
Electronic Communications of the EASST
Volume 59 (2013)

Guest Editors: Aminata Sabané, Wei Wu
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Special Issue of the

First Workshop on Patterns Promotion

and Anti-patterns Prevention

(PPAP 2013)

A Pattern Language for the Evolution of Component-based

Software Architectures

Aakash Ahmad, Pooyan Jamshidi, Claus Pahl and Fawad Khaliq

31 Pages

 ECEASST

2 / 32 Volume 59 (2013)

A Pattern Language for the Evolution of Component-based Software

Architectures

Aakash Ahmad, Pooyan Jamshidi, Claus Pahl and Fawad Khaliq
†

Lero – the Irish Software Engineering Research Centre

School of Computing, Dublin City University, Ireland
†
Department of Computer Science, Quaid-i-Azam University, Islamabad, Pakistan

[ahmad.aakash || pooyan.jamshidi || claus.pahl]@computing.dcu.ie,
†
fawad.khaliq@cs.qau.edu.pk

Abstract: Architecture-centric software evolution enables change in a system’s structure and

behaviour while maintaining a global view of the software to address evolution-centric trade-

offs. The existing solutions for architectural maintenance and evolution fall short of exploiting

generic and reusable expertise to address recurring evolution problems. We present a pattern

language as a collection of interconnected change patterns that enable reuse-driven and

consistent evolution of component-based software architectures. Pattern interconnections

represent possible relationships among patterns (such as variants or related patterns) in the

language. In general, we introduce architecture change mining (pattern language development)

as a complementary and integrated phase to facilitate reuse-driven architecture change

execution (pattern language application). We evaluate the language applicability to support

pattern-driven reuse in architecture evolution of a payment system case study. We also analyse

the precision and recall factor as a measure of selecting the most appropriate pattern(s) from

the language collection. The pattern language itself continuously evolves with an incremental

discovery of new patterns from change logs over time.

Keywords: Pattern Definition, Pattern Detection, Pattern Language, Architecture Evolution

1 Introduction

Modern software systems operate in a dynamic environment with frequent changes in

stakeholders’ needs, business and technical requirements, and operating environments [MS08].

These changing requirements trigger a continuous evolution in deployed software that must be

addressed while maintaining a global view of the system to effectively resolve evolution-

centric trade-offs [Leh96]. Component-based software architecture (CBSA) [MRT99]

[BGS12] models a system’s structure as hierarchical configurations of computational

components and their interconnections by abstracting implementation-specific details. The role

of CBSA – as a blue-print of evolving software – is pivotal to fill the gap between changing

requirements [YSJ08] and refactored source code [BGS12] [GTO
+
08] [TM08].

Lehman’s law of continuing change [Leh96] poses a direct challenge to research and practices

that aim to support long-living and continuously evolving architectures [GTO
+
08] under

frequently varying requirements [YSJ08]. The law states that “…systems must be continually

adapted or they become progressively less satisfactory”. The implications of a continuous

change have resulted in development of solutions that enable reusable, off-the-shelf expertise

to address recurring evolution problems. The existing solutions promoted the ‘build-once, use-

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 3 / 32

often’ philosophy by exploiting change patterns [YSJ08] [CHW07] and evolution styles

[GTO
+
08] [TM08] to address a continuous evolution of software architectures. In contrast to

pattern invention [YSJ08] [TM08], we propose a continuous (a) discovery of new patterns,

their (b) specification and reuse to (c) apply pattern-based evolution. In our systematic review

[AJP12a], we observed that there is a need for solutions – supporting a continuous acquisition

and application of architecture evolution reuse knowledge – to address recurring problems

(i.e., frequent restructuring of architectural model) during evolution process [JGA
+
12].

We propose a language (PatEvol) as a formalism and collection of (empirically discovered)

architecture change patterns [AJP12b] that provide reusable solutions to recurring evolution

problems. Pattern interconnections allow possible relationships to exist among patterns to

enable the composition of a pattern language [GZ02] [Zdu07]. By exploiting the vocabulary

and grammar of a language, individual patterns can be formalised and interconnected to

support reusable and off-the-shelf architectural evolution. Our solution is fundamentally

inspired by Alexander’s seminal theory [Ale99] about pattern languages that integrate patterns

as repeatable solutions to build architectures. We identify the central research challenge as:

How to utilise architectural evolution knowledge that allows us to model and execute reusable

changes to evolve component-based software architectures?

We highlight the challenges and central features of pattern-based evolution as:

 A. Pattern-based Reuse in Architecture Evolution – Reuse-knowledge in the proposed

pattern language is expressed as a formalised collection of interconnected patterns (a.k.a

pattern relations) [Zdu07]. The proposed pattern language is composed of (7+2) patterns;

representing seven newly discovered architecture change patterns and two variants for one of

the patterns. Architecture change patterns abstract the primitive changes (addition, removal,

modification, etc. of components and connectors) into reusable pattern-based changes

(composition, decomposition, replacement, etc. of components and connectors).

 B. Pattern Selection Problem – The pattern selection problem is a significant challenge for

inexperienced developers or architects to search and select the appropriate patterns from large

collections [KZ07]. With a language-based formalism, we exploit the Question-Option-

Criteria (QOC) methodology [MYB
+
91] to address the pattern selection problem. The

complexity of the pattern selection problem increases when new patterns are discovered

[AJP12b] and integrated in the pattern language. The QOC methodology enables the selection

of appropriate pattern(s) by evaluating their impacts and consequences [CHW07] [Zdu07].

 C. Application Domain of the Pattern Language – Component-based architecture models

[MRT99] [HTW
+
99] and their evolution define the application domain of our pattern

language. Patterns in the language enable composition, decomposition, or replacement of

components and their interconnections in the architecture. The proposed contributions are:

– This paper offers a significant extension of previous research on architecture change pattern

discovery [AJP12b] [AJA
+
12] with a pattern language as a system-of-patterns for architecture

evolution.

– In contrast to pattern [TM08] and style [BGS12] invention, we discover patterns [AJP12b]
and specify them in a collection to enable their future reuse.

– In general [JGA
+
12] [AJP12a], we unify the processes of i) architecture change mining to

discover architecture evolution knowledge that guides ii) architecture change execution.

 ECEASST

4 / 32 Volume 59 (2013)

The rest of this paper is organised as follows. Related research is discussed in Section 2.

Background on pattern discovery and pattern modelling is detailed in Section 3. Research

challenges and proposed solutions are presented in Section 4. Details about the composition of

a pattern language are provided in Section 5. The application domain of the pattern language in

presented in Section 6. We illustrate the application of pattern language to evolve software

architectures in Section 7. Implementation of a prototype and evaluation of the solution are

presented in Section 8. Conclusions and future work are outlined in Section 9.

2 State-of-Research on Patterns for Architecture Evolution

In the software architecture community, pattern oriented software architecture [BHS07]

represents one of the foundational literature on patterns and pattern languages for architecture

design. In contrast to patterns of architectural design [BHS07], our solution is the first attempt

towards promoting a pattern language to enable reuse in architectural evolution.

We conducted two systematic literature reviews (SLRs) to classify and compare the existing

research that supports acquisition and application of architecture evolution-reuse knowledge to

guide architectural maintenance and evolution [JGA
+
12] [AJP12a]. In [AJP12a], we define

architectural evolution reuse-knowledge as:

 “a collection and integrated representation (problem-solution map) of analytically

discovered, generic, and repeatable change implementation expertise that can be shared and

reused as a solution to frequent (architecture) evolution problems”.

Based on the results of these SLRs, in Table 1 we highlight and compare the core features of

the relevant existing research with our solution. Table 1 provides the basis for a comparative

analysis (potential and limitations) of our solutions in the context of existing research. The

growing research needs for pattern languages [BHS07] are also highlighted with a dedicated

series of conferences such as PLoP
1
 and EuroPLoP

2
. We are specifically interested to present:

 (a) What are the existing approaches that enable reuse-driven evolution in architectures? and

How are the proposed solutions identical or unique to the existing ones? (See Section 2.1)

(b) What is the role of pattern languages in supporting architecture change management? and

Why is there a need for pattern language(s) to evolve software architectures? (See Section 2.2)

2.1 Reuse-Driven Evolution in Software Architecture

In the context of architecture evolution-reuse knowledge [AJP12a], evolution styles [BGS12]

[GTO
+
08] [TM08], and change patterns [YSJ08] [CHW07] [GZ02] emerged as the only

notable solutions to enable reuse of design-time as well as runtime evolution of architectures.

Evolution styles and change patterns build on the conventional concepts of architecture styles

and change patterns to address architectural evolution.

– Evolution Styles it is interesting to observe that research in [BGS12] [GTO
+
08] exploits the

same concept (i.e., evolution styles) but address two distinct problems in architecture

evolution. More specifically, [BGS12] is the pioneering work on style-driven evolution and is

focused on defining, classifying and reusing frequent evolution plans [BGS12]. In contrast to

1PLoP - Conference on Pattern Languages of Programs: http://www.hillside.net/plop
2EuroPLoP - European Conference on Pattern Languages of Programs: http://www.europlop.net/

http://www.hillside.net/plop
http://www.europlop.net/

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 5 / 32

the solution in [BGS12], the authors in [GTO
+
08] exploit styles for reusable architecture

refactoring. The existing research lacks a consensus about what exactly defines an evolution

style, and what is a precise role of evolution styles in architectural change management. In

style-driven approaches, notable trends are structural evolution-off-the-shelf [BGS12] and

evolution planning [BGS12] with time, cost, and risk analysis to derive evolution plans.

Table 1. A Comparison Summary of Proposed Solution (PatEvol) with State-of-the-Research

– Change Patterns follow reuse-driven methods and techniques to offer a generic solution to

frequent evolution problems. In [JGA
+
12], we observe that existing solutions overlook the

needs for an empirical discovery of evolution patterns. In our systematic reviews of

architecture evolution [AJP12a], we observed that architecture change patterns [YSJ08]

[CHW07] are mostly a proposed solution (based on individual experience) that undermines the

fact that patterns represents reuse knowledge that must be empirically discovered.

Based on the comparison in Table 1, our solution is fundamentally similar to [GTO
+
08] in

terms of enabling evolution reuse. However a most notable difference is that instead of

inventing styles as architecture evolution reuse knowledge, we propose an empirical discovery

of change patterns [AJP12b]. During architectural evolution, we also support a (semi-)

automated selection of the appropriate change pattern(s) from a collection of the patterns in the

language. Considering architecture evolution process, we support a two-step solution for a

continuous discovery and application of patterns. In contrast to adaptation or reconfiguration

patterns [YSJ08] [GH04] that support runtime evolution, our solution is limited to supporting

design-time evolution.

 2.2 Pattern Languages for Architecture Change Management

Pattern languages provide a formal grammar, vocabulary, and pattern sequencing to derive

structure and semantic relationships of patterns in a collection. In the context of architectural

change management, the only notable research is on legacy migration [GZ02] and process-

oriented integration [HZ06] of software architectures. In [GZ02], the authors propose an

incremental migration of legacy software to a flexible architecture using migration patterns.

This solution offers a pattern language for migrating C language implementations to

components in an object-oriented system.

Based on a comparison in Table 1, in contrasts to [GZ02] our solution is not focused on

migration of legacy code to components, instead it supports reuse of architecture evolution.

We propose that change patterns [AJP12b] [AJA
+
12] as generic reusable abstractions must be

empirically identified as recurring, specified once, and instantiated multiple times to benefit

evolving architectures.

Reuse

Method

Proposed

Solutions

Type of

Reuse

Time of

Evolution

Architecture

Descriptions

Tool

Support

Style-based

Reuse

Evolution Styles

[BGS12] [GTO+08]

Evolution Plans Design-time Component and

Connector

AEvol

Pattern-based

Reuse

Change Patterns
[YSJ08] [CHW07]

Co-Evolution
Patterns

Design-time
& Runtime

Component and
Connector

VIATRA

Pattern

Languages

Pattern Languages

[GZ02] [HZ06]

Migration

Patterns

Design-time Object and Service-

Oriented

MDSD Tool

Chain

Proposed

Solution

Change Pattern
Language

Change Patterns
& Operators

Design-time Component and
Connector

PatEvol

 ECEASST

6 / 32 Volume 59 (2013)

3 Change Pattern Discovery and Modelling

In this section, we explain the aspects of pattern discovery and pattern modelling as

background details before presenting the pattern language.

3.1 Patterns Discovery from Architecture Change Logs

Based on an existing evidence of pattern-based evolution [YSJ08] [CHW07], we observed a

lack of experimental methodologies for pattern discovery. In contrast to existing solutions

[CHW07], we propose change patterns as discovered knowledge – from established

knowledge sources – that can be shared and reused to guide evolution. Our solution for change

pattern discovery is conceptually similar to [BGA06] that is focus on extracting change

patterns from CVS repositories. However, in contrast to mining patterns for co-changing

groups of source code files, we discover architecture change patterns from architecture change

logs [AJP12b]. A change log represents a transparent and centrally manageable repository of

change operations on architecture model [AJA
+
12]. By investigating change logs, we perform

the post-mortem analysis of architecture evolution to discover usage-determined change

patterns. We summarise the essential aspects of pattern discovery below. Additional details

about our algorithmic solution, formalism and tool support for pattern discovery are presented

in [AJP12b]. A technical report with extended details of pattern discovery from architecture

change logs is provided in [AJP12d].

– Source of Pattern Discovery is represented as architecture change logs [AJA
+
12] that

maintain traces of architecture change history. Log-based investigation of architecture

evolution provides an updated central repository with analytical support to search, query, and

analyse change representation and to ultimately discover change patterns.

– Formal Methodology for Pattern Discovery is supported by means of graph-based models

to represent change instances from logs as an attributed graph [EPT04]. Graph-based

modelling of architecture change allows us to utilise the sub-graph mining approaches

[AJP12b] to (a) analyse change operationalisation, (b) identify operational dependencies and

(c) to discover recurring change s patterns.

– Algorithmic and Tool Support for Pattern Discovery we introduce the pattern discovery

problem as a modular solution [AJA
+
12]. It enables automation along with appropriate user

intervention and customisation through parameterisation for the pattern discovery process

[AJP12b]. We provide a prototype (G-Pride: Graph-based Pattern Identification) for

automation and scalability of the pattern discovery process.

3.2 Meta-model of Architecture Change Patterns

In architecture change logs [AJA
+
12], we observed that architectural changes can be

operationalised and parameterised to support architecture evolution. More specifically,

architecture elements that are added, removed, or modified are specified as parameters of

change operations. This operationalisation of architectural changes helps us to define

architecture change pattern as: “[…] a generic, first class abstraction to support potentially

reusable architectural change operationalisation”. A typical example of a change pattern is

the replacement of a legacy component C1 with a new component C2 as Replace (C1, C2).
We express pattern-based evolution as: PatEvol:= <ARCH, OPR, CNS, PAT, COL>.

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 7 / 32

In Figure 1, the meta-model provides a structural composition of the pattern elements and

allows a formal specification of pattern language grammar [Zdu07] (in Section 4).

Figure 1. A Meta-model for Change Pattern Composition.

1. Architecture Model (ARCH) refers to the architecture elements to which a pattern can be

applied during change execution. We represent the CBSA model as topological configurations

(CFG) based on a set of architectural components (CMP) as the computational entities, linked

through connectors (CON) [MRT99]. Furthermore, architectural components are composed

of component ports (POR), and connectors are composed of endpoints (EPT) to bind

component ports. The, consistency of pattern-based change and structural integrity of

architecture elements beyond component-based model is undefined.

Change patterns in this paper address component-based software engineering in general and

existing research on component-based software architecture and their evolution [BGS12]

[GTO
+
08] in particular. We believe that architecture descriptions in the meta-model can be

extended to model more conventional object-oriented architectures [GZ02]; however this

possibility can only be seen as a future work. Additional details about component-connector

architectures along with the evolution scenarios are provided in Section 6.

2. Change Operators (OPR) represents change instances that are fundamental to

operationalising architectural evolution. Our analysis of the change log [AJP12b], [AJA
+
12]

goes beyond basic change types to specify a set of atomic and composite operations enabling

structural evolution by adding (ADD), removing (REM), and modifying (MOD) elements in

CBSAs. Architectural composition during change operationalisation is preserved with:

– Atomic Change Operations: these enable fundamental changes in terms of adding, removing,

or modifying the component ports (POR) and connector endpoints (EPT). For example,

addition of a new port P in an existing component C is expressed as (represents type of

element):

Add (P POR, C CMP)

Pattern Composition

Pattern Specification

 ECEASST

8 / 32 Volume 59 (2013)

– Composite Change Operations: these are sequential collections of atomic change operations,

combined to enable composite architectural changes. These enable adding, removing, or

modifying architectural configurations (CFG) with components (CMP) containing ports,

connectors (CON) containing endpoints. For example, addition of a new component C with a

port P in a configuration G is specified as follows (represents operational sequence).

Add (C CMP, G CFG) Add (P POR, C CMP)

Change operators represent primitive changes [BGS12] [AJA
+
12] that are composed into

pattern-based changes [CHW07] [AJP12b] – abstracting addition, removal, and modification

of components and connectors with composition, decomposition, and replacement type

changes in an architecture model.

3. Constraints (CNS) refer to a set of pattern-specific conditions in terms of pre-conditions

(PRE – the conditions before application of a pattern) and post-conditions (POST – the

conditions after application of a pattern) to ensure the consistency of pattern-based changes. In

addition, the invariants (INV – the conditions satisfied during application of a pattern) ensure

structural integrity of individual architecture elements during change execution. For example,

during addition of a component C, the preconditions ensure that a component C does not exist

in a configuration G, and the post-conditions ensure that a component C containing a port P

has been successfully added in a configuration G.

4. Change Patterns (PAT) defines a first-class abstraction that can be operationalised and

parameterised to support potentially reusable architectural change execution expressed as:

PAT<name, intent>: PRE(aem ARCH)

→ POST(ae′m ARCH)

A pattern has a name and an intent that represents a recurring, constrained (CNS) composition

of change operationalisation (OPR) on architecture elements (aem ARCH) – in Figure 1.

We further discuss discovered pattern and their variants in Section 5.

5. Collection (COL) is a repository infrastructure that facilitates an automated storage (once-

off specification) and retrieval (multiple instantiation) of discovered change patterns. It

supports pattern classification for a logical grouping of related patterns based on the types of

architectural changes. Pattern specification, selection, and retrieval are detailed in Section 7.

The background details about pattern discovery and representation help us to outline the

research challenges and proposed solution (in Section 4) with structural composition of change

patterns language (in Section 5).

4 Research Challenges and Proposed Solution

In Section 3 (cf. Figure 1), an individual change pattern outlines the core of a (repeatable)

solutions to resolve recurring evolution problems. The potential of change patterns can only be

achieved if individual patterns are applied in the context of each other – establishing pattern

relations – system or language of patterns [GZ02] [Ale99] [Zdu07]. We propose that,

language-based collection facilitates an iterative pattern selection and their application to

enable an incremental evolution. By incremental evolution, we mean decomposing the

evolution process into a manageable set of evolution scenarios that could be addressed in a

step-wise manner [GZ02]. We identify the challenges in Section 4.1 and present solution in

Section 4.2.

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 9 / 32

4.1 Research Challenges

Based on change pattern discovery (cf. Section 3.1), we outline the core research challenges

as: i) establishing pattern relationships in a language context, and ii) selecting appropriate

patterns in a given evolution scenario. Details about pattern discovery are already presented in

Section 3.1 (our previous research [AJP12b], [AJA
+
12], [AJP12d]). We now focus on:

 Challenge I – Development of Pattern Relationships refers to the possible interconnection(s)

among patterns in a collection (language) that build on each other to support an incremental

solution (step-wise pattern application) for evolution problems.

The challenge lies with establishing the relationships or an order of application for individual

patterns in the language collection [GZ02] [Zdu07]. Pattern interconnection requires creation

of either static, dynamic, or both types of relations among change patterns. Static or predefined

relations express specialised and generalised type of patterns in the language. Static pattern

relations are limiting when expressing sequential relations among the patterns in the language.

In contrast, sequential or dynamic relations determine if a pattern is dependent-on or

independent-of other patterns. We further discuss pattern relations in Section 5.

 Challenge II – Selection of Patterns from a Collection refers to a flexible mechanism for

querying, searching, and selecting the most appropriate pattern from a language collection.

Pattern selection is a significant challenge for inexperienced developers or architects in terms

of searching required patterns in continuously-updated collections and selecting the

appropriate patterns or possible alternatives [KZ07]. Systematically selecting the appropriate

patterns requires a certain amount of expertise from the software architect or the designer.

More specifically, the architect/designer must understand how a pattern solution fits into the

overall architecture evolution problem and how other patterns can be applied to resolve

consequences of applying the first pattern. Some of the typical questions arising for an

architect could be: (1) Which pattern should I choose first?, (2) Which variant of the pattern

works best?, and (3) Which pattern should be applied next? We further discuss pattern

selection and pattern application in Section 7.

4.2 Overview of the Proposed Solution

To support a formalised system-of-patterns for reusable evolution and addressing the

challenges in Section 4.1, we illustrate our solution in Figure 2. We propose architecture

change mining as a complementary and integrated phase to architecture change execution.

Therefore, the reuse knowledge and expertise discovered during change mining can be shared

and reused (as patterns) to guide architecture change execution.

A. Architecture Change Mining – we propose architecture change mining process (language

composition) by exploiting the software repository mining concepts [KCM07] [BGA06] to

investigate architecture change logs [AJA
+
12]. The ultimate outcome of architecture change

mining process is pattern discovery and composition of change pattern language. The

language presents a formalised collection of change patterns to map problem-solution view

of the domain (i.e., evolving CBSAs). The discovered patterns and their variants represent

the language vocabulary as in Figure 2. To express the structural composition of pattern

(meta-model) that governs the relations among pattern elements (i.e., language grammar).

 ECEASST

10 / 32 Volume 59 (2013)

– Addressing Challenge I – Development of Pattern Relationships: in our solution an

important task includes creating an interconnection-of-patterns that provides a foundation to

establishing the relations among change patterns (i.e., pattern sequencing). Reuse-knowledge

is expressed as a collection of patterns to enable a generic and reusable evolution in CBSAs.

Figure 2. Overview of Proposed Solution – Change Mining (PatEvol Development) and

Change Execution (PatEvol Application).

B. Architecture Change Execution – we propose architecture change execution process

(language application) by exploiting software evolution concept [MS08] [Leh96] to enable

pattern-driven reuse in architecture evolution. In Figure 2, we propose architecture change

execution that enables pattern-driven reusable evolution of component-architectures. In the

proposed solution, an architect specifies change request (as addition, removal, or modification)

of architectural elements in existing CBSA. A declarative specification of change requests

enables the selection of appropriate pattern sequences to derive a pattern-driven evolution

strategy based on given evolution scenarios.

 – Addressing Challenge II – Pattern Selection Problem: during change execution, the pattern

selection problem is addressed by adopting and customising the Question-Option-Criteria

(QOC) methodology [MYB
+
91]. The QOC methodology helps us to select the most

appropriate pattern from the language collection by evaluating the forces and consequences of

a given patterns during evolution [YSJ08] [CHW07] [GZ02]. Currently, the pattern language

is composed of 7 change patterns and 2 variants of one of the discovered pattern. Although the

current (7+2) patterns do not represent an extensive collection, the pattern selection problem

increases as the number of newly discovered patterns in the language grows – how a newly

discovered pattern can be incorporated in a language grammar? (see Section 5).

5. Composition of Change Pattern Language

The pattern language is formally composed of (a) a classified composition of patterns and their

variants (1. Vocabulary:) along with a (b) set of rules that govern the structure and

semantic of relations among pattern elements (2. Grammar:) to create a (c) sequence of

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 11 / 32

patterns (3. Sequencing:). We formalise the structural composition of pattern language

as: (x x) =

[

 { }

 { }]

In Section 5.1, we provide the technical details to justify graph-based formalisation of pattern

language grammar. The pattern meta-model is extended to derive language grammar by adding

two elements (a) possible variants of a pattern (PAT <hasVariant> VAR) and (b) pattern

relations expressed as (PATi <follows> PATj).

5.1 Graph-based Formalisation of the Language Grammar

The language grammar () is represented as the structural composition of pattern model

and semantic relationships among elements in a pattern meta-model – outlined in Listing 1.

One of the most critical concerns in pattern language composition is the formalisation of the

pattern language grammar [PCW05] [Zdu07]. We provide a concrete representation of the

language grammar that allows us to better explain pattern specification and pattern selection

aspects in this paper. We prefer graphs to formalise language grammar for:

– Establishing Static and Dynamic Relationships: in contrast to some predefined

interconnection among patterns [PCW05] [Zdu07], attributed graph-based modelling [EPT04]

[UEH
+
01] allows capturing the structure and semantics of pattern relationships. The attributed

graph describes the pattern language with individual pattern as attributed nodes and pattern

relationships as attributed edges (Listing 1). Graph-based modelling enables pattern relations
expressed as dynamic creation or deletion of edges (relations) among nodes (patterns).

– Pattern Matching and Selection: we represent the individual patterns as graph nodes and

exploit sub-graph isomorphism [CMR
+
96] [JCZ04] (based on node matching) to select

individual patterns (i.e., nodes) from language (i.e., graph).

– Visualising Pattern Composition and Relations: enables abstracting a complex pattern

hierarchy. Pattern visualisation greatly helps with analysing pattern structure to evaluate the
possible consequences and alternatives in a given evolution context.

– Graph-based Topology of Patterns: to define possible relationships among patterns in the

language, a graph-based structure enables a flexible mechanism to search and retrieve patterns

efficiently by means of graph traversal techniques.

We formalise the pattern grammar as an attributed graph (AG) with nodes and edges typed

over an attributed typed graph (ATG) [EPT04]. An overview of the mapping between the

elements of pattern template and the graph-based notation are provided in Listing 1 using the

Graph Modeling Language. The pattern language grammar as a nested attributed graph is

expressed as 6-tuple below: = <GTMP, NCLS, GPAT, NCMP, ESEQ, NREL>

 ECEASST

12 / 32 Volume 59 (2013)

1. Pattern Template [GTMP] - outer graph (Line 02 - 36)

2. Pattern Classification [NCLS] - outer graph node (Line 04 - 33)

3. Pattern Specification [GPAT] - inner graph (Line 07 - 32)

4. Pattern Composition [NCMP] - inner graph nodes (Line 09 –29)

5. Pattern Composition Relationships [ESEQ] - inner graph edges (Line 15 – 31)

6. Pattern Sequencing in the Language [NREL] - outer graph edge (Line 34 - 35)

Graph-based Template for Language Grammar Specification A language grammar also

provides a structured template to capture patterns and their relations [19, 25]. We map each of

the elements of the pattern meta-model (from Figure 1) and extend it to the possible

relationships among the pattern elements in the template provided in Listing 1. To enable

compositional semantics for pattern elements, we also address binary compositional

relationships among a pattern (P) and its constituent element (E) given as a tuple P

← E :

<ClassifiedBy, ComposedOf, ConstrainedBy, Evolves, hasVariant, follows>. The relation

between a pattern and change operators is specified as: Operators

← Pattern.

Listing 1. Graph-based Template for Change Pattern Specification (GraphML notation).

1. [Classifies: CLS

← PAT] – defines the classification of change pattern instances in

the pattern language grammar. Pattern classification therefore defines a logical grouping of

change patterns based on their impact of change on architecture model.

2. [ComposedOf: OPR

← PAT] – defines the change operational composition in a

given pattern instance. It reflects the type of change operations (Add(), Rem(), Mod()) and the

operational composition (atomic, composite operators).

3. [ConstrainedBy: CNS

← PAT)] – defines a set of constraints that ensure the

structural integrity of architecture models before and after change pattern application.

Constraints specify the preconditions (architecture model before pattern application), the

invariants (preserving the compositional hierarchy of architecture model during change) and

post-conditions (architecture model after pattern application).

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 13 / 32

4. [Evolves: ARCH

← PAT] – defines the application of a change pattern on a given

architecture model. Additional details about the composition hierarchy in architecture models

are presented in Section 6.

5. [hasVariant: (VAR

← PAT)] – defines the relationship between a pattern and its

variants. The variant of a pattern has the same structure and semantics as a pattern; it

represents the variations among the possible implementations of a pattern.

6. [Follows: PATJ

← PATK)] – defines the sequence among two change patterns PATK

follows PATJ. To develop pattern relations, patterns must be applied in a specific order defined

by pattern sequences. The sequence <PATJ, PATK, PATL> means a pattern PATJ is selected

before pattern PATK, which itself is selected before PATL.

5.2 Language Vocabulary – Change Pattern and their Variants

The language vocabulary () is a classified (CLS) composition of change pattern (PAT)

instances and their possible variants (VAR). We specify discovered pattern instances in a

pattern template developed by following the language grammar (Listing 1). Based on

guidelines in [HAZ07], we specify patterns by capturing a) Pattern Description, b) Context

and Forces, and c) Pattern Variants detailed in pattern template below.

Pattern 1 - Component Mediation Pattern

Pattern Description
Component Mediation ([CM] <C1, CM, C2>)

Intent – To interpose a mediator component (CM) among two or more directly
connected components (C1, C2)

Context and Forces
Constraints – before, during and after change.
 – Preconditions C1 and C2 must be directly connected.
 – Invariants C1 and C2 must be disconnected.
 – Post-conditions C1 and C2 must connected with CM.
Change Operators – to apply architecture restructuring.
 – Add a Component CM

 – Remove a Connector X1 (C1, C2) (more connectors may exist, see Variants)
 – Add a Connector X2 (C1, CM)
 – Add a Connector X3 (CM, C2)
Architecture Models – the affected architecture model.

Pattern Variant(s)
Component Mediation has two variants
– Variant 1: Parallel Mediation refers to addition/removal of the architectural
elements that provide alternative/parallel functionality.
– Variant 2: Co-related Mediation refers to adding/removing a set of
functionally co-related architecture elements into the existing model.

 ECEASST

14 / 32 Volume 59 (2013)

Pattern 2 – Functional Slicing Pattern.

Functional Slicing([C] <C1, C2>)
Intent – To split a component (C) into two or more components (C1,
C2) for functional decomposition of C.
Constraints – before, during and after change.
 – Preconditions C already exists in the architecture.
 – Invariants N/A.
 – Post-conditions C removed, C1 and C2 must be added.
Change Operators – to apply architecture restructuring.
 – Add a Component C1 by splitting C

 – Add a Component C2 by splitting C

 – Remove a Component C

Pattern 3 – Functional Unification Pattern.

Functional Unification(<C1, C2> [C])
Intent – To merge two or more components (C1, C2) into a single
component (C) for functional unification of (C1, C2).
Constraints – conditions before, during and after change.
 – Preconditions C1 and C2 already exist in the architecture.
 – Invariants N/A
 – Post-conditions C1 and C2 removed, C is added.
Change Operators – to apply architecture restructuring.
 – Add a Component C

 – Remove a Component C1

 – Remove a Component C2

Pattern 4 – Active Displacement Pattern.

Active Displacement(<C1:C2>, <C1:C3> [C2:C3])
Intent – To replace an existing component (C1) with a new
component (C3) while maintaining the interconnection with existing
component (C2).
Constraints – conditions before, during and after change.
 – Preconditions C1 and C2 must be directly connected.
 – Invariants C2 exists in architecture, C1 is removed.
 – Post-conditions C2 connected to a new component C3.
Change Operators – to apply architecture restructuring.
 – Remove a Component C1

 – Remove a Connector X1(C1, C2)

 – Add a Component C3

 – Add a Connector X2(C2, C3)

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 15 / 32

Pattern 5 – Child Creation Pattern.

Child Creation ([C] <X1:C>)
Intent – To create a child component (X1) inside an atomic
component (C).
Constraints – conditions before, during and after change.
 – Preconditions component C is an atomic component.
 – Invariants N/A.
 – Post-conditions X1 is a child component of C (C is Composite).
Change Operators – to apply architecture restructuring.
 – Add a Component X1

 – Move in Component X1 inside a Component C

Pattern 6 – Child Adoption Pattern.

Child Adoption (<C1:X1, C2>, < C1, C2:X1>)
Intent – To adopt a child component (X1) from a composite component
(C1) to an atomic component (C2).
Constraints – conditions before, during and after change.
 – Preconditions X1 is a child inside composite C1.
 – Invariants X1 is removed from C1.
 – Post-conditions X1 is added in component C2.
Change Operators – to apply architecture restructuring.
 – Remove a Component X1 from Component C1 (C1 is atomic)

 – Add a Component X1 into Component C2 (C2 is composite)

Pattern 7 – Child Swapping Pattern.

Child Swapping ([X1:C1], [X2:C2] <X2:C1>, < X1:C2>)
1. Intent – To swap the child components (X1, X2) from composite
components (C1, C1).
2. Constraints – conditions before, during and after change.
 – Preconditions X1 is a child of composite component C1,
 X2 is a child of composite component C2.
 – Invariants C1 and C2 must be moved out of their parents C1 and C2.
 – Post-conditions X2 is a child component of C1,
 X1 is a child component of C2

3. Change Operators – to apply architecture restructuring.
 – Remove a Component X1 from Component C1

 – Add a Component X1 into Component C2

 – Remove a Component X2 from Component C2

 – Add a Component X2 into Component C1

 ECEASST

16 / 32 Volume 59 (2013)

5.3 Language Sequencing – Change Pattern Relationships

Once a grammar (Section 5.1) and vocabulary (Section 5.2) are specified, we can derive

pattern sequences conforming to the language, as presented in Figure 3. More specifically, the

pattern language enables pattern sequence similar to the natural language where the grammar

provides the structure for generating sentences. An important question is ‘why we choose a

particular sequence of patterns among the possible alternative sequences in the language’. In

the literature, pattern sequencing is derived based on a pattern hierarchy [PCW05] (e.g.,

generalised patterns must be on top of specialised patterns). For example, composition,

decomposition, or replacement of elements is considered as a specialisation of addition,

removal, or modification of elements. Another solution for language sequencing offers

annotated grammar [Zdu07] with the Question Option Criteria methodology [MYB
+
91]. In

contrast to pattern hierarchy [PCW05] and annotated grammar [Zdu07], we propose static

sequences and dynamic sequences.

– Static Sequence of Patterns allows a pre-determined, mostly manual analysis of the domain

(by pattern author or language creator) to establish a fixed sequence among the patterns. An

example of the static sequencing is provided in Figure 3. In Figure 3, we derive a sequence

that is interpreted as ComponentMediation <follows> ActiveDisplacement: “if the

replacement of a component is required”. A pattern sequence annotation in the language

(Listing 1 Line 34-35) is specified as:

<edge id=”Follows” source=”ComponentMediation” target=”ActiveDisplacement”>

 <desc> if the replacement of a component is required </desc>

</edge>

Limitations of Static Sequencing – static sequencing is a rigid structure of pattern relations in

the language with minimal flexibility. This could be particularly limiting in a context where

the exact sequences of patterns depend on some arbitrary evolution scenario. For example, in

many situations, we might need the application of ActiveDisplacement pattern before

applying ComponentMediation.

– Dynamic Sequence of Patterns – in contrast to static ones, they provide a flexible sequence

by means of dynamic relationships among patterns. To support dynamic sequences, we follow

the design-space analysis for patterns [Zdu07] based on the Question Option Criteria (QOC)

[MYB
+
91]. Details and a practical case of pattern sequencing are presented in Section 7. For

example, the intent of a pattern language user is to enable component composition but he/she

is unaware which pattern to select. By following QOC, patterns can be applied in sequence

guided by the pattern language user (selecting one pattern at a time).

1. Question – How to compose an atomic component into a composite one?

2. Option – ChildCreation pattern enables component composition.

3. Criteria – The consequence of ChildCreation is the composition of an atomic component

into a composite component (composed of one or more child/sub component).

We propose that the vocabulary of pattern language continuously evolves as new patterns are

discovered and integrated in the language by following language grammar (cf. Section 5.1).

Once a new pattern is discovered [AJP12b] [AJA
+
12], it is up to the user or more specifically

pattern author to provide a name and intent for the new pattern (confirming to language

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 17 / 32

grammar in Listing 1). As the last step, establishing the relation(s) of newly discovered

pattern with existing patterns is achieved with pattern sequences (already discussed above).

Figure 3. An Overview of Change Pattern Language.

6 Application Domain of the Pattern Language

The applicability (a.k.a. application domain) of the proposed pattern language is limited to

component-based software architecture (CBSA) models and their evolution. In this section, we

focus on presenting an overview of CBSA for an EBPP (Electronic Billing Presentment and

Payment) case study
3
 and discuss the EBPP evolution scenarios. The case study and evolution

scenarios introduced here are used to clarify pattern selection and pattern application aspects in

Section 7.

6.1 Description of Composition-Based Architecture Models

Architectural descriptions of a component-based architecture model as an attributed graph are

presented in Figure 4. We present the architecture meta-model as an attributed typed graph

(ATG) [EPT04], while a possible architectural instance (Figure 4) is represented as an

attributed graph (AG) that is typed over an ATG. We prefer graph-based modelling mainly

because: we model architecture as a graph and exploit graph transformations to evolve the

architecture in a formal and automated way [CMR
+
96]. More specifically, exploiting the

Double Push Out graph transformation [CMR
+
96] maintains the structural integrity of

evolving architecture (further details in Section 7).

In Figure 4, the CBSA model represents Architectural Configuration (CFG: cfg_Payment) as

a composition of computational Components and their Connectors. Furthermore, each

3 http://www.nacha.org/ebpp

http://www.nacha.org/ebpp

 ECEASST

18 / 32 Volume 59 (2013)

component must contain a Port for communication and atomic components could be

composed into composite ones. Connectors must contain Endpoints for component binding.

Figure 4. Structured Description of CBSA Model.

6.2 Component and Connector Architectural View for EBPP

A high-level component and connector view of the EBPP is presented in Figure 5. For

illustrative reasons, we abstract the details about data store (DS) and user interface (UI) layers

and focus on architectural layers modelling components and connectors [MT00] [KCM07].

Figure 5. Architectural View for EBPP (before Evolution).

Architectural configurations represent Metering (to provide meter information for customer’s

consumption), Billing (to handle customer billing), and Payment (to manage customer

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 19 / 32

payments corresponding to the billing amount). We are interested in component, connectors,

and the interaction (messaging) that exists among the components.

- Components (CMP) represents the first-class entities as computational elements or data

stores of the EBPP architecture model in Figure 5. Component type classification is:

1. Atomic Component - is the fundamental type of a component that could not be decomposed.

Atomic components in Metering configuration are BillerCRM, BillerApp and MeterApp.

2. Composite Component - represents a component that contains an internal architecture as a

sub-configuration of components and connectors inside composite component. The only

example of composite component in is custPayment that has weekPayment and monthPayment

as its children or sub-component.

 - Connectors (CON) are responsible for message passing among the component ports. Unlike

composite components, EBPP architecture has only atomic connectors for component

interconnection. Example of a connector-based message passing among BillerCRM (port:out -

source) and custPayment (port:in - sink) components is expressed as makePayment connector.

6.3 Evolution Scenarios for EBPP Architecture

We look at some evolution scenarios to demonstrate desired changes in existing architecture

model for the EBPP system. We adopt the Architecture Level Modifiability Analysis (ALMA)

[BLB
+
04] method for identification and analysis of EBPP architecture evolution as presented

in Figure 6. The motive for using ALMA method is to systematically:

 - Select architecture evolution scenario (evolution pre-condition),

 - Evaluate impacts of selected scenarios on existing architecture,

 - Interpret results of scenario execution (evolution post-condition).

In addition, the results of pattern-base changes on architecture model can be evaluated and

interpreted using ALMA.

Figure 6. Overview of ALMA for Selection, Evaluation and Interpretation of Scenarios.

Once we have (a) analysed evolution cost (Figure 6) and (b) specified the architecture (Figure

4), we now present (c) selected scenarios along with (d) their evaluation and (e) change impact

interpretation in Table 2. A set of evolution scenarios are presented in Table 2 following

ALMA [BLB
+
04]. Key characteristics and evolution-centric aspects of CBSA are:

- Composite Change Execution must abstract atomic changes (addition, removal, and

modification of component and connectors) into composite ones that allow integration,

composition, and replacement of a set of architecture elements [GTO
+
08] [AJA

+
12].

3. Scenario Selection

ES1. Integration

ES2. Composition

2. Architecture Description

Descriptions of all
(affected) EBPP
components and
connectors (Figure 5).

1. Cost Prediction

Analyse all
evolution scenarios.
Identify change
operations to
execute scenario

5. Results Interpretation

Change impacts on
architecture analysed
with change pre/post-
conditions (Table 2)

4. Scenario Evaluation

Effects of scenarios
(ES1, ES2) on EBPP
architecture model
(Table 2)

 ECEASST

20 / 32 Volume 59 (2013)

- Evolution Reuse is a key characteristic that must enable a generic, reuse-driven change for

recurring evolution problems in component-based architecture models [BGS12].

- Consistency of Architecture Models ensures structural integrity and composition constraints

of architecture are preserved before (pre-conditions) and after evolution (post-conditions).

Table 2. Selection, Evaluation and Interpretation of Scenarios with guidelines in ALMA.

[X = Removal] [+ = Addition] [<preconditions>

→ <postconditions>]

Scenario Selection Scenario Evaluation Results Interpretation

ES1 - […] to integrate a component

PaymentType that facilitates the selection

of a payment type mechanism between
the directly connected components

BillerCRM and CustPayment.

EBPP architecture is modified with addition

of a new components and two connectors to

mediate customer billing and payments:
opr:=ADD(PaymentType CMP)

opr1:=ADD(<getBill, selectType> CON)

ES2 - […] to compose the PaymentType

component with DirectDebit and

CreditPayment child components that

allows a customer to avail-of flexible

options for billing payments.

The internal architecture of PaymentType is

modified with addition of two child

components DirectDebit and CreditPayment
opr:=ADD(DirectDebit CMP)

opr:=ADD(CreditPayment CON)

7 Pattern Language for Evolution in CBSA

After presenting the pattern language composition (Section 5) and architecture evolution

scenarios (Section 6), we now focus on the pattern language application to support

architectural evolution of EBPP. Language support for evolution refers to exploiting a

collection of patterns as generic, repeatable solutions to recurring architecture evolution

problems. The patterns from the language can be selected and applied in a sequential fashion

to support an incremental evolution [HZ06] in CBSAs.

7.1 Change Patterns as Evolution-centric Reuse Knowledge

In the proposed pattern language, architecture evolution-reuse knowledge is expressed as

pattern collection that enables mapping among the problem-solution view to enable reusable

evolution strategies (cf. Section 4, 5). An overview of the pattern-based evolution is presented

in Figure 7.

To enable pattern-driven reusable change execution, we adopt the design space analysis

[MYB
+
91] [MM95] for a systematic pattern selection from language collections. Design space

analysis is a methodology to address design-related problems in human-computer-interaction

(HCI) [MM95]. Here, we utilise design space analysis for an (a) explicit representation of

alternative evolution strategies (available patterns) and (b) the rationale for choosing among

available strategies (selected patterns). In Figure 7 we illustrate that:

– Problem Space represents evolution scenarios that we identified from the EBPP case study in

Table 2.

– Problem-Solution Map represents the patterns and their relations in the language to provide a

mapping of evolution scenarios and their solution as pattern instances (Section 5).

– Solution Space represents pattern-driven reuse to guide architecture evolution that is the

focus of this section.

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 21 / 32

Figure 7. Overview of the Mapping among Problems (Scenarios) to their Solutions (Patterns).

7.2 Pattern Selection with Design Space Analysis

In a technical context, problem-solution mapping represents the pattern selection problem

based on a given evolution context. First, we look at the Question-Option-Criteria [MYB
+
91]

(using design space analysis [MM95]) that allow us to resolve the pattern selection problem to

enable pattern-driven evolution. We illustrate pattern selection in Figure 8 by illustrating the

selection of Component Mediation patterns (cf. Section 5 – Pattern 1). Figure 8 represents a

visualisation of the 3-step QOC-based pattern selection process:

Figure 8. QOC Methodology for Pattern Selection.

1. Question – allows representation of problem space that allows a declarative specification for

intent of change, e.g; What are the available pattern(s) to integrate a component

11 CO

22 CO

33 CO 33 CO

12 CO

 ECEASST

22 / 32 Volume 59 (2013)

PaymentType that facilitates the selection of a payment type mechanism between the directly

connected components BillerCRM and CustPayment?

2. Options – enables problem-solution mapping with selection of the most appropriate pattern

from language collection, e.g; The available pattern for integration is Component Mediation

that has two variants Parallel Mediation and Corelated Mediation patterns.

3. Criteria – defines analysing the solution space to allow evolution of architecture by

satisfying the given criteria, e.g; The application of Component Mediation allows a mediator

component integrated among two directly connected components.

7.3 Pattern Application with Graph-Transformation

After an overview of pattern selection, we now focus on pattern application for architecture

evolution that is guided by graph-transformation [CMR
+
96]. In the context of model-driven

evolution of software architectures [Gra07], our solution models architecture as a graph (cf.

Section 6) and exploits graph transformation that is guided by change patterns to evolve

architectures. This means specification of architecture models as graph allows us to exploit

graph transformation for architectural evolution [CMR
+
96].

To support architectural evolution with pattern language, we primarily focus on (a) enabling

change reuse and (b) maintaining the structural consistency of architecture before and after

change execution. More specifically, during change execution change operationalisation is

abstracted as declarative graph transformation rules. Evolution in the context of composition-

based architecture abstracts atomic changes into a set of composite change operations. The

atomic change operations (Add(), Remove(), Modify()) on architectural elements (components

and connectors) must be abstracted into reusable, composite and domain specific changes.

Composite-domain specific changes include Integrate(), Replace(), Decompose(), Split(),

Merge() etc. of architectural components and connectors in CBSAs.

Evolution Scenarios - In the existing functional scope of the case study (Section 6.3, Table 2),

the company charges its customer with full payment of customer bills in advance to deliver the

requested services. Now the company plans to facilitate existing customers with either direct

debit or the credit-based payments of their bills. In the following, we illustrate the role of

ComponentMediation followed by ChildCreation pattern to allow (a) the integration of a

component PaymentType (ES1) and (b) the creation of its child components DirectDebit or

CreditPayment (ES2).

Evolution Scenario I - to integrate a component PaymentType that facilitates the selection

of a payment type (direct debit, credit payment) mechanism among the directly connected

components BillerCRM and CustPayment.

In the following, we illustrate pattern-based evolution that follows a three-step process:

Change Specification, Pattern Selection and Change Execution presented in Figure 7.

Step I – Change Specification - Questions

We specify the change rule along with architectural pre-post-conditions using GML

[UEH
+
01]. A declarative specification allows architect to represent a syntactical context of

architectural change that contains the (a) source architecture model

(Source<ArchitectureModel>: as Preconditions), (b) typed architecture elements

(ArchitectureElement ElementType) that must be added, removed, or modified, and (c)

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 23 / 32

anticipated target architecture (Target<ArchitectureModel>: as Postconditions). Change rule

is formally expressed as:

Step II – Pattern Selection – Options

To select an appropriate pattern, we query the pattern language based on pattern-specific

conditions. These conditions are expressed as preconditions and post-conditions that must be

satisfied to preserve the structural integrity of the overall architecture and individual elements

during change execution.

– The precondition(s) represent the context of architectural elements before change execution.

In Figure 9a, the precondition (pre) specifies the exact sub-architecture

makePayment(BillerCRM, CustPayment) that must be changed in the source architecture

(source). To apply changes, we must find an exact structural match ms of preconditions in the

architecture such that ms: pre → source as in Figure 9a. Figure 9 follows the Double-Push-

Out (DPO) [CMR
+
96] approach for graph transformation. The DPO graph transformation

allows the (a) source architecture (graph) to be transformed into the (b) target architecture

(graph) by using an intermediate architecture (graph). We represent the source, intermediate

and target architecture as preconditions, invariants and postconditions of transformation. For

example, preconditions are expressed as (cf. Figure 9a):

<node id = "Preconditions">
 <desc> Specification of Preconditions </desc>
 <data key="ArchitectureElement"> BillerCRM </data>
 <data key="ElementType"> CMP </data>
 <data key="ArchitectureElement"> CustPayment </data>
 <data key="ElementType"> CMP </data>

</node>

– The invariants represent the architectural structure that is never changed during evolution.

This is represented as Figure 9b, the intermediate architecture mi : inv → intermediate with

Double-Push-Out (DPO) graph transformations [CMR
+
96].

<node id = "Invariants">
 <desc> Target Architecture Model</desc>
 <data key="ArchitectureElement"> BillerCRM </data>
 <data key="ElementType"> CMP </data>
 <data key="ArchitectureElement"> CustPayment </data>
 <data key="ElementType"> CMP </data>

</node>

– The postcondition(s) specify the context of evolved architectural elements as a result of the

change execution. After applying changes on specified elements the overall architectural

structure must be preserved. To include the modified architecture elements in the target

<node id = "Change Rule">
 <desc> Specification of Change Rule </desc>

 <date key="ChangeRule"> Integration </data>

 <data key="Operation"> ADD </data>
 <data key="ArchitectureEelment"> PaymentType </data>

 <data key="ElementType"> Component </data>
</node>

 ECEASST

24 / 32 Volume 59 (2013)

architecture (target) an exact structural match mt of postconditions in target architecture must

exist mt : post → target (Figure 9c) expressed as:

<node id = "PostConditions">
 <desc> Target Architecture Model</desc>
 <data key="ArchitectureElement"> BillerCRM </data>
 <data key="ElementType"> CMP </data>
 <data key="ArchitectureElement">PaymentType </data>
 <data key="ElementType"> CMP </data>
 <data key="ArchitectureElement"> CustPayment </data>
 <data key="ElementType"> CMP </data>

</node>

Step III – Change Execution - Criteria

Once an exact instance of preconditions in a source architecture is identified, the pattern

language is queried with pre-conditions and post-conditions that enable the retrieval of the

appropriate pattern that provides the potential reuse of change operationalisation to enable

architectural evolution (cf. Figure 8). The query matches the specified change pre-conditions

and post-conditions to retrieve the pattern definition. Figure 9 illustrates the retrieved instance

of ComponentMediation pattern. In addition, pattern instantiation involves the labelling of

generic elements in specifications with labels of concrete architecture elements. For example,

in Figure 9a, the connector instance makePayment that is missing in the change post-

conditions is removed from the source architecture. The newly added instance(s) of

component PaymentType and connector getType, makePayment are the candidates for

addition into source to obtain target in Figure 9c and is represented as:

<node id = "ChangeOperations">
 <desc> Change Operationalisation</desc>
 <data key="ChangeOperator"> Add </data>
 <data key="ArchitectureElement"> PaymentType </data>
 <data key="ElementType"> CMP </data>
 <data key="ChangeOperator"> Remove </data>
 <data key="ArchitectureElement"> makePayment </data>
 <data key="ElementType"> Connector </data>

 ….
</node>

– Change Operationalisation We provide a brief overview of the change execution that is

facilitated using the DPO construction [CMR
+
96]. In Figure 9, the order of change operations

is insignificant and the sequence is presented as it appeared in the given pattern instance.

– Deletion: In Figure 9b, Source/Intermediate describes the architecture elements to be

deleted from the source architecture.

For example, the connector makePayment is removed from the BillerCRM and

CustPayment. The intermediate architecture is obtained from the source architecture for

elements which are a pre-image in Source, but not in Intermediate

– Addition: In Figure 9c, Target/Intermediate described the part that must be added in Source

to obtain Target during change execution. In Figure 9c, the component PaymentType is

added with connector selectType and custPay in the architecture.

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 25 / 32

Figure 9: Pattern-based Architecture Evolution Using Graph-Transformation (DPO Approach)

Evolution Scenario II - to compose the PaymentType component with DirectDebit and

CreditPayment child components that allows a customer to avail-of flexible options for

billing payments.

Figure 10. Child Creation Pattern to Enable Payment Type Options.

After applying the ComponentMediation pattern above, in Figure 10 again we follow the

process (Step I Change Specification, Step II Pattern Selection) to select the ChildCreation

pattern from language. The ChildCreation creation patterns creates the DirectDebit and

CreditPayment child components into the newly added PaymentType component (Step III

Change Execution) expressed as: [ComponentMediation follows ChildCreation].

8 Implementation and Discussion

In this section, first we discuss the role of the prototype PatEvol that facilitates semi-

automation and parameterised customisation of the evolution process. We discuss preliminary

evaluations of pattern discovery and pattern selection problems and future validations.

 ECEASST

26 / 32 Volume 59 (2013)

8.1 PatEvol Prototype

The prototype is presented in Figure 11 with screenshots of its interfaces explained below:

1. Change Specification Interface – allows an architect to declaratively specify the intent of

change as the evolution rule (cf. Section 7.3). An evolution rule explicitly specifies intent of

change, the architecture models to be evolved, i.e., source architecture and preconditions of the

architecture model. In the functional context of the prototype, rules are specified in GML.

Figure 11. Prototype-Tool Support for Pattern-Driven Architecture Evolution.

2. Architectural Descriptions – are provided with a graph-based notation (GML) [UEH
+
01].

Architectural descriptions before and after evolution are verified with pre-/postconditions to

ensure structural integrity of the architecture is preserved.

3. Pattern Selection and Application – patterns are expressed in the language as a nested

graph. Pattern selection is enabled with design space analysis based on the QOC methodology

[MYB
+
91] (cf. Section 7.2). The developed prototype (PatEvol) assists the user to specify and

execute pattern-based changes with appropriate parameterisation and customisation of the

process as presented in Figure 11. In Figure 11, we illustrate integration of a component

among directly connected components as the evolution scenario (ES1, cf. Table 2 – also the

running example in Section 7). More specifically, the prototype interface allows the user to

specify the (a) intent of change, (b) architecture elements in the source model (to be added,

removed or modified), and (c) preconditions on source architecture model.

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 27 / 32

 8.2 Preliminary Evaluations

The overall solution requires evaluation of (a) pattern discovery (Change Mining process) as

well as (b) Pattern selection and pattern application (Change Execution process). The

technical details about pattern discovery are beyond the scope of this paper.

The objective is to evaluate the solution’s capability to support reuse-driven change execution

by means of change patterns. We claim that, ‘if architecture changes could be specified

declaratively, pattern collection in the language abstract complex operational details to enable

generic, reusable, off-the-shelf change execution’. Evaluation about algorithmic complexity

and pattern validation process are detailed elsewhere [AJP12b] [AJA
+
12].

– Experimental Setup to Evaluate Pattern Selection: We summarise the details of the

experimental design regarding the precision and recall of the pattern selection below.

Evolution scenarios are selected from Table 2 identified using ALMA [BLB
+
04]. The

universal search space for pattern selection is represented as pattern language comprising of a

total of 9 change patterns (7 patterns and 2 variants of a pattern) in Figure 3.

Evaluation Objective: to assess the adequacy of solution in supporting pattern selection in

given evolution context. We represent pattern selection precision and selection recall criteria.

– Input(s) of Evaluation Process are (i) evolution scenarios (cf. Table 2), and (ii) architecture

change specification by the user (cf. Figure7).

– Output(s) of Evaluation Process is a measure of pattern selection precision and recall as:

1. Pattern Selection Precision (P) is defined as number of relevant pattern instances

PAT retrieved by a search divided by the total number of pattern instances

PAT) retrieved.

2. Pattern Selection Recall (R) is defined as number of relevant pattern

instances PAT retrieved by a search divided by the total number of existing

relevant pattern instances PAT .

Summary of Results: Based on the criteria above, a summary graph of precision and recall is

presented in Figure 12. Due to a smaller search space (7 patterns and 2 variants), the recall is

measured to be 0.99 approx. for all pattern instances. A high recall suggests the solution is

adequate in selecting the most relevant instances from available collection. However, we

experience a different behaviour for precision, because identification of the exact pattern in the

context of related patterns is more challenging. The corresponding values for selection

precision fluctuate between 0.33 and 0.99. Whenever we query for “component integration

1. Select Evolution Scenarios

ES1 – Component Integration
ES2 – Component Composition

2. Use Available Patterns

3. Evaluate Selection Precision

4. Evaluate Selection Recall

 ECEASST

28 / 32 Volume 59 (2013)

pattern”, we are returned with at least three pattern instances (Component Mediation, Parallel

Mediation, and Co-related Mediation).

Figure 12. Precision and Recall for Pattern Selection.

8.3 Effects of Pattern Classification on Selection Precision

The classification of change patterns in Figure 13 helps us to increase the precision of pattern

selection. Pattern classification enables a logical grouping of related patterns based on the

types of architectural changes that a group of patterns support. The prototype in Figure 13 also

allows a user to specify and classify the change. In the following, we discuss the individual

elements of the prototype to specify change patterns.

Figure 13. Screen-shot of Prototype for Change Pattern Specification and Classification.

A. Specifying Pattern Name and Intents As presented in Figure 13, the prototype allows a

user to specify the name, intent and classification type for a pattern. Pattern name and intent

0

0,2

0,4

0,6

0,8

1

1,2

CM FS FU AD CC CA CS

Selection Precision

Selection Recall

CM = Component Mediation
FS = Functional Slicing
FU = Functional Unification
AD = Active Displacement
CC = Child Creation
CA = Child Adoption
CS = Child Swap

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 29 / 32

are specified by a user based on the impact of change pattern. For example, in Figure 13 the

visualisation of pattern preconditions and pattern post-conditions helps a user to identify that

the pattern provides Component Mediation among two directly connected components. The

user specifies classification type of change pattern.

B. Pattern Constraints and Operations

The constraints and operations are extracted from each identified pattern and presented to the

user that helps to decide about the name and intent of the pattern. The constraints are presented

as preconditions and post-conditions. The change operations represent individual changes on

architecture model as presented in Figure 13.

C. Change Pattern Impact

Finally, the impact of each discovered pattern is visualised to help the user to analyse the

impact of change patterns before and after the application of change pattern in Figure 13.

We have classified the existing patterns into three distinct types as Composition, Association

and Decomposition patterns with classification ids 1, 2, and 3 respectively, presented in Figure

14. For example, in Figure 14 the Child Creation pattern enables the composition of an

atomic component into a composite that contains one or more child components.

Figure 14. An Overview of Change Pattern Classification.

Pattern classification reduces the pattern search space an ultimately increasing selection

precision. For example, if a user wants to select a pattern for decomposition of a composite

component into atomic components; instead of searching in a space of 7 different patterns

he/she can locate the Functional Slicing pattern under classification type decomposition.

A possible limitation for pattern type classification is that the user must specify the

classification type in which they aim to search the patterns. If an appropriate pattern is not

found, the user must rely on the primitive architectural changes. Also, if the type is not

specified correctly, the appropriate pattern(s) must be searched in all the classifications which

results in a lower precision – as discussed in Figure 12. Based on the pattern classification in

Figure 12, a summary graph of precision and recall is presented in Figure 15. Pattern

classification has no impact on selection recall factor that remains at 0.99 also highlighted in

Figure 12. However, the selection precision factor is increased because the pattern search

space is minimised with the pattern type classification. The selection precision for association

and decomposition type patterns is 0.99. The precision for composition type pattern is 0.5 – a

low precision is a consequence of the overlap of change support by Child Swap, Child
Creation and Child Adoption patterns is 0.33 that is subject to further evaluations.

 ECEASST

30 / 32 Volume 59 (2013)

Figure 15. Precision and Recall After Pattern Classification.

Plan for Future Validations: The accuracy of pattern selection only reflects on the solution’s

capability to assist and relieve an architect to retrieve the most appropriate patterns in a given

evolution context. However, in future we are more concerned about a more rigorous validation

by involving the software architect/designers to utilise the prototype to execute evolution

scenario by accommodating more case studies. We also need to validate prototype-usage

followed by expert opinion with a series of questioner for an objective evaluation of solution.

9 Conclusions and Future Research

The proposed solution is the first attempt towards promoting the pattern language as a

collection of empirically discovered and connected architecture change patterns. We provide a

significant extension of our previous research (on pattern discovery) to formalise and

interconnect existing patterns to achieve reuse of frequent changes during evolution. The

solution promotes architecture evolution as a two-step process: to leverage architectural

change mining – discovering pattern instances from change logs – to support potential reuse

during architecture change execution. We demonstrated that if an architectural evolution

problem can be specified declaratively, pattern-driven evolution could relieve an architect

from the underlying operational concerns for executing frequent evolution tasks facilitated

with change patterns. The ultimate contribution is:

– Enabling ‘post-mortem’ analysis of architecture evolution histories to discover

operationalisation and patterns that can reused to guide architecture change management.

– Language as a formalised system-of-pattern allows problem-solution mapping to reuse

generic, reusable operationalisation. The role of the pattern language is central in promoting

patterns to achieve reuse and consistency in evolution for CBSA.

Currently, we have a limited number of (7+2) patterns in the language. However, language as

an evolving collection requires a continuous discovery and specification of new patterns.

Future Work – In future, we will primarily focus on addressing the granularity of change

execution beyond generic specifications of identified patterns. We aim to focus on

classification of change patterns as commutative and dependent patterns. Such a classification

can help us to analyse the extent to which architecture evolution could be parallelised

(identifying dependent and independent change patterns). As part of future research, we will

also focus on a systematic identification and resolution of change anti-patterns. We plan to

evaluate the solution and its prototype in a more realistic environment by involving designers

0

0,2

0,4

0,6

0,8

1

1,2

FU CC CA CS CM AD FS

Selection Precision Selection Recall

Decomposition = 3

FS = Functional Slicing

Association = 2

CM = Component Mediation

AD = Active Displacement

Composition = 1

FU = Functional Unification

CC = Child Creation

CA = Child Adoption

CS = Child Swap

 A Pattern Language for the Evolution of CBSAs

Proc. PPAP 2013 31 / 32

or software architects. Additional case study of updating a peer-to-peer towards client-server

architecture shall allow a more rigorous evaluation of architectural evolution.

Acknowledgements

This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero –

the Irish Software Engineering Research Centre (www.lero.ie).

References

[AJA
+
12] A. Ahmad. P. Jamshidi, M. Arshad, C. Pahl. Graph-based Implicit Knowledge Discovery

from Architecture Change Logs. In 7th Workshop on SHaring and Reusing Architectural

Knowledge, 2012.

[AJP12a] A. Ahmad, P. Jamshidi, Claus Pahl. Classification and Comparison of Architecture

Evolution Reuse Knowledge – A Systematic Review. In Journal of Software Evolution and

Process, 2014.

[AJP12b] A. Ahmad. P. Jamshidi, C. Pahl. Graph-based Pattern Identification from Architecture

Change Logs. In 10th International Workshop on System/Software Architectures, 2012.

[AJP12c] A. Ahmad, P. Jamshidi, and C. Pahl. Pattern-driven Reuse in Architecture-centric Evolution

for Service Software. In 7th International Conference on Software Paradigm Trends, 2012.

[AJP12d] A. Ahmad, P. Jamshidi, C. Pahl. Graph-based Discovery of Architecture Change Patterns

from Logs. Technical Report, School of Computing, Dublin City University, Accessed

February 2014, [online]

http://www.computing.dcu.ie/~pjamshidi/PDF/PatternDiscovery.pdf

[Ale99] C. Alexander. The Origins of Pattern Theory, the Future of the Theory, and the Generation

of a Living World. In IEEE Software, 1999.

[BGA06] S. Bouktif, Y. Guéhéneuc, G. Antoniol. Extracting Change-patterns from CVS

Repositories. In IEEE Working Conference on Reverse Engineering, 2006.

[BGS12] J. M. Barnes, D. Garlan and B. Schmerl. Evolution Styles: Foundations and Models for

Software Architecture Evolution. In Journal of Software and Systems Modeling, 2012.

[BHS07] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern Oriented Software Architecture

Volume 5: On Patterns and Pattern Languages. Wiley and Sons, 2007.

[BLB
+
04] P. Bengtsson, N. Lassing, J. Bosch, and H. V. Vliet, Architecture-Level Modifiability

Analysis. In Journal of Systems and Software, vol. 69, 2004.

[CHW07] I. Côté, M. Heisel, I. Wentzlaff. Pattern-Based Evolution of Software Architectures. In

European Conference on Software Architecture, 2007.

[CMR
+
96] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel and M. Lwe. Algebraic

Approaches to Graph Transformation, Part I: Basic Concepts and Double Pushout

Approach. In Handbook of Graph Grammars and Computing Graph Transformation,

Volume 1: Foundations, 1996.

[EPT04] H. Ehrig, U. Prange, G. Taentzer. Fundamental Theory for Typed Attributed Graph

Transformation. In Graph Transformations, 2004.

[GH04] H. Gomaa, M. Hussein. Software Reconfiguration Patterns for Dynamic Evolution of

Software Architectures. In 4th Working IEEE/IFIP Conference on Software Architecture,

2004.

[Gra07] B. Graaf. Model-driven Evolution of Software Architectures. In 11th European Conference

on Software Maintenance and Reengineering. IEEE Computer Society, 2007.

[GTO
+
08] O. L. Goaer. D. Tamzalit, M. Oussalah, A. D. Seriai. Evolution Shelf: Reusing Evolution

Expertise within Component-Based Software Architectures. In IEEE International

http://www.lero.ie/

 ECEASST

32 / 32 Volume 59 (2013)

Computer Software and Applications Conference, 2008.

[GZ02] M. Goedicke and U. Zdun. Piecemeal Legacy Migrating with an Architectural Pattern

Language. In Journal of Software Maintenance: Research and Practice, 2002.

[HAZ07] N. B. Harrison, P. Avgeriou and U. Zdun. Using Patterns to Capture Architectural

Decisions. In IEEE Software, 24(4): 38-45, 2007.

[HTW
+
99] K.M. Hee, R.A. Toorn, J. Woude, P. Verkoulen. A Framework for Component Based

Software Architectures. In Software Architectures for Business Process Management, 1999.

[HZ06] C. Hentrich and U. Zdun. Patterns for Process-Oriented Integration in Service-Oriented

Architectures. In 11th European Conference on Pattern Languages of Programs, 2006.

[JCZ04] C. Jiang and F. Coenen and M. Zito. A Survey of Frequent Subgraph Mining Algorithms.

The Knowledge Engineering Review, 2004.

[JGA
+
12] P. Jamshidi, M. Ghafari, A. Ahmad and C. Pahl. A Framework for Classifying and

Comparing Architecture Centric Software Evolution. In 17th European Conference on

Software Maintenance and Reengineering, 2012.

[KCM07] H. Kagdi, M. L. Collard, J. I. Maletic. A Survey and Taxonomy of Approaches for Mining

Software Repositories in the Context of Software Evolution. In the Journal of Software

Maintenance and Evolution: Research and Practice, Vol. 19, No. 2, pp. 77-131, 2007.

[KZ07] H. Kampffmeyer and S. Zschaler. Finding the Pattern you Need: The Design Pattern Intent

Ontology. In 10th International Conference on Model Driven Engineering Languages and

Systems, 2007.

[Leh96] M. Lehman, Laws of Software Evolution Revisited. In Software Process Technology, LNCS

1996.

[MM95] A. MacLean and D. McKerlie. Design space analysis and use representations. In Scenario-

based Design: Envisioning Work and Technology in System Development. John Wiley &

Sons, 1995.

[MRT99] N. Medvidovic, D. Rosenblum, and R. N. Taylor. A Language and Environment for

Architecture-based Software Development and Evolution. In 21st International Conference

on Software Engineering, 1999.

[MS08] T. Mens and S. Demeyer. Software Evolutuion. Springer, 2008.

[MT00]

N. Medvidovic, R.N. Taylor. A classification and comparison framework for software

architecture description languages. In IEEE Transactions on Software Engineering, 2000.

[MYB
+
91] A. MacLean, R. Young, V. Bellotti, T. Moran: “Questions, Options, and Criteria: Elements

of a Design Rationale for user interfaces. In Human Computer Interaction, vol 6 (3&4),

1991.

[PCW05] R. Porter, J. O. Coplien, and T.Winn. Sequences as a Basis for Pattern Language

Composition. In Science of Computer Programming, 56(1-2):231 – 249, 2005.

[TM08] D. Tamzalit, T. Mens. Guiding Architectural Restructuring through Architectural Styles. In

17th IEEE International Conference and Workshops on Engineering of Computer-Based

Systems, 2008.

[UEH
+
01] B. Ulrik, M. Eiglsperger, I. Herman, M. Himsolt, M. Marshall. GraphML Progress Report

(Structural Layer Proposal). In 9th International Symposium on Graph Drawing, 2001.

[YSJ08] K. Yskout, R. Scandariato, W. Joosen. Change Patterns: Co-evolving Requirements and

Architecture. In Journal of Software and Systems Modeling, 2008.

[Zdu07] U. Zdun, Systematic Pattern Selection Using Pattern Language Grammars and Design Space

Analysis. In Software: Practice and Experience, 2007.

