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Abstract: In the code clone evolution community, the Late Propagation (LP) has
been identified as one of the clone evolution patterns that can potentially lead to
software defects. An LP occurs when instances of a clone pair are changed consis-
tently, but not at the same time. The clone instance, which receives the update at a
later time, might exhibit unintended behavior if the modification was a bugfix. In
this paper, we present an approach to extract LPs from software repositories. Sub-
sequently, we study LPs in four software systems, which allows us to investigate the
propagation time, the clone dispersion and the effects of LPs on the software.

Keywords: code clone evolution, late propagation, software repository mining,
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1 Introduction

Research in the area of code clones has shown that 7% to 23% of the code in large software
systems contains duplicated source code fragments [1, 2]. While these so-called code clones
are generally considered harmful [3], other studies indicate the contrary [4]. Research has long
focused on techniques for (a) finding and (b) subsequently refactoring code clones [5], how-
ever, more recently, the code clone evolution research community has taken interest in managing
code clones, rather than refactoring them [6, 7]. Code clone management tools, such as Clone-
Tracker [6] or CloneBoard [7], help developers to understand and remember where code clones
are in the system; they can also help to propagate changes from one clone instance, to all in-
stances of the clone relation.

Kim et al. [8] investigated the evolution of code clones and they found patterns of clone evo-
lution. Aversano et al. [9] expanded on this research by adding two new patterns. One of these
patterns, the Late Propagation is of particular interest to investigate, as it can provide an indi-
cation of the usefulness of code clone management tools. Figure 1 shows an example of the
late propagation code clone evolution pattern. It shows two duplicated code fragments C1 and
C2 in version Vi, both belonging to the same clone relation. In a subsequent version (Vj) C1 is
modified while C2 is not, which means that both clones are now inconsistent. In version Vk C2
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is also updated and both clones are now consistent again. A late propagation is defined as: a
change which is propagated consistently across clones, although at a later point in time.

C1

C2

C1a

C2

C1a

C2a

Vi Vj Vk

Inconsistent 
change

C1a and C2a
are clones

Figure 1: The Late Propagation code clone evolution pattern.

This clone evolution pattern is likely to occur when a developer forgets to update one or more
code fragments in a clone relation, and propagates the changes to the other clones in a clone
relation at a later point in time. This situation is where code clone management tools can help,
as these tools help developers to remember instances of code clone relations.

In this paper, our main research question is: What is the impact of the late propagation code
clone evolution pattern? Answering this question will provide an initial answer as to the useful-
ness of code clone management tools [10]. In order to answer our principal research question,
we aim to answer the following sub-questions first using a software repository mining approach:

RQ1 Is the late propagation code clone evolution pattern frequently occurring in practice?

RQ2 Do late propagations typically lead to bugs?

RQ3 Is there a connection between the package distance and the propagation time of late prop-
agations?

The structure of our paper is as follows: Section 2 presents our approach for detecting late
propagations. In Section 3 we present our findings of studying 4 software systems, while Sec-
tion 5 presents our conclusions and future work.

2 Approach

Several approaches to track the evolution of code clones have been proposed in literature. For
instance, Kim et al. [8] map clone fragments between version i and version i+ 1 by using a
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location overlapping function in combination with unix diff. To determine how much the source
code of a code clone has changed, a textual similarity function is defined that measures the textual
similarities between a given version and a previous version of a software system. The approach
proposed by Kim et al., however, is not capable of finding LPs. This is because their approach
registers an independent evolution pattern when the clone instances become inconsistent and
they have no mechanism for detecting reappearing clones that might be a member of a previous
clone relation several revisions ago, which is essential for finding late propagations.

2.1 Toolchain Structure

This section describes the different components of the late propagation finder tool, of which an
overview is depicted in Figure 2. The tool is written in Java and currently only operates on SVN
repositories.
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Modification 
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Clonegroup
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r
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Figure 2: Overview of the late propagation detector tool.

Our approach consists of the following steps. In the initialization phase, we start by extracting
the first revision of a software project from a SVN repository and use a clone detection tool
to find clones in the codebase; our tool will build clone families, which are saved into a XML
database. Then for each subsequent snapshot, we:

1. Determine if any changes are made to the code base, if so, download the sources of that
revision.

2. Extract all change sets of that snapshot.

3. Analyze the change sets to see if there are any modifications made to clones in the XML
database.

4. Update the changes made to the code duplications into the database.

5. Find out if any LPs have occurred by analyzing the changed clones.

6. Run the clone detector to detect newly introduced clones and update the database accord-
ingly.
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The following paragraphs will explain some of the above steps in detail.

Initialization phase. In the first step, the first snapshot is downloaded from a SVN repository
and analyzed by a clone detection tool.

Based on existing comparison studies [11], we have selected the CCFinderX [12] tool as the
clone detection tool used in this paper. We configured CCFinderX to find clones of at least 30
tokens. The clone families that CCFinderX identified are saved in a XML database.

Extraction and Analysis of Change Sets. Our tool extracts change sets from the SVN log.
Each log entry contains information about a commit, such as the author name, revision number,
timestamp, log message and also the added, deleted and modified files. The extractor module fil-
ters out any irrelevant change sets (e.g., modifications to property files) and passes the log entries
it has fetched to the Modification Analyzer module. This module is responsible for determining
if any changes are made to the code clones that are stored in the database. There are three types
of modifications that can occur in a clone fragment, which can make it inconsistent with other
code duplications in a clone relation:

• A statement is added to a clone fragment, that increases the size of the code duplication.

• A section of the clone is deleted or the entire clone is deleted. In the former case the size
of the clone has decreased and in the latter, it means that the code duplication was present
in the previous revision but has disappeared in the current one.

• One or more statements in the clone fragment have been modified, but the clone size
remains the same.

Additionally, two types of changes can happen outside the clone, which does not affect its clone
relationship:

• A code fragment has been added above the clone and as a result the clone has moved
downwards.

• One or more statements above the clone have been removed, which means that the clone
has moved upwards.

In order to determine what kind of changes have occurred in a method, it is necessary to
compare the current version of a source file with its previous revision. Existing studies [8] have
used the Unix-Diff tool to find out which parts of a source file have changed. Unix-Diff or Diff
is the standard tool for discovering the differences between two versions of a file, but it does
have several limitations [13,14]. In particular, Diff has problems in distinguishing between code
modifications and code additions/deletions. Typically, it records a change in a source line as a
deletion of the old line and an addition of a new one. It also can not detect refactorings such as
method renamings/movements.

While there is a degree of subjectiveness in determining whether a program text has been
replaced or changed, recently several approaches have been proposed that can identify edited
lines with reasonable accuracy [13–15]. We have selected the Statement Diff or SDiff tool [13]
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to track the changes made to code clones in the database. We chose SDiff because the other
options are either closed source [15] or are implemented in another programming language [14].

SDiff combines line-based (determining the edit distance between two lines) and structural
(using the structure of the source code) approaches in tracking software artifacts. It uses the
abstract syntax tree of a source file to break up the code into class declarations, import statements,
field declarations and methods [13]. SDiff only reports changes per statement, so we had to
modify it to report changes per method instead of statement, so it can report changes inside a
method as well as method addition, removal and renamings.

Using SDiff, any changes made to the clone fragments are passed to the Late Propagation
Detector module and finally the clones in the database are updated as well.

Detecting Late Propagations. The Late Propagation Detector module is responsible for find-
ing LPs by analyzing the change information from SDiff. If a clone fragment in a clone relation
has been changed to such an extent that its size is different (due to statement additions or dele-
tions) from other code duplications in the same group, it is clear that an inconsistent change
has happened. If, however, the size of the modified clone fragment is the same as some related
code duplications, it is necessary to compare them to decide whether a consistent or inconsistent
change has occurred.

The Late Propagation Detector module uses the Normalized Levenshtein edit distance (NLD) [16]
as a metric to measure the similarity between two clone fragments. The Levenshtein Dis-
tance (LD) between two strings s1 and s2 is defined as the minimum number of insertions,
deletions and substitutions required to transform s1 into s2. For example, for s1 = ‘qwerty’ and
s2 = ‘azerty’, the edit distance between both strings is 2. The higher the LD, the more different
both strings are. In order to conduct comparisons, the Normalized Levenshtein edit distance is
used, which is ranged in the interval [0, 1], where 1 means that the strings match and 0 indicates
that the strings are strictly different. The NLD for two non-empty string s1 and s2 is defined
as [14, 17]:

NLD(s1,s2) = 1− LD(s1,s2)
max(s1,s2)

where LD(s1, s2) is the Levenshtein Distance and max(s1, s2) is the length of the longest
string. We have used the threshold values of a previous study to determine if a clone pair is
consistent or inconsistent [17]: a pair of clones is inconsistent if the NLD is smaller or equal to
0.87 and consistent if the NLD is greater or equal to 0.92; between those two values the clone
evolution is classified as unknown.

By using the NLD we can determine if the program texts of two clones are similar to each other
and discover the clone evolution pattern. A consistent change is found if all clones in a clone
relation have received similar updates and this is determined by computing the NLD between
each clone fragment. Similarly, an inconsistent change is detected if one of the clone fragments
has been modified differently from other clone relation members, as detected by the NLD.

A LP happens, as indicated earlier, when a clone in a clone relation is changed inconsistently
from the rest of the clone relation. After a number of revisions the delayed update is propagated
to the other related clones and as a result these code duplications are consistent again. This
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realignment of clones is detected in the same way as consistent changes are found. Finally, the
detector generates a report if a LP is found.

Finding new clones. CCFinderX is also used to detect clones that appear after the initial snap-
shot. Instead of processing the entire output of the clone detector, the CCFinderX Analyzer
module uses the log entries to determine which file has actually changed and only processes the
clones that are in the modified files. The module checks if any new clone is related to any code
duplication in an existing clone relation and if that is the case, then the clone is added to the
clone relation and the clone relation is updated in the database.

3 Experiment

We used four Java software projects from different domains for our experiment, see Table 1. Us-
ing the observations from these four systems, we will now try to answer our research questions.

System # Snapshots Authors KLOC Start SLP LLP Bugs % Bugs # of # java Final
date clone sets files version

Subclipse 1946 15 42-223 6/2003 1 6 2 28 632 762 1.6.17
JEdit 2481 20 102-335 9/2001 30 5 8 22 696 564 4.3.2
FreeCol 4935 35 40-445 4/2004 8 0 0 0 311 707 0.95
Seam 3005 29 2-148 8/2005 0 0 0 0 584 510 2.0

Table 1: Overview of selected open source projects.

3.1 RQ1: Are late propagations frequently occurring?

Table 1 shows that LPs are actually not that common. For example, in the case of JEdit, in
which we found most LPs, we see that there are 30 short-term LPs (changes propagated within
24 hours) and 5 long-term LPs (> 1 day) for a development history of approximately 9 years.
Furthermore, if we compare these numbers to the total number of clone sets, we see that the total
number of late propagations that we could detect is very low. For the case of JEdit we see that in
the final version – 4.3.2 – there are 696 clone sets compared to 35 late propagations.

3.2 RQ2: Do late propagations induce bugs?

By again looking at the data from Table 1, we see that in two of the systems that we studied, LPs
were related to bugs. For carrying out this analysis we looked at the commit message in which
the clone became consistent again, i.e., the commit in which the change was propagated.

Our data shows that in the two systems where LPs were related to bugs, an LP has a 22%
(JEdit) to 28% (Subclipse) chance of resulting in a bug. However, when making the distinction
between short-term (SLP) and long-term (LLP) late propagations, our analysis shows that most
bugs were related to LLPs (70%).
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3.3 RQ3: What’s the influence of package distance?

Clone radius is defined by Ueda et al. [18] as: “For a given clone class C, let F be a set of
files which includes each code fragment of C. Define RAD(C) as the maximum length of the path
from each file F to the lowest common ancestor directory of all files in F”. Since we are dealing
with software systems written in Java, we are actually looking at the package distance between
clones. A high package distance implies that the code duplications are scattered over packages,
which results in related clones that are more difficult to find and update. A clone pair in the
same source file has a distance of zero and if the pair of clones only share the same package, the
distance becomes one.

4. EXPIREMENT RESULTS

4.3 Discussion

Finally the results of each software system are summarized in the next table. The last
column ‘Busy LPs’ shows the percentages of LPs where we have observed busy commit
activities in connection.

Project Late propagations LLP SLP Bugs Bugs(%) Busy LP(%)
Subclipse 7 1 6 2 28% 71.4%
FreeCol 18 10 8 0 0% 50%
Jedit 35 30 5 8 22% 68.5%
Seam 0 0 0 0 0% 0%

Table 4.2: Projects Summary.

As the table shows, we have detected a total 60 LPs of which 41 long term and 19
delayed propagations and they have caused a total of 10 bugs (7 LLP and 3 SLP).

Figure 4.11: Propagation Time (in Revisions) and Package Distance (extreme values re-
moved for better overview).

In figure 4.11 we can see the dotplot of all 4 projects and it is clear that LPs with a
package distance of 1 appear more frequently with the longest propagation time in total.

32

Figure 3: Propagation Time and Package Distance.

Figure 3 shows the overall package distance distribution (X-axis) versus the propagation time
(Y-axis) of the 50 LPs (all projects together) that we found during our experiment. We see that
most LPs happened within the same class or same package. It seems that the package distance has
no real influence on the length of interval for the propagation to happen. This is quite unexpected,
as one would estimate that widely spread code clones are more difficult to remember than code
clones that are close to each other.

3.4 Threats to validity

External validity. We must point out that studying the development of 4 software systems is
not representative for all development practices. We tried to mitigate this concern, by selecting
4 software projects from highly different domains.
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Reliability. With regard to the clone detection technique that we are using, i.e., CCFinderX,
it may find false negatives (miss clones) or false positives (detect clones that are actually not
clones). Similarly, our clone tracking method, which is based on the SDiff tool, may also find
false positives (e.g., false statement changes). With regard to CCFinderX, we performed a small
analysis, which showed that CCFinderX is very good at finding Type 1 and Type 2 clones, with
a recall level of respectively 100% and 89%. CCFinderX however does miss Type 3 clones quite
easily (recall of 65%), confirming earlier results from Bellon et al. [11].

4 Related work

Göde and Koschke investigate the frequency and risks of changes to clones [19]. Their research
is related to ours in the sense that they too investigate inconsistent changes. The set of incon-
sistent changes is determined manually for one case study that the authors of the paper have
co-developed. In their study they found that 14.8% of all changes to clones are unintentionally
inconsistent. Furthermore, only few of these changes have high severity, while the others are
more or less cosmetic.

In a follow-up study to [19], Göde and Harder [20] confirm that the number of unintentional
inconsistent changes is low. They also found the severity of all unwanted inconsistencies to be
low as, for example, they were caused by changes to debugging code or semantic preserving
changes. None of them prevents the system from working correctly.

Bettenburg et al. study inconsistent changes to clones at the release level [21]. The authors
themselves determine whether a change is inconsistent or not. Based on a case study on two
open source software systems, they observe that only 1 to 3% of inconsistent clones introduce
software defects. Their study is different from ours in that we look for inconsistencies at a much
finer level (revision level versus release level).

Juergens et al performed a study on the effect of inconsistent changes to clones in [22]. They
first discussed with the software engineers of the respective systems whether an inconsistent
change is intentional or not. Subsequently, they observed that every second unintentionally in-
consistent change to a clone leads to a fault, thereby providing a strong indication of the fault-
proneness of code cloning behavior.

Different from the aforementioned studies, our study investigates late propagations, which
are inconsistent changes to clone groups that are regrouped at a later point. Our tool-chain is
able to detect these late propagations automatically, which contrasts the aforementioned studies.
Furthermore, for each of these late propagations we used log information left behind in the
version control system to determine whether a late propagation can be connected to a reported
bug.

Barbour et al. [23] have determined that 8 different late propagation patterns exist in the evo-
lution of clone groups. There first observation is that clone genealogies that contain late propa-
gations are more fault-prone than genealogies that do not contain late propagations. Considering
the 8 different types of late propagation patterns, Barbour et al. conclude that while for most
types of late propagations the fault-proneness is system dependent, the so-called LP7 and LP8
type of late propagations are the most likely to cause faults. In particular, an LP8 type late propa-
gation involves no propagation at all, and occurs when a clone diverges and then re-synchronizes
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itself without changes to the other clone in a clone pair. LP7 occurs when both clones are modied,
causing a divergence and then both are modied to re-synchronize the clone pair.

5 Conclusion

In this paper we investigated the the impact of the late propagation code clone evolution pattern.
From the preliminary evidence shown in this paper, we can conclude that the impact is moderate.
We came to this conclusion by specifically answering the first two research questions that we set
out in Section 1:

RQ1 Is the late propagation code clone evolution pattern frequently occurring in practice?
During our study of 4 open source software projects, we found that the late propagation
pattern is not very common, with only 50 occurrences detected in total.

RQ2 Do late propagations typically lead to bugs?
By further investigating the 50 late propagations that we found by means of log file in-
spections, we found that around 25% of the detected late propagations gave rise to a bug.

RQ3 Is there a connection between the package distance and the propagation time of late prop-
agations?
Another observation that we made is that the package distance has no influence on the
speed by which changes are propagated over sets of inconsistent clones.

As can be seen from the study of 4 open source projects, the frequency of occurrence of the
late propagation pattern is low. Furthermore, when a late propagation does occur, the chance of
it becoming a bug also seems low (∼25% chance). These figures raise the question of whether
code clone management tools are worthwhile? When the risk of a late propagation is low and
the chance that a late propagation becomes a bug is also low, then do we need to invest in clone
management tools? Additionally, when we see that the package distance has no real influence on
the propagation speed of inconsistent clones (RQ3), it seems that it does not really matter whether
an inconcistent clone is nearby or far away from the current editing location for a developer to
remember (or to forget) to also change it.

In this paper we have made the following contributions:

• We have built a late propagation detection tool that follows clones through time, even as
they (temporarily) become inconsistent.

• We have performed a small scale case study involving 4 Java open-source projects: Sub-
clipse, JEdit, Freecol and Seams.

5.1 Future work

As future work, we aim to expand our study to include more subject software systems. We also
intend to improve our toolchain by using an incremental clone detection technique [24], which
should improve the efficiency of our approach.
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