements are not restricted to this classification, and other classes can be identified
by analysing more case studies.

Other requirements: other requirements that do not fit into the previous classes can be con-
sidered in this class. This includes requirements that are very hard to model in Event-B, such as
requirements that represent fairness properties or timing properties.

3.2 Step 2: Construct Semi-formal Artifacts and Develop Refinement Strategy

This step comprises of three stages, described in what follows.

3.2.1 Stage 1: Use semi-formal artifacts (UML-B, AD, and Structured English)

In the first stage, requirements are represented in a semi-formal notation depending on their type:

• Data-oriented requirements are represented using UML-B diagrams: nouns or attributes
are represented using class diagrams, relationships between nouns are represented using
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UML-B associations, and transitions between different attribute values are represented
using state machine diagrams.

• Constraint and Event-oriented requirements are represented using structured English.
The structured English is a way of breaking down constraint and event requirements into
smaller requirements and mapping each sub-requirement to the corresponding requirement
identifier to facilitate requirement traceability.

The structured English representation for constraint-oriented requirements has the form:

constraint : < constraint requirement >−−−−→< REQ >

The structured English representation for event-oriented requirements has the form:

event name
guard : < guard requirement >−−−−→< REQ >
action : < action requirement >−−−−→< REQ >

In the above notation, the arrow is used for tracing back to the original requirement, and
REQ denotes the requirement identifier.

• Flow requirements are mapped to the appropriate AD diagram according to Table 2 which
summarises the behaviour of the AD patterns: sequence requirements are mapped to se-
quence/and diagrams, selection requirements are mapped to or/xor diagrams, and repeti-
tion requirements are mapped to loop/all/some replicator diagrams.

Pattern Description
sequence-/and-
constructor

execute events in a sequence. The difference between sequence- and and-
constructor is that and-constructor executes all available events in any or-
der, while the sequence constructor executes events in a particular order.

or -constructor execute one or more events from two or more available events, in any
order

xor- constructor execute exactly one event from two or more
loop pattern execute an event zero or more times
all-replicator execute an event for all instances of a defined set
some-replicator execute an event for one or more (some) instances of a defined set
one-replicator execute an event for one instance of a defined set

Table 2: Description of the AD patterns

Representing requirements into graphical/structured English notation provides an intermediate
level of tracing information and enables the validation of the model against the requirements.

Assuming that requirements are analysed based on the described requirement classification,
the following examples illustrate how to represent each requirement class in a graphical or struc-
tured English notation.
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The data-oriented requirement REQ1 is represented as follows:

Figure 3: The class diagram for REQ1

The class Floor consists of the association FloorButton of type Button which is defined as a
boolean that indicates whether there is a request for the lift to stop at that floor. The multiplicity
property for the association FloorButton specifies a many-to-one relationship (i.e., total func-
tion). That is, there are n+1 floors and a boolean for each floor to indicate whether there is a
request for the lift to stop at that floor.

The data-oriented requirement REQ2 is represented using the state machine in Figure 4, which
shows two states, “open” and “ close”, and two transitions OpenLiftDoor and CloseLiftDoor:

Figure 4: The state machine diagram for REQ2

The data-oriented requirement REQ3 is represented using the state machine in Figure 5, which
shows two states, “stopped” and “ moving”, and two transitions LiftStop and LiftMoving.

Figure 5: The state machine diagram for REQ3

The constraint-oriented requirement REQ4 is represented as follows:

constraint : T he li f t door o f a moving li f t must be closed −−−−→ REQ4

The event-oriented requirement REQ5 is represented as follows:

event RequestFloor
guard : a request at f loor f is made−−→ REQ5
action : new request is added to the pool o f pending requests−−→ REQ5
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The flow requirements REQ6, REQ7 and REQ8 can be represented using the AD diagrams in
Figure 6. Figure 6a shows that the behaviour of the Li f tMove event is exhibited by executing the
CloseLiftDoor event followed by the LiftMove event. The xor-constructor pattern in Figure 6b
indicates that the behaviour of the Li f tStop event in the root node is exhibited by executing the
LiftStop event followed by either the OpenLiftDoor event or the NotOpenLiftDoor event. The
latter event has skip action and is used to skip from applying any change to the lift-door status;
this is because the “xor” pattern forces the execution of only one leaf. Finally, the behaviour of
the Li f tStop event in Figure 6c is exhibited by executing the RequestFloor event multiple times
followed by the LiftStop event.

(a) The ADD for REQ6 (b) The ADD for REQ7 (c) The ADD for REQ8

Figure 6: The AD diagrams for REQ6, REQ7 and REQ8

3.2.2 Stage 2: Merging the structured English of a single Event

It is possible that two or more structured English requirements refer to a single event. If such
requirements exist, we merge them here. However, in this small case study we do not have
requirements that refer to a single event. An example of this aspect is given by the following two
requirements:

TSK1 Tasks can be created and destroyed
TSK2 Tasks are assigned priority when created

TSK1 and TSK2 are event-oriented requirements that refer to a Task Create event. The struc-
tured English of these requirements needs to be merged in this step.

3.2.3 Stage 3: Develop Refinement Strategy

Here we combine the AD diagrams developed in the first stage in order to organise the refinement
levels. Flow is one criterion that can be considered in devising the refinement strategy. The nature
of the requirements, the nature of the architecture that the refinement is aiming towards and the
nature of the data types being refined are other important criteria that might come before the
flow criterion since they may influence the flow requirements. The visualisation of the overall
structure of the system gives more insight into the development of the refinement strategy before
any Event-B modelling is carried out. It allows the developer to illustrate visually the hierarchy of
the model based on the important criteria the developer is aiming at, and also helps to control the
size of the model and view the number of events in each refinement level. Another advantage of
the diagrammatic view of the refinement strategy is that it allows to visualise event dependencies
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and structure/variable dependencies. For example, in Event-B, events that update a particular
variable should be introduced in the same modelling level. This is a restriction imposed by
Event-B and is often only discovered during the modelling activity. The visual view of events
given by the AD diagrams helps to deal with this restriction before modelling. Moreover, using
this view, the developer can first introduce the basic properties of the system, and then introduce
more complex properties that depend on the basic ones in the refinement levels. For instance, the
developer of a real-time operating system (OS) can introduce basic properties of the processes
used by the application developer in the abstract model, and complex properties that are used by
the real-time OS to handle the processes in the refinement levels.

Figure 7 shows the refinement levels for the lift controller case study.

Figure 7: The combined AD diagrams for the lift controller

In the abstract level, we decided to model two abstract events: AbstractLiftStop and Ab-
stractLiftMove. We use a sequence pattern to indicate the sequencing between the abstract events.
In the first refinement, we decided to combine the tree structure with root AbstractLi f tStop that
corresponds to the AD diagram in Figure 6b and the tree structure with root AbstractLiftMove
that corresponds to the AD diagram in Figure 6a. Finally, we use the AD diagram in Figure 6c to
refine the LiftStop1 event. We note that, because of a restriction in the AD tool, event names in
the combined AD diagrams are changed slightly from their names in the individual AD diagrams.
The AD tool automatically generates flags and gluing invariants according to event names. The
gluing invariants show the relationship between the abstract flags and concrete flags. Therefore,
the flag names for the abstract events must be different from the flag names for the refined events.

3.3 Step 3: Construct Formal Models

In this step, we use the UML-B and AD tools to convert the diagrams of step 2 to Event-B
notation. We also manually convert the structured English representation of step 2 into Event-B.

The Event-B specification of the requirements REQ1, REQ2, and REQ3, generated from the
class and state machine diagrams, is given below. The sets, constants and axioms generated from
these diagrams are as follows:
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SETS
Floor SET,door STAT ES, li f t STAT ES

CONSTANTS
open
close
moving
stopped

AXIOMS
open.type open ∈ door STAT ES
close.type close ∈ door STAT ES
distinctStates door STAT ES partition(door STAT ES,{open},{close})
distinctStates li f t STAT ES partition(li f t STAT ES,{moving},{stopped})

End

Figure 8: Sets, constants and axioms generated from the class and state machine diagrams

Figure 3 contains a class represented by the variable Floor. This variable is defined as a subset
of Floor SET , which represents the set of all possible instances of Floor. The set of instances
of the Button class is defined as the boolean type. The UML-B associations are translated into
variables whose type is a function from the class set to the attribute type. Hence, FloorButton
in Figure 3 is translated into a function from Floor to Button. The multiplicity of an association
determines the type of the function: partial, total, injective etc. Here (0..n→ 1..1) is translated
into a total function that maps Floor to Button. The state machine in Figure 4 is translated into
Event-B as shown in axiom distinctstates door STAT ES of Figure 8. The states open and close
are translated into constants of type door STAT ES. Each transition is translated into an event
whose guard specifies the source state and whose actions specify its target state. Hence, Open-
LiftDoor is an event that changes the lift door from close state to open state and CloseLiftDoor is
an event that changes the lift door from open state to close state. The state machine in Figure 5
is translated in a similar manner to the state machine in Figure 4.

variables
Floor Button FloorButton door li f t
invariants
Floor ∈ P(Floor SET )
Button = BOOL
FloorButton ∈ Floor→Button
door ∈ Floor→door STAT ES
li f t ∈ li f t STAT ES

event CloseLiftDoor
any self
where
sel f ∈ Floor
door(self) = open

then
door(sel f ) := close

end

event OpenLiftDoor
any self
where
sel f ∈ Floor
door(self) = close

then
door(sel f ) := open

end

event LiftMove
where

lift= stopped
then
li f t := moving

end

event LiftStop
where

lift= moving
then
li f t := stopped

end

Figure 9: Variables, invariants and events generated from the class and state machine diagrams
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The Event-B specification written manually for the requirement REQ4 is:

∀ f . f ∈ dom(door)∧ li f t = moving =⇒ door( f ) = close

Also, the structured English for the requirement REQ5 can be formalised manually as follows:

event RequestFloor
any f
where
grd1 f ∈ Floor \ request

then
act1 request := request ∪ { f}

Figure 10: The Event-B specification of the structured English for the requirement REQ5

The Event-B specification generated from the AD diagram for the requirement REQ8 is:

event RequestFloor
where
Li f tStop2 = FALSE

end

event Li f tStop2 refines Li f tStop1
where
Li f tStop2 = FALSE

then
Li f tStop2 = T RUE

end

Figure 11: The Event-B specification generated from the AD diagram (loop pattern)

According to the loop pattern rule, the RequestFloor event can be executed zero or more times
before the execution of the LiftStop event. Thus, the RequestFloor event does not have a variable
and an action to record the loop execution. It only has one guard Li f tStop2 = FALSE that allows
zero executions of the loop event. We need to make a slight change to this pattern to allow the
RequestFloor event to be executed at least one time before the execution of the LiftStop event.
This can be achived by adding manually a boolean flag RequestFloor together with the action
RequestFloor:=TRUE in the RequestFloor event instead of the guard LiftStop2 = FALSE in the
RequestFloor event. Also we add the guard RequestFloor=TRUE to the LiftStop event to check
the execution of the RequestFloor event. That way, RequestFloor must be executed at least one
time before the LiftStop event. This modification can be considered as a new repetition pattern
that allows the execution of an event one or more times before the execution of other events.
Clearly, there is a need to investigate different AD patterns for different requirement types.

The following gluing invariant is generated by the AD tool for the leaf with solid line in the
loop AD diagram in Figure 6c:

Li f tStop2 = Li f tStop1

The gluing invariant defines the relationship between the abstract flag LiftStop1 and the con-
crete flag LiftStop2 and is used to discharge the refinement proof obligation.

Requirements REQ6 and REQ7 are dealt with in a similar way. The generated Event-B mod-
els from AD diagrams and UML-B diagrams can be combined using shared-event composition
[SB11]. This concludes the application of the general approach described in this section.
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We note that the presented approach has been applied also to a larger case study of 32 re-
quirements. The case study is an Event-B specification for queue management in FreeRTOS.
FreeRTOS [Bar10] is an open source, mini kernel developed by Richard Barry to serve real-time
application requests. Data transfer is established by means of queues. Queues are mechanisms
used to serve communication between a task-to-task or a task-to-Interrupt Service Routine (ISR)
[Bar10]. The requirement categorisation for the queue management case study was useful: 9 re-
quirements were classified as data-oriented requirements, 3 as constraint-oriented requirements,
20 as event-oriented requirements and 7 as flow requirements. Four conclusions were drawn
from the application of our approach to the queue management case study. Firstly, we found that
flow requirements can sometimes be extracted from more than one requirement. For example,
the sequencing between the event responsible for sending an item successfully to a queue in
the requirement QUE1 and the event responsible for removing the highest-priority task from the
collection of tasks waiting to receive in the requirement QUE2.

QUE1 A task can only send items to a queue when there is enough room in the queue
QUE2 When a queue becomes available (there is an item in the queue to be received) then

the highest-priority task waiting for item to arrive on that queue will be removed from
the collection of tasks waiting to receive

Secondly, AD patterns do not cover all possible flows, we sometimes need to modify them to
represent the exact flow we are looking for, or even explore some new patterns. For example, one
might need to represent “one or more” executions of an event. This is currently not supported by
the existing patterns, however, the loop AD pattern together with an additional manual flag can
be used to represent this particular case. Thirdly, it is possible that a particular event becomes
a leaf in different AD diagrams. In some cases however, it is necessary to change the name of
the recurrent leaf to avoid an invalid combination of AD flags. Assume that an event x is a leaf
in a sequence diagram and also a leaf in an “xor” diagram. If this leaf has the same name in
both trees, then the AD tool will generate “xor” flags and sequence flags for the event x. Mixing
flags together in a single event can result in mis-behaviour of the intended flows. Overall, further
investigations should be carried out to evaluate the presented approach and to explore more useful
patterns for managing flows. Finally, the proposed approach allows different requirements to be
represented in the same modelling element (variable, event, etc). For example:

TSK3 Task is an object in FreeRTOS
TSK4 Task can send an item to a queue

Task is a shared variable between the requirement TSK3 and the requirement TSK4. TSK3 is
classified as a data-oriented requirement whereas TSK4 is classified as an event-oriented require-
ment.

4 Related Works

This section presents three works in the area of requirements traceability. SOFL (Structured
Object-Oriented Formal Language) [Liu04] is an approach that uses graphical and textual formal

13 / 16 Volume 66 (2013)



Building Traceable Event-B Models from Requirements

notation for system construction. It is an integration of Data Flow Diagrams, Petri Nets, and
VDM-SL. The graphical and textual formal notation serve as a good communication mechanism
between a user and a developer. One of the main differences between our work and [Liu04]
is that our work makes use of structured English and graphical notation represented in UML-B
and the AD approach to bridge the gap between requirements and Event-B models, whereas the
semi-formal artifacts used in the SOFL approach are used to document requirements.

Jastram et al [JHLG10] presented another approach to achieving requirement traceability.
They structure the requirements based on WRSPM. WRSPM is a model used for the formal-
isation of system requirements. It differentiates between phenomena (state space and transitions
of the system) and artifacts (the restriction on states and transitions). The artifacts are classi-
fied into groups: Domain Knowledge (W), Requirements (R), Specifications (S), Program (P)
and Programming Platform (M). Once the requirements are structured using WRSPM, the sec-
ond step is to use a formal model for system specification. WRSPM elements are mapped to
Event-B. This mapping provides a way for traceability between requirements and the Event-B
model. They distinguish three types of possible traces: evolution traces, explicit traces, and
implicit traces. Evolution traces are explored through the requirement evolution over time. Ex-
plicit traces are used to link each non-formal requirement to a formal statement. Implicit traces
are discovered via refinement relationships, references to model elements or proof obligations.
The main difference between our approach and the [JHLG10] approach is that the latter focuses
more on traceability and uses intermediate constructs based on WRSPM to provide traceability
between requirements and Event-B models. On the other hand, the intermediate constructs which
we use are based on a requirement classification derived from Event-B components. As a result,
the process of converting the semi-formal artifacts into an Event-B model is straightforward.
Moreover, our approach focuses not just on building Event-B models but also on traceability.

Yeganefard and Butler [YB12] described an approach for structuring requirements of control
systems to facilitate refinement-based formalisation. The approach has three stages: In the first
stage, requirements are categorised into monitored (MNR) requirements, commanded (CMN)
requirements and controlled (CNT) requirements. The second step involves layering require-
ments by modelling one feature in each refinement level; the developer chooses which feature to
model in each refinement level. The authors suggest modelling the main role of the system with
a minimum set of requirements in the very abstract model. The third step is based on revising the
requirement document and the formal model to investigate any inconsistent, ambiguous or miss-
ing requirements. Comparing our work with [YB12], the approach used in [YB12] is specific to
control systems whereas the approach of this paper is based on Event-B structures. We also think
that structuring refinement levels based on a textual requirement document is difficult. We be-
lieve that the visualisation of Event-B components using AD diagrams gives a clear overview of
the whole system and helps decide which feature to model in each refinement level. It is possible
to combine our approach with that of [YB12] to obtain more effective guidelines for developing
traceable Event-B models for control systems.
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5 Conclusions

We presented an approach which facilitates constructing Event-B models and provides clear
traceability between requirements and the Event-B model. The approach is based on the use of
the UML-B and AD approaches. UML-B provides UML graphical modelling environment that
allows the development of an Event-B model, whereas the AD approach provides a graphical
notation to structure refinement and manage flows in an Event-B model.

Applying UML-B at the requirement level facilitates the mapping from data-oriented require-
ments to Event-B. Event-B models of the UML-B diagrams are generated automatically by the
UML-B tool. On the other hand, applying the AD approach at the requirement level assists
a developer in the process of deciding which features to be modeled in each refinement step.
Moreover, the Event-B model is generated automatically by the AD tool, which reduces the
burden of the manual work especially in the development of complex systems. The combined
AD diagrams provide an overall visualisation of the refinement structure and demonstrate the
relationships between events even before any model is written.

6 Future work

The application of the proposed approach to several case studies is the primary goal of future
work. In this paper we describe one kind of constraint-oriented requirements, namely require-
ments on the system being developed, such as requirement REQ4. We also need to investigate
another type of constraint-oriented requirements, which describe assumptions on the environ-
ment, such as the following requirement:

REQ9 The lift can transition from stopped to moving-up or moving-down, from moving-up
or moving-down to stopped, but not from moving-up to moving-down or vice versa

Exploring the scalability of the graphical models is another direction for future work. The
visual view of the refinement strategy provides some support for scalability: the ADD diagrams
are hierarchical and it is always possible to partition the diagram into sub-hierarchies; UML-B
class diagrams can also be layered through refinement. Further work is needed to investigate the
scalability issue. Finally, further investigation of several AD patterns is necessary to support a
larger class of flow requirements.
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