
Electronic Communications of the EASST
Volume 4 (2006)

Proceedings of the
Second International Workshop on
Graph and Model Transformation

(GraMoT 2006)

A Model Transformation for Automated Concrete Syntax Definitions of
Metamodeled Visual Languages

Gergely Mezei, László Lengyel, Tihamér Levendovszky, Hassan Charaf

12 pages

Guest Editors: Gabor Karsai, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

A Model Transformation for Automated Concrete Syntax
Definitions of Metamodeled Visual Languages

Gergely Mezei1, László Lengyel2, Tihamér Levendovszky3, Hassan Charaf4

{gmezei1, lengyel2, tihamer3, hassan4}@aut.bme.hu
Budapest University of Technology and Economics
Goldmann György tér 3., 1111 Budapest, Hungary

Abstract: Metamodeling techniques are popular in describing the rules of special
domains, but these techniques do not support defining presentation for these do-
mains , namely the concrete syntax. The aim of our research is to provide a method
to create the concrete syntax for metamodeling systems in a flexible, efficient way.
Several domain-specific languages have been created that support defining the con-
crete syntax, i.e. the visualization. The main concern of this paper is to present a
model transformation method that processes our presentation definitions and trans-
forms them automatically into source code. The source code implements a plug-in
capable of editing the models. A termination analysis for the presented method is
also provided.

Keywords: Model Transformation, Concrete Syntax, Domain-Specific Modeling

1 Introduction

Special domains of interest require flexible modeling languages. Domain-Specific Modeling
Languages (DSML) supported by metamodeling techniques are a widely adopted way to create
environments for visual modeling languages. A metamodel acts as a set of rules for the model
level: it defines the available model elements, their attributes and the possible connections be-
tween them. The definition is constructed using a default, domain-independent notation, often
called the abstract syntax. Since metamodeling can fulfill the structural requirements of the se-
lected domain only, additional techniques are required to define the domain-specific presentation
of the elements, namely the concrete syntax.

1.1 Problem statement

The instantiation relationship and the metamodeling itself are defined by standards, although
there are alternative ways. In contrast, handling the concrete syntax definitions is not yet stan-
dardized. The custom solutions used in the modeling frameworks are often inefficient and in-
flexible. The following solution types can be distinguished: (i) manually coding the presentation
logic in the modeling framework, (ii) extending the DSML definitions with new properties focus-
ing on the presentation, (iii) using a special DSL that defines the presentation, and then binding
the concrete syntax and the structural definition of the metamodel. Previous work [MLHVL06]
has introduced these solutions in detail and has found that the third solution is the most straight-
forward. This solution models concrete syntax definitions by using a common Domain-Specific

1 / 12 Volume 4 (2006)

A Model Transformation for Automated Concrete Syntax Definitions

Language (referred to as Presentation DSL). The concrete syntax definitions are the models of
this Presentation DSL. The ability to handle the concrete syntax in the same way as normal
DSMLs makes editing much simpler, thus, it means uniformity and flexibility. Another advan-
tage of the solution is that it allows multiple concrete syntax definitions for a single DSML.

Visual Modeling and Transformation System (VMTS) [VMTS] is an n-layer metamodeling
environment that unifies the metamodeling techniques used by the common modeling tools, and
employs model transformation applying graph rewriting as the underlying mechanism. A meta-
modeling environment is based on the VMTS Presentation Framework (VPF) [MLHPF05] that
is a flexible, graphical modeling framework using a plug-in-based architecture. VPF promotes
creating models for UML 2.0 diagrams and other popular domains such as Mobile Resource Ed-
itor, or Feature Modeling. VPF plug-ins must be customized for each DSML. The base classes
of the framework must be subclassed for each model element to provide customized drawing
and event-handling code. The concrete syntax used by the VPF plug-ins was originally defined
by manual coding, which meant a huge amount of additional work. The open issues are the
following: (i) Is the solution based on Presentation DSL more efficient? (ii) Is a model transfor-
mation flexible enough to create source code from the concrete syntax definitions? (iii) Can the
transformation engine grant that the transformation will always terminate?

1.2 Architectural overview

VMTS Presentation DSL (VPD) is a Presentation DSL realized in VMTS. Fig. 1 shows the main
steps of the concrete syntax definition and processing.

Figure 1: Concrete Syntax Definition - Overview

The VPD metamodel defines the metamodel for VPD, i.e. the structure of the concrete syntax
definitions. By instantiating the VPD metamodel, concrete syntax definitions can be created.
In order to facilitate the creation of the concrete syntax, a plug-in (the V PDPlugin) was imple-
mented based on VMTS Presentation Framework. To improve the effectiveness, there is support
for processing VPD models automatically, using model transformation techniques [LL+06]. The
transformation describes by the control flow converts VPD Models to CodeDOM models. Code-

Proc. GraMoT 2006 2 / 12

ECEASST

DOM is an abstract code representation. From the CodeDOM model, source code is generated
with the .NET CodeDOM technology [TH03]. The source code implements a plug-in that can be
used directly in VPF. This approach made it possible to avoid manual coding, and create plug-
ins in a user-friendly, graphical way in the same environment as common DSL models. The
paper [MLHVL06] has presented the VMTS Presentation DSL in detail, [MLHC06] has given
an overview about the method, but the model transformation has not been introduced in detail.
This paper fills this gap and introduces both the transformation control flow and the transforma-
tion rules. Termination properties of the transformation are also discussed in detail.

2 Related work

The Generic Modeling Environment (GME) [LBM+01] is a highly configurable metamodeling
tool supporting two layers: a metamodel, and a modeling layer. The concrete syntax definitions
can be coded either manually, or set by properties both on the metamodel and on the model
level. GME supports a special type of property definitions: the registry entries. These entries are
assigned to model elements and they can also customize the appearance.

Meta-CASE editors (e.g. MetaEdit+ [MEDIT]) are environments capable of generating CASE
tools. They allow creating the tool definitions in a high-level graphical environment, but they
supply a manually coded user interface. These environments store concrete syntax definitions in
the metamodel properties.

Another framework is the Diagram Editor Generator (DiaGen) [DIAGEN], which is an ef-
ficient solution to create visual editors for DSLs. DiaGen is not based on metamodeling tech-
niques; it uses its own specification language for defining the structure of diagrams. DiaGen
supports editing the concrete syntax in a graphical context, but in a tree control-based form only,
where there is no support to define the shape of the elements graphically. Concrete syntax in
DiaGen is based on properties. DiaGen can generate an editor based on the specification using
hypergraph grammars and transformations.

AToM3 (A Tool for Multi-formalism and Meta-Modelling) [LV02]) is a flexible modeling
tool. It employs an appearance editor to define the shape of the model elements graphically;
it uses model level properties to store the concrete syntax (model definitions are extended with
visualization-based attributes). AToM3 can generate plug-ins that use the defined syntax, but the
code generation is not based on a Presentation DSL. The views of the models are generated with
triple graph grammars.

Eclipse [ECLIPSE] is probably the most popular, highly flexible, open source modeling plat-
form that supports metamodeling. The Eclipse Modeling Framework (EMF) can generate source
code from models defined by the class diagram definition of UML, but it does not contain con-
crete syntax definitions. The Graphical Editing Framework (GEF) is also a part of the Eclipse
project. GEF provides methods for creating visual editors. EMF does not support code genera-
tion for GEF, therefore GEF plug-ins require manual coding to support the concrete syntax.

GenGed [GENGED] is a tool to generate visualization code with graph transformation. GenGed
has been replaced by the project Transformation-Based Generation of Modeling Environments
(TIGER) [EEHT] that uses precise visual language (VL) definitions and offers a graphical en-
vironment based on GEF. TIGER can generate source code from the visual language definitions

3 / 12 Volume 4 (2006)

A Model Transformation for Automated Concrete Syntax Definitions

that implements a plug-in based on GEF. VL specifications can be created graphically. Java is
the only language supported in plug-in generation. At the moment TIGER can generate editors
for Activity Diagrams and Petri nets.

The Graphical Modeling Framework (GMF) is also an Eclipse project. The goal of GMF
is to form a generative bridge between EMF and GEF, whereby a diagram definition is linked
to a domain model as an input to the generation of a visual editor. GMF uses a Presentation
DSL to define the concrete syntax. The result (the linked concrete, and structural definitions)
are processed further to produce source code. The mapping between the domain model and
the model items of the concrete syntax is also supported in GMF. The generated source code
relies on the features of GEF and EMF. Although the concept of GMF is straightforward, it
has some weaknesses: (i) the generation is not based on model transformation. Consequently,
the compilation steps are coded manually, thus, changing the transformation needs changing the
source code and rebuilding the compiler. In case of model transformation such modifications can
be accomplished at run-time. (ii) Because of EMF, GMF is restricted to Java only.

3 Defining the concrete syntax

Concrete Syntax Models, namely concrete syntax definitions are created by instantiating VMTS
Presentation DSL (VPD). Concrete Syntax Models define how the model items of the Subject
Model, namely, the models of the subject domain are visualized, and how they behave. Fig. 2
shows the metamodel - model, and the structural definition - concrete syntax relationships.

Figure 2: Structural definition - Concrete Syntax Relationship

Concrete Syntax Models are instantiations of Presentation DSL. The models of the domain,
the Subject Domain Models are created, and the concrete syntax is mapped to the structural def-
inition. Subject Models are created by instantiating the Subject Domain Model. The framework
displays the model using the generated plug-in by automatically combining the abstract and the
concrete syntax.

Proc. GraMoT 2006 4 / 12

ECEASST

3.1 The VPD metamodel

The VPD metamodel consists of five nodes as shown in Fig. 3. Appearance Definition can
describe the graphical notation of the model elements. Weaving Contexts are used to define be-
havioral attributes and to store mapping information between the concrete and the structure def-
inition. The name Weaving Context describes that these elements weaves two different aspects
of the model, the data and the visual definition, namely the abstract and the concrete syntax. For
example, in case of ControlFlow diagrams Appearance Definitions define the graphical notation,
such as rectangle for statement, or diamond for conditions. Weaving Contexts have a reference to
the appropriate metamodel item, thus, StatementContext has a reference to MetaStatement item
in the ControlFlow metamodel. Weaving Contexts also contain behavioral attributes, such as the
minimum size of the model element. A relation between Weaving Context and Appearance Defi-
nitions can be constructed using Attribute Reference relations. In the metamodel, the multiplicity
of this relation is many-to-many, which means that the appearance definitions are reusable, and
the weaving contexts can have several appearances. This reusability is necessary because mod-
eling languages have a tendency to use the same notation in different languages. For example
StartState in UML statechart diagrams and InitialState in UML activity diagrams are denoted
the same way. Similar separation between the behavioral attributes and the mapping information
could be created, but we have found that customized behavioral attributes are harder to reuse.
For example, Input pins should be aligned to one side of its container in activity diagrams. This
property is handled by behavioral attributes (positioning constraints). The constraints describe
alignment rules useful only for this type of elements.

Figure 3: VMTS Presentation DSL - Metamodel

Different fundamental types can have different behavioral and visualization properties, thus,
they are distinguished. In VMTS, there are three fundamental types: Nodes, Edges (relations
between nodes) and AssociationNodes (e.g. AssociationClass in a class diagram). VMTS Pre-
sentation DSL mirrors these fundamental types by customizing General Weaving Context. For
example, the model item NodeWeavingContext can express the mapping information for a Node.
Visualization information described in Appearance Definitions is based on Regions. Regions are
graphical units that are independent from each other. A Region is responsible for visualizing a
part of the model item, or the whole model item. Since the Regions are independent from each
other, they can be edited separately, and the model representation can be composed of the Re-
gions when displaying the model item. Region definitions consist of simple graphical objects,
called primitives. Primitives are, for example, lines, Bzier splines, or rectangles. A Region can

5 / 12 Volume 4 (2006)

A Model Transformation for Automated Concrete Syntax Definitions

contain several primitives, for example an Actor in a Use-case model is defined in a single Re-
gion although it consists of several primitives (head, body, arms, legs). More information on the
VPD metamodel and concrete syntax definition can be found in [MLHVL06].

4 The transformation

Several techniques exist to create source code from a given model. Model transformations can
be modeled in a visual way, they can be changed easily and they can use the efficient graph
transformation techniques, along with high level transformation constraints, thus, they are one
of the most popular solutions. VMTS uses Visual Model Processors (VMPs) to process models
with graph rewriting-based transformation techniques. The inputs of a VMTS VMP are the
input model and metamodel, the output metamodel, and the control flow model which defines
the transformation. The result of the transformation is the output model. The input model is an
instance of the input metamodel, and the output model is an instance of the output metamodel.
Fig. 4 shows an overview of model transformation.

Figure 4: Model Transformation in VMTS - Overview

In this case Concrete Syntax Models, namely, the concrete syntax definitions, are transformed
to CodeDOM models [TH03]. CodeDOM supports describing source code as a language inde-
pendent tree and then generating source code to other languages automatically. Therefore source
code generation is easy from the output of the transformation. In VMTS, the control flow for the
transformation can be constructed using the Visual Control Flow Language (VCFL) [LL+06].
VCFL is a domain-specific language based on stereotyped activity diagrams. The transforma-
tion rules in the control flow specify the operational behavior of model processing. In VMTS,
this technique is based on graph transformations [Roz97]. The atoms of graph transformations
defined by control flow are graph-rewriting rules. Rewriting rules consists of two parts: Left-
Hand Side (LHS) describes the pattern we are searching for, while the Right-Hand Side (RHS)
defines the replacement pattern. In VMTS, the LHS and RHS of the transformation rules are
built from metamodel elements. Besides the rewriting rules, VCFL also supports decisions, fork,

Proc. GraMoT 2006 6 / 12

ECEASST

and join items. Model transformation algorithms often require parameter passing between the
subsequent transformation rules. In VCFL, external causalities can be defined to pass parame-
ters. In the next sections, we elaborate on the control flow and the corresponding steps of the
VPD transformation.

4.1 VPD transformation overview

The control flow of the model transformation is shown in Fig. 5. The first rewriting rule (Cre-
ateNamespace) is an initialization step for the further operations. The second step (GetUnpro-
cessedNode) searches for an unprocessed weaving context in the host model, namely, in the
Concrete Syntax Model. If it does not find any, then there is no item to process in the model, thus
the transformation ends. If there is an unprocessed model item, then the next step (MatchAppear-
ances) pass the associated Appearance Definitions using the Appearance Relations to navigate,
and generates the required CodeDOM items. The control flow uses external causalities and dec-
orates the host model to pass the matching information between the rewriting steps to indicate
the current context.

Figure 5: VMTS Presentation DSL - Control Flow

4.2 The transformation rules

The transformation initialization consists of two steps: (i) the initialization of the CodeDOM
model and (ii) the initialization of the environment of the generated code. The start node of the
control flow creates a new model in the underlying database. The newly created model is an
empty CodeDOM model that is used as the output model in the later steps. The rule Create-
Namespace constructs a namespace in the CodeDOM model. Each plug-in class generated later
will be contained by this namespace. The step also creates a DiagramModel class. In VMTS Pre-
sentation Framework, DiagramModel classes are used to create a binding between the plug-in
and the subject domain. The concrete syntax definition is processed in the steps GetUnpro-
cessedNode and MatchAppearances. These steps are connected in a loop using a decision item.
In VCFL, the decision steps can use OCL constraints, or simply the result of the previous rewrit-
ing steps to decide on which branch they continue the execution. In this case the loop exits only
if there are no unprocessed node (weaving context) left in the concrete syntax definition (the
step GetUnprocessedNode was unsuccessful). The step GetUnprocessedNode is simple: both
LHS and RHS contains a General WeavingContext node. Matching information is accomplished
using an OCL constraint and a Virtual Attribute. Virtual attribute is a special, temporary attribute

7 / 12 Volume 4 (2006)

A Model Transformation for Automated Concrete Syntax Definitions

added to the matched elements during model transformation [ML+06]. Using virtual attributes,
the original model items can be decorated without changing their meta definitions. Virtual at-
tributes are removed at the end of the transformation. In this case the rule GetUnprocessedNode
is based on the virtual attribute IsProcessed. The weaving context in LHS is extended by an
OCL constraint that ensures that the matched node has not been matched before. The rule also
contains a modify type internal causality. Internal causality is a relationship between LHS and
RHS nodes, and they define attribute computations. This causality adds the IsProcessed attribute
to the matched node. The rule MatchAppearances is more complex (Fig. 6). It matches the
weaving context along with the associated appearance definitions. The Context element of the
LHS is passed to the rule from the GetUnprocessedNode rule using an external causality. An ex-
ternal causality is a parameter passing mechanism which facilitates to assign a host graph node
matched to an RHS element to an LHS element of a subsequent rule. The matching algorithm
considers these assignments compulsory. A single weaving context can have multiple appear-
ances as mentioned before, thus the relation has a multiplicity of 1..*. The matched context
and appearance CodeDOM elements are generated in the RHS. The rule consists of create type
internal causalities only.

Figure 6: The rule MatchAppearances

From the weaving context, three classes (type declaration), a Model, a View and a Controller
class are generated according to the MVC-architecture used in VPF [MLHPF05]. The funda-
mental types, namely, the types of the weaving contexts result in different base classes. For
example, an AssociationNodeWeavingContext creates type declarations inherited from Associa-
tionNode base classes defined in VPF. Binding between the structural definition and the plug-in
items is constructed by an attribute containing the ID of the target model item according to the
requirements of VPF. Other properties and methods of the classes are defined only if they over-
ride the default behavior. Each Appearance Definition generates a method in the View class. The
methods are called when the model item is drawn out. The main loop of the transformation exits
if the CodeDOM model is complete. The step ClearHelperInformation deletes the IsProcessed
attribute from the weaving contexts. The rule is defined as a MultipleMatch rule, which means
it is applied for each weaving context in the host model. EndNode supports a special type of

Proc. GraMoT 2006 8 / 12

ECEASST

action, After Action that is executed at the end of the transformation. This special action is used
to process the CodeDOM model and generate the plug-in. VMTS offers a built-in method to
apply this task. The generated plug-in can be used directly in VPF.

Fig. 7 shows two examples: the well-known FlowChart and the Nassie-Schneidermann plug-
in that were constructed using the introduced method. The concrete syntax was defined in two
steps: (i) the notation of the model items were created in a graphical notation editor; (ii) mapping
and behavioral properties has been added, such as position constraints for contained elements in
Nassie-Schneidermann diagrams. Then, the concrete syntax definition was transformed to source
code by a Visual Model Processor, based on the presented control flow. The transformation was
not customized for the models, the same transformation is used for every domain. The generated
source code, namely the plugin was compiled, and used to edit the models. The time spent
with the construction of the plugins was approximately seven times less, than it would be using
manual coding. The FlowChart example is described in more detail (focusing the construction
of the concrete syntax, and the generated source code) in [VMTS].

(a) (b)

Figure 7: Example plug-ins - (a) Nassie-Schneidermann (b) Flowchart

5 Termination analysis

Using a model transformation to convert the concrete syntax definition into source code is a
straightforward solution, because changes in the framework or in the modeling structure can
be easily adopted. ’Easily’ means that coding can be avoided; only the transformation con-
trol flow and the rewriting rules need to be modified. In contrast, classic model to source code
compilers would fail for example if a new fundamental type is required. This flexibility has
also some drawbacks: if the transformation changes, then its correctness must be proven again.
Using constraints in transformation rules can help in creating a validated model, but there are
transformation-level properties, such as the question of termination, which require further exam-
ination. The aim of our analysis is to prove that the transformation terminates for every valid
finite input model. We use the definitions and theorems presented in [LPE06] to make the prov-
ing method simpler. These theorems are proven to injective rules only, but this is not a problem,
because the VPD transformation uses injective matches only.

Definition 1 An E-concurrent production p∗ is an E-based composition if there is at least one

input graph G0 with an E-related transformation G0
p∗ +3H.

9 / 12 Volume 4 (2006)

A Model Transformation for Automated Concrete Syntax Definitions

Definition 2 Consider a possibly infinite sequence of graph productions pi, (i = 1,2, ...) and a
sequence of E-dependency relations ((Ei,e∗i ,ei+1)) leading to a sequence of their E-based com-
positions (p∗i = (L∗i ← K∗i → R∗i)) with p∗1 = p1 and p∗n = (p1 ∗E1 p2)∗E2 ...∗En pn.

A cumulative LHS series of this sequence is the graph series L∗n consisting of the left-hand side
graphs of p∗n. Moreover, a cumulative size series of a production sequence is the nonnegative
integer series |L∗n|.

Theorem 1 A GT S = (P) terminates if for all infinite cumulative LHS sequences (L∗i) of the
graph productions created from the members of P, it holds that

lim
i→∞
|L∗i |= ∞.

Note that we assume finite input graphs and injective matches.

Proposition 1 The transformation VPD (depicted in Figure 5) always terminates.

Proof. At first the transformation rules are examined whether they can affect the termination.
The initial, final step, and the CreateNamespace and ClearHelperInformation rules are executed
only once. They are not exhaustive, thus, they do not affect the termination. In contrast, the
loop containing the GetUnprocessedNode, the decision object and the MatchAppearances step
are critical. When the transformation is running, the loop is executed until GetUnprocessedNode
can be matched. We unify the execution of consequent rules in the loop, namely we create the
E-based composition of the rules, a new rule that has an equivalent effect on the host graph.
The key of the proving method is to show that this unification produces an LHS sequence that
exceeds all limits. Recall that the basics of the proving method is borrowed from [LPE06].

The first step in the E-based composition is to unify a single execution of GetUnprocessedNode
and MatchAppearances. Fig. 8/a shows the composition in detail. No other composition struc-
ture is valid, because of the external causality between the rules. Empty and crossed circles
represent weaving contexts, the cross in the circle means that the IsProcessed attribute is set to
true. Filled circles are used to show appearance definitions. The generated CodeDOM model is
not shown, because the CodeDOM model is just an output model, nodes in the CodeDOM model
are never matched in the rules of the transformation. Next, the composition is further composed
by the next step in the loop. In this case the first rule is the composite rule, the another rule is
GetUnprocessedNode. The composition step is shown in Fig. 8/b. The new weaving context has
an additional circle to show that it is different from the original one. It can be seen that R21 and
L22 cannot be the same node, because R21 has the IsProcessed attribute set to true, it cannot be
matched again. Therefore the composition represented by the figure is the only valid composi-
tion. This means also that every time the loop is executed, at least one new node appears in the
LHS of the composed rule. Therefore, the LHS sequence in the E-based composition exceeds all
limits, thus, the transformation always terminates according to Theorem 1.

Proc. GraMoT 2006 10 / 12

ECEASST

Figure 8: E-based composition

6 Conclusions

While structural definitions of DSMLs can be constructed in an efficient yet user-friendly way
using metamodeling, handling the concrete syntax does not have such a well-accepted method.
Our approach is a way to solve this problem. Previous work [MLHVL06] has presented the
VMTS Presentation DSL, a domain-specific modeling language that can express concrete syn-
tax definitions. This paper has completed the introduction of our approach by presenting the
model transformation method that can create plug-ins from the concrete syntax definitions. The
transformation control flow and the transformation rules were also presented in detail, including
the examination of the termination properties of the transformation. The presented technique
grants that the constraints enforced in the metamodel are treated separately from presentation
of the concrete syntax. We have provided a simple, expressive model transformation based on
graph rewriting to process the VPD models. The presented approach is easier and faster to use
than manual coding. The presented transformation is flexible enough to convert the model to
source code automatically. It has also been shown that the transformation always terminates.
The presented transformation and Presentation DSL have been successfully used in practice to
model several domains, such as FlowChart, Nassie-Schneidermann, and UML Activity diagrams.
Thus, the introduced open issues have been solved.

Different visualization states for model items are currently supported by attaching several ap-
pearance definitions to a single context. These definitions are transformed to method definitions
in the source code, but current version does not support modeling dynamic behavior: always the
default appearance is used. The generated plug-in can be customized by a few lines of code,
but our aim is to eliminate coding. The behavior and the different states of the model items
can be modeled as a statechart diagram and attaching this behavioral information to the static
visualization definitions can solve the problem. Thus, future work focuses on a higher level of
automatization.

Acknowledgements: The paper is established by the support of the National Office for Re-
search and Technology (Hungary).

11 / 12 Volume 4 (2006)

A Model Transformation for Automated Concrete Syntax Definitions

Bibliography

[MLHVL06] Mezei, G., Levendovszky, T., Charaf, H.: A Domain-Specific Language for Visu-
alizing Modeling Languages, In Proceedings of the Information Systems Implementation
and Modelling conference, Prerov, Czech Republic, 2006, pp. 67-74.

[VMTS] VMTS Official Homapage, http://vmts.aut.bme.hu/

[MLHPF05] Mezei, G., Levendovszky, T., Charaf, H.: A Presentation Framework for Metamod-
eling Environments, Workshop in Software Model Engineering, Montego Bay, Jamaica,
2005 (to appear)

[LL+06] Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Control Flow Support for Model
Transformation Frameworks: An Overview, In Proceedings of the MicroCad conference,
Miskolc, Hungary, 2006, pp 193-199

[TH03] Thuan, T.,Hoang, L.: .NET Framework Essential, O’Reilly, 2003.

[MLHC06] Levendovszky, T., Mezei, G., Charaf, H.: Automatized Concrete Syntax Defini-
tion For Domain Specific Langauges, International Conference on Technical Informatics,
Timisoara, 2006

[LBM+01] Lédeczi, Á., Bakay, Á., Maróti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., Karsai,
G.: Composing Domain-Specific Design Environments, IEEE Computer 34(11), Novem-
ber, 2001, pp. 44-51

[MEDIT] Meta-case official homepage, http://www.metacase.com/

[DIAGEN] Minas, M.: Specifying Graph-like diagrams with DIAGEN”, Science of Computer
Programming 44: pp 157-180, 2002

[LV02] de Lara, J., Vangheluwe, H.: AToM3 as a Meta-Case Environment, 4th International
Conference on Enterprise Information Systems, 2002, pp 642 - 649

[ECLIPSE] The Eclipse Modeling Framework Framework, http://eclipse.org/

[GENGED] GenGed, tfs.cs.tu-berlin.de/ genged/

[EEHT] Erhig, K., Ermel, C., Hansgen, S., Taentzer, G.: Generation of Visual Editors as Eclipse
Plug-Ins, http://www.tfs.cs.tu-berlin.de/ tigerprj/papers/

[Roz97] Rozenberg, G.: Handbook on Graph Grammars and Computing by Graph Transforma-
tion: Foundations, Vol.1 World Scientific, 1997.

[ML+06] Mezei, G., Lengyel, L., Levendovszky, T., Charaf, H.: Extending an OCL Compiler
for Metamodeling and Model Transformation Systems: Unifying the Twofold Functional-
ity, 10th International Conference on Intelligent Engineering Systems, 2006

[LPE06] Levendovszky, T., Prange, U., Ehrig, H., Termination Criteria for DPO Transforma-
tions with Injective Matches, Graph Transformation for Verification and Concurrency, 2006

Proc. GraMoT 2006 12 / 12

	Introduction
	Problem statement
	Architectural overview

	Related work
	Defining the concrete syntax
	The VPD metamodel

	The transformation
	VPD transformation overview
	The transformation rules

	Termination analysis
	Conclusions

