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Abstract: The Alloy Analyzer is a software design tool that generates examples
of system states and executions from logic models and displays those examples
graphically with a visualization facility. Although many users find the visualiza-
tion indispensable, others are put off by the perceived difficulty of customizing the
visualization and the poor quality of default diagrams. Many others do not take
full advantage of the customization, usually because they do not understand what
customizations are available and how best to apply them.

This paper describes techniques for inferring a better initial customization, or theme,
entirely automatically, based on the model and on criteria derived from experience
with manual customization. A plugin that implements these techniques was applied
to a repertoire of models. Each automatically generated theme was compared to an
“expert” theme and to the default theme, with a simple metric that quantifies the
visual difference between themes. These comparisons, which provide an indication
of how closely the plugin can match the expert result, show the generated theme to
be superior to the default for most models.

Keywords: Alloy, visualization, relations, logic

1 Introduction

The Alloy Analyzer is a software design tool that generates examples of system states and exe-
cutions from logical models written in the Alloy modelling language [Jac00]. Depending on the
user’s command, an example might be an instance, illustrating the behavior of the system, or a
counterexample, showing how the system fails to satisfy a given property. These examples take
the form of a collection of objects and relationships between them.

Since its first version, developed in 1997, the analyzer has included a visualization facility that
displays examples graphically. By allowing the user to customize the appearance of the diagram
– by simple adjustments to color, shape and layout heuristics – it is usually possible to obtain a
diagram that is compact and easily read, and not too far from the kind of informal diagram that
a user would draw by hand. For example, a user designing a file system might choose to display
directories as boxes and files as circles, to show directory containment with arcs between nodes,
and to show the names of directories and files as labels on their nodes. Having entered these
selections, every example generated by the tool will be formatted in the same way, so that the
one-time effort of customization is repaid over the many examples subsequently displayed.
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Automatic Visualization of Relational Logic Models

Over several versions of the tool, the visualization facility has been improved, with more
customization options, and refinements to the user interface to make the customization process
simpler and more intuitive. The tool has been adopted in more than 30 courses internationally,
and is in use in research labs and development groups at several companies, including Airbus,
AT&T, Northrop Grumman, Navteq, Telcordia, IBM and Microsoft. It has been applied not
only to design analysis (for example, in software architecture, discovery protocols, and security
policies) but also to test case generation, code verification, and automatic configuration.

Many users have reported finding the visualization facility indispensable, but, despite its ap-
parent benefits, other users avoid it entirely, and rely on the tool’s textual output alone. Based
on informal discussions, it seems that these users are put off by the perceived difficulty of cus-
tomization, and the poor quality of the default diagrams. A larger group use the visualization
facility but do not take full advantage of the customization, usually because they are not aware
what customizations are available and how they might best be applied to the problem at hand.

This paper explores the possibility that an initial customization, or theme, could be produced
entirely automatically, based on the Alloy model. Many users might be satisfied with default
visualizations, and would not have to make customization choices at all. More demanding users
might accept many of the automatically generated settings, saving the time it would have taken
to select them, and could refine the remaining settings.

A prototype plugin has been developed that generates settings based on a collection of crite-
ria derived from experience accumulated over the last few years in using the existing, manual
customization facility. Some of the criteria are straightforward ‘presentational’ criteria based on
the aesthetics of the diagram, and do not depend on understanding the meaning of the diagram.
For example, nodes containing many lines of text grow unacceptably large when they have an
elliptical outline, so a simple rule could assign a rectangular shape in this case. Other criteria
are ‘structural’ and depend on semantic properties of the model. For example, some objects
represent the values of an enumeration. Binary relations that map to enumerations are best rep-
resented as attribute labels on the source node, rather than as edges between source and target
(enumeration). Consider a traffic light system: a relation might map lights to their current colour
state; this relation could be rendered as a label like state: green on the light nodes.

To evaluate the plugin, it was applied to a repertoire of models distributed with the tools.
For each of these, a theme had previously been prepared for inclusion in the distribution, and
represents expert judgment of the best possible customization settings. The default theme, which
has evolved through different versions of the tool, offers a baseline. Each automatically generated
theme was compared to the corresponding manual theme and to the default, with the distance
from each being measured using a simple metric that quantifies the visual difference between
one theme and the other. These comparisons therefore provide an indication of how closely the
plugin can simulate an expert user.

The remainder of the paper explains the principles underling the design of the plugin, and
describes the experimental evaluation. The results have obvious relevance for the Alloy Ana-
lyzer, but might also be of interest to others designing automatic diagramming tools, because of
the challenging interplay between physical layout, the semantics of the model, and the cultural,
psychological, and domain-dependent factors that favor some layouts over others.
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Figure 1: Railway, Alloy defaults
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Figure 2: Railway, all relations as attributes
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Figure 3: Railway, expert
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2 Example: Railway System

Alloy is a language for modelling systems in terms of sets and relations and first-order logical
constraints on those sets and relations. Alloy is used to describe both the design of the system,
as well as claims about the system that the user wants the design to entail. The Alloy Analyzer
is capable of checking those claims, known in Alloy as assertions, for validity [Jac06]. We use
the term ‘atom’ to refer to an individual element of a set. Since Alloy is first-order, sets may
only contains atoms, and relations are tuples of atoms; in other words, sets and relations may not
contain other sets or relations.

In this section, we use a simple model of a railway system to demonstrate how the Alloy visu-
alizer displays solutions to logical models as diagrams, and how an expert user might customize
those diagrams make them more comprehensible. This model is one of the sample models dis-
tributed with the downloadable version of the Alloy tool [Sof].

The railway model uses sets and relations to represent how trains move about on railroad
tracks. It includes an assertion that a simple gate-controlled mechanism will keep trains safely
separated from one another. The definition of a safe state of the railway system is expressed
using the following Alloy predicate:

pred Safe [x: TrainState] {
all s: Seg | lone s.overlaps.˜(x.on)}

The reader is not expected to understand the details of the Alloy notation — the gist will suffice.
The predicate labels a state of the system (a TrainState) as “safe” if, for every track segment,
there is at most one train on the set of track segments it overlaps. It uses a relation on, which
maps trains to the segments of railroad track they occupy, and a relation overlaps, which
models how segments overlap with one another. The rest of the model describes the gate-policy
that trains follow and and the rules governing train movement between tracks. It ends with an
assertion that if all trains follow the state policy, then the system will never reach an unsafe state.

When the Alloy Analyzer is used to automatically check the safety assertion, it finds a coun-
terexample. The counterexample is displayed to the user pictorially as a graph (using an auto-
matically generated dot file [GKN]), where each node represents an atom (an element of a set)
in the model and each arc is a tuple of a relation.

Figure 1 shows one such counterexample that the Analyzer produces, with the default theme.
Figure 3 shows the same counterexample with a theme produced by an expert, and Figure 5
shows the counterexample with our inferred theme. The latter two figures are clearly more
comprehensible than the default.

The uncustomized (default) diagram is dense and hard to comprehend. The ternary relations
are particularly hard to follow. Furthermore, the nodes all look the same, and as such it is difficult
to quickly differentiate trains from segments. It isn’t clear from the diagram why this scenario
represents a counterexample to our claim or if the scenario is even well-formed.

Other default settings are possible, but produce results that are not noticeably better. For
example, in Figure 2, relations are displayed, not as edges between nodes, but as labels on the
nodes themselves. While the diagram is less cluttered, the structure has been lost, and the user
might as well read a text dump of the solution. Neither the settings that produced Figure 1 or
those that produced 2 are close to what an experienced Alloy user would choose.
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Figure 3 shows a custom visualization developed by an experienced Alloy user. This repre-
sentation demonstrates several key decisions by the user:

• Sets are disambiguated by color and shape as well as by name – gates are green diamonds,
track segments are gray rectangles, and trains are blue trapezoids.

• The relation names have been dropped, and the relationships are distinguished instead by
color. Black arcs indicate segment connections, red arcs indicate that two segments over-
lap, green arcs indicate the segments that are blocked by the gate, and blue arcs indicate
train locations.

• The two states of the solution (the pre-state and the post-state) are represented as two dia-
grams. This is done by a projection over TrainState – any relation with a TrainState
column has that column dropped. This means, for example, that the on relation (shown as
a red arc) is no longer a ternary relation from TrainState to Train to Seg but instead
a binary relation from Train to Seg. As a binary relation, on is now easy to understand
when drawn as an arc. It is now apparent that the solution involves Train0 moving from
one segment to an adjacent one. (Projection is described in greater detail in section 3.1.)

• The node labels have been shortened. One segment has been labeled problem, because it
is the segment that violates the Safe predicate; it overlaps with (connects via gray arrows
to) two other segments containing trains. We can now see why this is an example of an
unsafe situation.

• A more subtle decision is to choose the track connections (black arcs) and overlaps (red
arrows) as the spine of the diagram. Selecting these spine relations tells the layout tool to
use those relations as the backbone of the diagram when planning the layout. Since the
track connections are the same in both states, the structure of the track segments appears
the same in both states. Without this, the diagram might be laid out differently after each
train move, even if only one arc had changed. Choosing a good spine helps keep the
structure intact throughout the solution trace.

3 Properties

As illustrated in the above example, solutions to Alloy models are rendered visually as a directed
graph, where each node represents an element in a set, and edge is a tuple in a relation. When
the solution contains many set elements or many tuples, the resulting graph can be difficult to
comprehend.

To remedy this, Alloy allows the user to customize the graph by configuring properties of the
sets and relations in the model. For example, if a particular set is not relevant to the current
solution, the user can choose to make its nodes invisible. If there are many sets, the user can
choose to make the nodes of each set take on a different color.

In addition, Alloy allows properties to be inherited based on the set hierarchy in the Alloy
model. For example, if CheckingAccount and SavingsAccount are both subsets of
Account and the user configures Account nodes to be red, then CheckingAccount and
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SavingsAccount nodes will automatically be red unless the user explicitly overrides their
color.

Once the user has customized the diagram, the user can save these customizations in a Theme
file for future reuse. In total, there are 8 properties that the user can adjust for each set, and
9 properties for each relation. These properties can be divided into two categories: structural
properties that affect the overall layout of the nodes and edges, and presentational properties that
affect the appearance of each node and edge individually.

3.1 Structural Properties

Structural properties affect the layout of the graph, including which nodes and edges are visible,
and the positioning of nodes and edges to one another. They do not affect the visual qualities of
individual nodes and edges.

Projection. Since Alloy models do not have an intrinsic notion of time, models involving state
changes are often represented using higher-order relations. For example, the balance of a bank
account over time might be modeled by creating a user-defined set called Time and a ternary
relation that maps each element in the set Account to Time to Integer, representing each
account’s balance at each point in time.

Visually, however, the resulting graph will simultaneously show the account balances at all
points in time in the same diagram. With a large model, this can be very confusing. To remedy
this, Alloy allows the user to project the graph over sets. For example, if the user chooses to
project the graph over the Time set, Alloy will construct multiple graphs (one for each element
of Time) and allow the user to scroll through each graph individually. Intuitively, the graph for
an element Time0 will just show the balances of each account at Time0.

When chosen properly, projection can make the result much easier to comprehend. However,
if the wrong set is chosen for projection, the result is useless. For example, while it makes sense
to project over Time to see how the account balance changes over time, and it may also makes
sense to project over Account to view the changes to each account individually, it probably
doesn’t make sense to project over Integer.

Spine Relations. When determining the layout of nodes and edges, the visualization facility
presumes the diagram to contain a dominant hierarchical structure. The default visualization
setting treats all relations in the model as part of a single dominant hierarchy. However, in most
models only a few relations are part of that hierarchy; the rest represent interactions across the
hierarchy.

For example, in a model of a file system, the ideal visualization would probably treat the
directory hierarchy as part the dominant structure, but not the linking relationships between
objects in the file system.

The relations that participate in the dominant hierarchy are known as the ‘spines’ of the dia-
gram.

Relations: Edges vs Attributes. By default, relations are shown graphically as edges between
nodes in the graph. However, if a many edges of a relation connect to the same small set of
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nodes, the diagram can become cluttered and confusing. This clutter can be greatly reduced by
representing the relation as an attribute instead of an edge. That is, while the default layout
represents the tuple (a,b) in relation r as an arc between nodes a and b labelled “r”, making
r an attribute causes (a,b) to be shown as an additional label in node a that reads “r: b”.

3.2 Presentational Properties

In addition to the structural properties detailed above, there are various visualization properties
that affect the appearance of individual nodes and edges, but not the overall layout. When chosen
properly, they can greatly enhance the clarity of the resulting graph.

Color and Shape. One way to clearly distinguish nodes visually is to assign different colors
and shapes. In some domains, there may be existing conventions for what shapes to use for
different type of objects in the model. Furthermore, sometimes it makes aesthetic sense to choose
one shape over another. For example, if a node has multiple text labels on it, the node will occupy
less space if drawn as a rectangle rather than a circle. On the other hand, if a node has many
incoming or outgoing edges, the arrow heads will spread out more evenly if the node is drawn as
a circle rather than a square or rectangle.

Label. By default, Alloy uses the set and relation names in the original model as the node and
edge label. However, to ensure unique naming, the names in the model are often more verbose.
For a given diagram, shortening a long name like “parentDirectory” to “parent” can make a big
difference in reducing clutter. In the extreme case, if there is only one relation in the model, it
makes sense to use the empty label, because the user only needs to know the topology of the
nodes rather than the name of the edge.

Numbering Nodes. To distinguish multiple elements in a set from one another, the visualizer
appends a number to each node. For example, in a file system model, the solution containing
three files will contain three nodes labeled File0, File1, and File2. This numbering is
unnecessary when the user cares only about the topology of the graph rather than the exact atom
that each node points to. In such a situation, the user can turn off the automatic numbering for
the File set to reduce clutter. Furthermore, by not including the number, each File node will
have the same label and thus the same width, which usually permits a more regular arrangement
of the nodes on screen.

4 Property Inference

There are two kinds of entities for which our technique infers properties: sets and relations.
There are also two kinds of properties to infer: structural and presentational. Sometimes our
technique infers these properties individually, and sometimes groups of properties are inferred
based on the detection of higher level usage idioms. The inference proceeds in the following
order:
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Projection. Perhaps the most important structural property is projection. Our inference selects
a set to project over in the following manner: assign a score to each set; if there is a set that
scores at least 2, project over the set with highest score; otherwise, if no set scores at least 2, then
do not project. A set earns a point for each of the following: it is totally ordered (an ordering
constraint appears in the model); it participates in a ternary relation, its name begins or ends with
any of the following distinguished strings: State, Tick, Time, TimeStep.

Projection is usually necessary for dynamic models: that is, models that describe how the
system changes over time. Consequently, the name of the set to project over usually refers to
time or state in some way. Note that merely having a name that begins or ends with State is
not sufficient: the set must score another point on one of the other criteria to be used as the basis
of projection, as well as scoring more points than any other set.

Enumerations. Alloy models, like programs, often make use of the typesafe enumeration de-
sign pattern for a predefined set of named constants. Here’s an example one using an enumeration
to models colours in Alloy:

abstract sig Colour {}
one sig Red, Green, Blue extends Colour {}

We infer that a collection of sets constitutes an enumeration if those sets are mutually disjoint
singletons that exhaustively partition a common superset. We use the knowledge of enumerations
to infer other structural and presentational properties:

• Binary relations whose target is an enumeration (ie, where the second column is an enu-
meration) are shown as attributes rather than as edges.

• Enumerations are hidden unless they are the source (first column) of some relation.

• Relations involving enumerations are not considered as spine candidates.

Spine Relations. A ‘homogeneous’ relation is one whose source and target sets may overlap.
If a relation is homogeneous, then it probably represents a recursive, graph-like data-structure,
and should be considered a spine of the diagram. If the model contains a homogeneous binary
relation whose target is not an enumeration, it is used as a spine; otherwise, all relations are
considered spines.

Node shape and colour. Node shape and colour are used to represent set and subset mem-
bership information. We here use the term ‘set family’ to refer to a top-level set and all of its
subsets. Each set family is assigned a unique colour. Each set within a set family is assigned a
similar shape: eg, one set family may have octagon and hexagon shapes, while another set family
might have rectangle and trapezoid shapes. It would also be plausible to assign each set family
a unique shape, and use different hues of the same colour to distinguish subsets. We have not
presently implemented this alternative.

(Technical Alloy note: Where we say ‘set’ in the above paragraph we mean AlloyType
rather than AlloySet. This distinction is not important to most readers of this paper.)
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Node and edge labels and numbering. By default, nodes and edges are properly named with
their fully qualified name: ie, their individual name is prepended with the name of their model.
However, having two sets or relations with the same name in different models is rare, and so we
trim off the model name.

If there is only one visible edge (after projection), then there is no need to label it. Similarly,
if there is only one visible set (after projection), then its instances do not need to be labelled
(numbering will be sufficient).

Nodes representing singletons do not need to be numbered.

5 Evaluation

To evaluate our property inference, we applied our techniques to a collection of Alloy models
that come bundled in the Alloy distribution. The distribution also contains a theme file for each
model, prepared by an expert user of the visualizer. We then measured the distance of our inferred
theme to the expert theme and the distance from the standard default theme to the expert theme,
according to a distance metric described below.

In this section, we discuss the distance metric that we developed and present comparisons
between the default, expert, and inferred themes. On most models in the collection, our inferred
theme measured visually closer to the expert theme than did the default theme. We also evaluated
the inferred themes qualitatively, and discuss this further below.

5.1 Distance Metric

Our distance metric approximates the visual difference between two themes. To the first order,
it simply counts the number of visualization properties that differ between two given themes and
reports the result. For example, if the nodes is a set N are numbered and labelled “N” in the first
theme, and un-numbered labelled “M” in the second, then our metric would count two setting
changes (the numbering and label name settings) as the distance between the two.

However, there are a some properties, namely projection, color, and shape, where merely
counting a change in their value does not accurately reflect the subsequent visualization differ-
ences that change will effect. While projection over a set is controlled by a single setting that
can be activated with a click of the mouse, it has extensive visual repercussions. As explained in
Section 3.1, projection has the effect of turning one diagram into a sequence of of diagrams, and
in doing so, it can add sets and remove relations from the visual model.

To account for the extensive visual differences introduced by projection, the metric adds the
sum of the number of sets and relations that are created and destroyed by the projection to the
overall distance between themes. Consider, for example, a model with sets A and B and a relation
r from A to B. Projection over the set A transforms r from a relation to a set, so our metric adds
two additional units to the distance due to this projection, one for the removal of the relation r
and one for the addition of the set r.

A complication with measuring color and shape differences arises from color and shape iso-
morphisms. For example, if one theme colors elements in set A red and those is set B blue, and
another theme colors B red and A blue, those colorings should not be considered distinct. To
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Table 1: Distances of the Default and Inferred Themes from the Ideal Theme

default theme inferred theme difference
model size abs norm abs norm abs norm
ringlead 43 54 1.26 25 0.58 29 0.67
stable orient ring 23 44 1.91 17 0.74 27 1.17
stable mutex ring 17 34 2.00 8 0.47 26 1.53
firewire 40 88 2.20 63 1.58 25 0.62
messaging 26 46 1.77 23 0.88 23 0.88
life 14 29 2.07 12 0.86 17 1.21
dijkstra 19 27 1.42 13 0.68 14 0.74
farmer 17 26 1.53 12 0.71 14 0.82
opt spantree 21 32 1.52 18 0.86 14 0.67
stable ringlead 26 30 1.15 16 0.62 14 0.54
ringElection 18 26 1.44 14 0.78 12 0.67
hanoi 23 21 0.91 11 0.48 10 0.43
hotel 23 36 1.57 27 1.17 9 0.39
addressBook 17 28 1.65 25 1.47 3 0.18
ceilingsAndFloors 8 3 0.38 2 0.25 1 0.12
genealogy 11 9 0.82 8 0.73 1 0.09
grandpa 11 8 0.73 7 0.64 1 0.09
handshake 8 9 1.12 8 1.00 1 0.12
railway 17 30 1.76 29 1.71 1 0.06
birthday 11 9 0.82 14 1.27 -5 -0.45
filesystem 15 10 0.67 15 1.00 -5 -0.33
lists 13 11 0.85 16 1.23 -5 -0.38

measure the distance between two colorings, the metric finds the color-to-color bijection that
minimizes the number of miscolored nodes. Similarly, to find the distance between two shape
configurations, the metric finds the shape-to-shape bijection that minimizes the number of mis-
shaped nodes.

5.2 Quantitative Evaluation

The collection of models in the Alloy distribution come from a variety of domains and vary
greatly in size and complexity. Some, such as birthday, are simple toy models typically in-
troduced in Alloy tutorials for novices, and some are models of famous puzzles, such as hanoi,
which formulates the Towers of Hanoi problem. Others are real-world systems, like the rail-
way gate policy described in railway; textbook algorithms, such as the formulation Dijkstra’s
shortest path algorithm in dijkstra; and case studies of deployed protocols, including the
Firewire leader election protocol in firewire.

The measurements computed for each of the 22 models in the collection are found in Table 1.
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Figure 4: Filesystem
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The “size” column contains a measure of the size of the model, calculated as the number entities
(sets and relations) it contains, and is suggestive of the model’s complexity. The third column
shows the absolute distance from the default theme to the expert theme, as computed by our
metric. The fourth column contains that absolute distance, normalized by the size of the model.
The fifth and sixth columns show the distance from our inferred theme to the expert theme, both
in absolute and normalized form. The last columns show the difference between the default-to-
expert distance and the inferred-to-expert distance, both absolute and normalized.

As shown in Table 1, for 19 of the 22 models, our inferred visualization theme came strictly
closer to the expert theme. For the remaining three, the inferred theme fell slightly behind the
default theme, according to our metric.

5.3 Qualitative Evaluation

While the quantitative measurements estimate the proximity of one theme to another, ultimately
what we care about is how the inferred themes looks to the human eye. In this section we visually
review three models that form a representative sample of how Alloy is commonly used: a static
model (filesystem), a dynamic transition model (railway), and a dynamic trace model
(ringlead). These are presented in order of increasing complexity, which also turns out to be
the order of increasing success of our inference technique.

Filesystem Model. The filesystem model is one of the three models on which our infer-
ence measured worse than the default settings. An instance rendered with the default, expert, and
inferred themes for filesystem is shown in Figure 4. As shown, the default theme renders
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Figure 5: Railway, PolicyWorks, inferred
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a diagram that is already comprehensible, and the expert improves upon the default with some
color and shape changes and by showing the name relation as an attribute instead of an edge.

Despite the quantitative measurement, we feel that the inferred visualization is superior to the
default because the visual hierarchy corresponds to the hierarchy of the modelled file system (due
to the appropriate selection of spine relation). The “expert” visualization should have arguably
made this choice as well, demonstrating that the automatic inference can out-perform experts in
some respects.

Railway Model. We return to the railway model presented in Section 2. The default theme
and expert themes were given earlier in Figure 1(a) and Figure 3, respectively, and the inferred
theme is now shown in Figure 5. Like the expert theme, our inferred theme includes a projection
over the set TrainState, but does not manage to infer the aesthetically-pleasing colors of the
expert.

Ringlead Model. Lastly, we look at ringlead, the model on which our inferred theme most
out-performed the default theme. An example rendered with the default theme, shown in Fig-
ure 7, is a tangled web of nodes and edges, and its meaning is hard to decipher. Both the inferred
and the expert themes (Figure 6) project over the set of ticks, and they look fairly similar and far
more intelligible than the default.

Proc. LED 2007 12 / 14



ECEASST

Figure 6: Ringlead
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6 Discussion

A key observation from our evaluation is that the bigger and more complex the model, the greater
the benefit of the automatic theme inference. In hindsight, this is not surprising. Instances of
simples models are usually relatively easy to understand, so extensive customization beyond the
default is usually not needed. As models become more complex, however, detailed customization
becomes increasingly important in order to untangle and decipher the diagrammatic webs.

We also observed that the appropriate structural properties of a visualization are more easily
and reliably inferred compared to the presentational ones. If, for example, the model exhibits
some of the tell-tale signs of being dynamic (discussed in Section 4), then a projection should
almost certainly be applied. Compared to such structural properties, presentational characteris-
tics are more likely to be arbitrary matters of taste. In a model of a file system, for instance, a
user could choose to distinguish files from folders using different colors, shapes, labels, or some
combination of all three.

The evaluation in this study focused on demonstrating the basic utility of our inference tech-
nique. We have demonstrated that our inference technique produces better visualizations than
the generic defaults in almost all cases. The ultimate objective of this project is to capture and
mechanize the behaviour of expert users. Future work may include an objective qualitative study
of how expert users customize visualization themes.
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