
Electronic Communications of the EASST
Volume 67 (2014)

Proceedings of the
13th International Workshop on Graph Transformation

and Visual Modeling Techniques
(GTVMT 2014)

Towards Dynamic Reverse Engineering
Visual Contracts from Java

Abdullah Alshanqiti and Reiko Heckel

12 pages

Guest Editors: Frank Hermann, Stefan Sauer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Towards Dynamic Reverse Engineering
Visual Contracts from Java

Abdullah Alshanqiti1 and Reiko Heckel2

1 amma2@mcs.le.ac.uk 2 reiko@mcs.le.ac.uk
Department of Computer Sciences, Leicester University, UK

Abstract: Visual contracts provide a concise and intuitive representation of pre-
and postconditions for operations in object-oriented or component-based systems,
which can be used for documentation, testing, or simulation. However, defining vi-
sual contracts to correctly describe the behaviour of existing classes or components
requires a deep understanding of their data model and behaviour.

We propose an approach to automatically extract instantiated versions of visual con-
tracts, or contract instances, by observing the changes an operation performs on the
objects in a system. We describe and evaluate the approach and tool to extract con-
tract instances using the case study of Java-based DOM implementation NanoXML.

Keywords: graph transformation, rule learning, rule extraction

1 Introduction

Visual contracts model the pre- and postconditions of operations of classes or components by
graph transformation rules. They are based on an operation’s signature, but go beyond interface
description in that they specify the transformation of a hypothetical data state, just as protocol
state machines use a hypothetical control state to describe sequences of invocations. Visual con-
tracts provide a precise yet high-level behavioural model that can be used for documentation,
model-based testing [KRH12, RKH13], simulation and formal verification. However, the cor-
rect definition of visual contracts for an existing component requires a deep understanding of
its implementation. Automated reverse engineering can enable their wider use in testing and
verification but also provide a valuable tool for program understanding.

The extraction of behavioural models from implementations can be performed statically by
examining the source code to capture all possible behaviours [BLL06]. However, dynamic bind-
ing in object-oriented software affects the accuracy of static methods, often leading to an over-
approximation of effects or dependencies. We propose a dynamic reverse engineering approach,
extracting instantiated versions of visual contracts by observing runtime changes in object struc-
tures when an operation is executed.

Each contract instance will only capture the behaviour of a specific invocation of the opera-
tion. It can therefore be described by a single rule, whose precondition captures the objects that
were read only, while the postcondition describes how the object structure changed during the
invocation. While each contract instance only represents one possible outcome of the operation’s
invocation, jointly they can be input to an algorithm [AHK13] (proposed at last year’s GT-VMT)
for learning graph transformation rules from examples.

1 / 12 Volume 67 (2014)

mailto:amma2@mcs.le.ac.uk
mailto:reiko@mcs.le.ac.uk


Towards Dynamic Reverse Engineering Visual Contracts from Java

Dynamic reverse engineering requires to trace a system’s execution, e.g., by instrumentation
of the code, as well as the analysis of the traces to extract behavioural models. We instrument
Java bytecode using AspectJ to observe the internal state of the system and its changes during
execution. The recorded sequence of elementary read and write operations is then analysed to
construct the contract instance.

In Sect. 2 the intended mapping between the internal structure and its external representation
in the model is discussed. In Sect. 3 we explain in detail how tracing the execution and analysing
the resulting log we can generate contract instances. These are evaluated in Sect. 4 before we
discuss the related work in Sect. 5 and conclude with Sect. 6.

2 Representing Object-oriented Structure and Behaviour

We explain informally how Java class, object structures and methods are represented by class,
object diagrams and visual contracts, respectively. We will use the NanoXML API1 as example
and refer to Figure 1 for illustration.

2.1 Java Classes and Objects Structures

NanoXML is a small non-validating XML parser for Java, which provides a light-weight and
standard way to manipulate XML documents. It consists of three packages and 24 Java classes.
The left of Figure 1 shows code fragments of Java classes XMLElement and XMLAttribute
and their corresponding classes in the class diagram under (A). Fields of Java classes are repre-
sented as UML attributes or associations depending on their type, i.e., fields of primitive types
lead to UML attributes, while fields of object type turn into associations. For example, the fields
declared in lines 8 to 12 are represented as attributes while the parent field in line 5 becomes
a reflexive 0..1 association. Fields of collection type such as children in line 7 could be rep-
resented as ∗ associations, but we prefer to represent collections explicitly because they provide
information about the organisation of their elements. For example, elements of a vector in (A)
are known to be ordered.

The choices made in representing class structures determine the representation of object struc-
tures. For example, (B) shows fragments of two states representing objects referred to as p and
c and their changes due to the invocation p.addChild(c).

2.2 Behavioural Code

Each visual contract describes the pre- and postcondition of a possible way of executing a
method. Consider (B), which shows relevant objects of two states resulting from an execution of
the addChild() operation in lines 14 to 21. The rule extracted from this execution is shown
in (C). It describes how the objects and their attributes and links change from one state to the
other. In the code this is achieved by assignments, which represent the creation and deletion of
objects and links or the update of attributes. For instance, the assignment in line 19 represents the
creation of an edge. If accessed objects remain unchanged, they become context elements in the

1 http://nanoxml.sourceforge.net/orig/

Proc. GTVMT 2014 2 / 12

http://nanoxml.sourceforge.net/orig/


ECEASST

rule. Such objects can be part of conditions, such as in line 15. Note that while we can extract
information about deletion of links, we are unable to detect object deletion, which is handled
implicitly by Java’s built-in garbage collector.

1 package net.n3.nanoxml;
2
3 public class XMLElement implements IXMLElement {
4
5 private IXMLElement parent;
6 private Vector attributes;
7 private Vector children;
8 private String name;
9 private String fullName;

10 private String namespace;
11 private String content;
12 private String systemID;
13 ...
14 public void addChild(IXMLElement child) {
15 if (child == null) {
16 throw new IllegalArgumentException(”child must

not be null”);
17 }
18 ...
19 ((XMLElement)child).parent = this;
20 this.children.addElement(child);
21 }
22
23 public void setAttribute(String name, String value) {
24 XMLAttribute attr = this.findAttribute(name);
25 if (attr == null) {
26 attr = new XMLAttribute(name, name, null, value,

”CDATA”);
27 this.attributes.addElement(attr);
28 } else {
29 attr.setValue(value);
30 }
31 }
32 ...
33 }
34 ...
35 class XMLAttribute
36 {
37 private String fullName;
38 private String name;
39 private String namespace;
40 private String value;
41 private String type;
42
43 XMLAttribute(String fullName,
44 String name,
45 String namespace,
46 String value,
47 String type)
48 {
49 this.fullName = fullName;
50 this.name = name;
51 this.namespace = namespace;
52 this.value = value;
53 this.type = type;
54 }
55 ...

Figure 1: Mapping classes and objects and representing operations

3 / 12 Volume 67 (2014)



Towards Dynamic Reverse Engineering Visual Contracts from Java

3 Dynamic Extraction of Visual Contracts

After having clarified what we want to extract, we turn to the details of the how.

3.1 Tracing

Using the AspectJ concepts of join point and point cut we can control what actions on which
objects to react to in order to generate a trace. Join points are actions such as method calls and
executions, object instantiations, constructor executions, field references and updates, etc. Point
cuts select specific join points based on the objects involved, the method body executed, etc.
We are interested in actions that test or change existing objects and fields or create new objects.
An advice implements the observation mechanism to be executed at each join point. It can be
invoked before and/or after the join point, which enables us to observe state changes caused by
the execution of the actions.

Observing all actions that involve read or write access to any part of an object, including
invocations and executions, we produce a large number of join points. These are filtered by the
classes defining the scope of our observation, i.e., our class diagram in Figure 1 (A), so that
we only record join points relating to instances of these classes. The class diagram was defined
directly from the source code using the ObjectAid tool2 and then manually reduced to the classes
and associations we wanted to observe.

The result is a sequence of nested join points as shown in Listing 1, tracing the addChild()
operation of the NanoXML case study. Depending on the action performed, join points translate
into basic rule instances describing the relevant state transformations. The idea is to aggregate
these rule instances into a single rule such as presented in Figure 1 (C).

3.2 Analysis

We analyse traces at runtime, i.e., once the invocation of a method of interest has completed. In
order to aggregate the rule instances in the sequence we identify elements across the sequence
that refer to the same objects. Then the basic rules are composed along these shared objects to
form the overall contract instance.

Figure 2 describes the overall process of analysing a sequence of join points, see lines 4 to 17
in Listing 1: We restrict the relevant join points based on the class diagram, define the scope of
the operation as the set of objects potentially affected and match them to the objects that have
actually been accessed based on the join points. These are the elements of the rules constructed
as a result. We discuss these steps in more detail below.

Scope of Operation. The scope of an execution contains all objects potentially needed for
the construction of the rule. It is defined by navigating this() and target() references from each
relevant join point, recording also the values of attributes that may change during execution.

In addition, the scope prevents us from considering unnecessary objects, which are of the right
class but unrelated to the trace. For example, Listing 2 shows the query method enumerate-
AttributeNames() which does not affect any member of its object but writes to a local

2 http://www.objectaid.com

Proc. GTVMT 2014 4 / 12

http://www.objectaid.com


ECEASST

1 // Tracing addChild(..) operation from nanoxml api
2 { XMLElement.addChild(myElement); }

3 // The following is a sequence of nested joinpoint outputs from tracing the above operation
...

4 1 before: execution(void net.n3.nanoxml.XMLElement.addChild(IXMLElement))
5 2 before: call(String net.n3.nanoxml.IXMLElement.getName())
6 3 before: execution(String net.n3.nanoxml.XMLElement.getName())
7 4 before: get(String net.n3.nanoxml.XMLElement.name)
8 4 after: get(String net.n3.nanoxml.XMLElement.name)
9 3 after: execution(String net.n3.nanoxml.XMLElement.getName())
10 2 after: call(String net.n3.nanoxml.IXMLElement.getName())
11 5 before: set(IXMLElement net.n3.nanoxml.XMLElement.parent)
12 5 after: set(IXMLElement net.n3.nanoxml.XMLElement.parent)
13 6 before: get(Vector net.n3.nanoxml.XMLElement.children)
14 6 after: get(Vector net.n3.nanoxml.XMLElement.children)
15 7 before: call(void java.util.Vector.addElement(Object))
16 7 after: call(void java.util.Vector.addElement(Object))
17 1 after: execution(void net.n3.nanoxml.XMLElement.addChild(IXMLElement))
...

Listing 1: Sequence of nested join points obtained by tracing

Figure 2: Overview of our trace analysis

Vector object created in line 2. The same class exists in the class diagram, but write access to
the local Vector object is not relevant to the rule to be extracted, i.e., enumerateChildren()
in the center-bottom of Figure 4.

Accessed Objects. By observing read and write access to objects we are able to identify which
elements of our state are required or modified by the operation. Information about objects and
attributes created, deleted or modified allows us to create a minimal rule. Read access determines
the additional context whose existence is required in order to apply the operation.

There are two explicit join point types for handling read and write access at the field level: the
get-field and set-field join points. In lines 7 and 11 of Listing 1 we show examples of read and
write access, respectively. In contrast, access at the object level is implicit in the method call join
point, where it needs specific restrictions to deal with collection object operations. For example,

5 / 12 Volume 67 (2014)



Towards Dynamic Reverse Engineering Visual Contracts from Java

1 public Enumeration enumerateAttributeNames() {
2 Vector result = new Vector();
3 Enumeration enum = this.attributes.elements();
4
5 while (enum.hasMoreElements()) {
6 XMLAttribute attr = (XMLAttribute) enum.nextElement();
7 result.addElement(attr.getFullName());
8 }
9
10 return result.elements();
11 }

Listing 2: enumerateAttributeNames() from NanoXML

adding elements to a collection represents write access, see line 15. Analogously, the calls in the
following example require the execution to read the elements of the collection.

call(Enumeration java.util.Vector.elements())
call(int java.util.Vector.size())

We rely on Java object identifiers to find the accessed objects in the scope.

Rule Construction. Table 1 sketches the cases used for constructing rules, successively build-
ing up graphs LHS and RHS by navigating the trace. For instance in the first row, the initialization
join point indicates the creation of a new object. Accordingly, we add a new vertex to RHS. The
second row indicates the creation of an edge, which means that the necessary source and target
vertices must be added to both LHS and RHS. We translate any object attribute variable-in-class
that points to another object and has a valid type in the class diagram into an edge. The initial
value of an object attribute will be added to LHS and the last value of a relevant write access to
RHS.

In the last column we state for each element if it is minimal (required for the specification of
the effect) or context (shared between pre- and postcondition) based on the access type. Note that
there is no join point type for destroying an object in Java, as the garbage collector automatically
destroys objects that are not reachable by any reference.

join point step of execution constructing rule
add to type

1 Initialization (constructor signature) createNode(id:type) RHS minimal
2 Set (Field write access) as object-field

createEdge(id:type) LHS & RHS minimal
3 call (collection.add(object))
4 get (Field read access) readNode(id:type) LHS & RHS context
5 Set (Field write access) as data-field

updateNode(id:type) LHS & RHS minimal
6 call (collection.set(object))
7 Set (Field write access) as null object-field

deleteEdge(id:type) LHS & RHS minimal
8 call (collection.remove(object))

Table 1: Cases for rule construction

Proc. GTVMT 2014 6 / 12



ECEASST

4 Evaluation

This section presents in detail two experiments on the NanoXML case study to evaluate our
approach. The first one is to validate the correctness of our solution of extracting rules and to
estimate its performance across a range of different operations, including the benefits of con-
structing the scope of an operation. The second experiment explores scalability for larger XML
documents for one simple operation.

We traced the main operations of the NanoXML API using AspectJ post-compile (binary)
weaving. We executed test cases and for each invocation of an operation to be extracted translated
the resulting traces into rules. Table 2 lists execution times with and without extraction, as well
as a breakdown of the time taken to extract rules into tracing and analysis. The last column
of Table 2 shows the ratio of instructions covered for each tested operation as measured by the
coverage tool3. The coverage gives an indication of the degree to which the constructed rules
describe an operation’s behaviour. If there are several different execution paths in an operation’s
implementation, its behaviour can only be described by several rules with different pre- and
postconditions.

The operations listed in Table 2 cover the range of different elementary behaviours as pre-
sented in Table 1, such as creating and deleting edges, creating nodes, updating attributes. We
show some of the extracted rules in Figure 4. All extracted rules are valid according to the class
diagram in Figure 1 and, more significantly, they describe the functionality as documented in
the NanoXML API documentation4. For example, the addChild() operation adds an XML
element as a child to an existing one. The rule for this operation shown in the top left of Figure 4
has a pre-condition including the prospective child and parent elements and the collection used
by the parent to store its children. The postcondition described the creation of the links caused
by adding the new child to the collection and linking back to its parent, as well as updating the
size of the collection.

The benefit of constructing the scope of an operation becomes apparent by comparing columns
4, 5 and 7 in Table 2. Compared to the total number of objects involved in the operation, the
scope reduces significantly the number of objects to be considered in the second step of the
analysis. For instance in the first row scoping discards 39 irrelevant objects leaving only 3 to be
considered further.

If we compare the effort with and without rule extraction, we find that the overhead ranges
between a factor of about 21 for getParent() to about 348 for createElement(). The
main factors are the total number of objects and the number of objects in scope, which are a
measure of the complexity of the operation. Despite the overhead, the extraction is manageable
for all operations we encountered in this case study.

We conducted the second experiment to validate scalability to different XML documents, es-
pecially in terms of the number of children an element contains. The results are summarised
in Table 3, where execution times are averages over 10 executions. Operations most affected by
larger numbers of children are those that potentially have to read many of them. The most inter-
esting case is removeChild() where the number of elements read depends on the position in

3 http://www.eclemma.org
4 http://nanoxml.sourceforge.net/orig/NanoXML-2-JavaDoc/index.html

7 / 12 Volume 67 (2014)

http://www.eclemma.org
http://nanoxml.sourceforge.net/orig/NanoXML-2-JavaDoc/index.html


Towards Dynamic Reverse Engineering Visual Contracts from Java

the vector of the child to be removed.
For example the rules in the top right of Figure 4 specifies that the link to the second child

element at index 1 is to be removed, while the link to the one with index 0 is part of the context,
i.e., occurs in both left- and right-hand side. The link to the element 0 is required because, in
order to remove an element from the vector we have to find it by searching from the first index. In
case the required element is not present, the rule returned would be without effect, just specifying
read access to all the elements in the vector.

To explore how the effort for extracting the rule depends on the position of the element, we
compare the case where the child element is at index 3 against cases where the element is at the
end of vectors of 100 - 400 elements, as shown in Table 3. Figure 3 visualises the performance,
plotting execution time vs. size. It shows that for elements removed at index 3 the time taken is
independent of the size of the vector while for elements at the end of the list it is linear in relation
to the length of the list.

In conclusion, there is a significant overhead associated with the extraction of rules which
cause problem if the approach should be used for continuous monitoring of applications, but can
be neglected for applications in reverse engineering for program understanding.

no operation
exec. time tracing analysis covered
without
extraction

all
objects

scope exec. time objects
in rule

exec. time instruct
ions

1 createElement() 2.94e-5 42 3 0.346 3 0.044 45/62

2 addChild(XMLElement) 1.42e-5 32 6 0.055 3 0.027 14/44

3
insertChild(IXMLEl
ement, int index))

1.51e-5 34 6 0.046 3 0.020 15/45

4
removeChild(XMLEle
ment child)

4.59e-5 166 12 0.153 7 0.051 8/13

5
removeChildAtIndex
(int index)

1.20e-5 18 3 0.026 2 0.017 5/5

6 setName(String name) 1.20e-5 15 3 0.081 1 0.009 10/10

7 getParent() 0.93e-5 11 3 0.020 1 0.006 3/3

8 enumerateChildren() 0.93e-5 16 3 0.024 2 0.011 4/4

Table 2: Extracting rules from individual executions of NanoXML operations (times in sec.)

no children child found tracing analysis
at index all objects scope exec. time objects in rule exec. time

1
100

3 166 12 0.403 7 0.079
2 100 (last index) 3791 375 3.931 104 2.364

3
200

3 166 12 0.408 7 0.080
4 200 (last index) 5879 603 16.096 204 3.941

5
300

3 166 12 0.405 7 0.083
6 300 (last index) 8779 903 27.138 304 5.906

7
400

3 166 12 0.404 7 0.080
8 400 (last index) 11679 1203 38.492 404 8.716

Table 3: Results for extracting rules for the removeChild() operation (times in sec.)

Proc. GTVMT 2014 8 / 12



ECEASST

(a) child-element exists at the third index (b) child-element exists at the last index

Figure 3: Overheads for extracting rules for removeChild(child)

Figure 4: Example of extracting 5 instantiated visual contracts (rules)

Discussion and Threats to Validity. The evaluation is potentially biased by the selection of
the case study and the choice of operations and test cases within it. The NanoXML case study is
one of a selection of benchmarks in the Software-artifact Infrastructure Repository5 frequently
used for evaluating automated testing and program analysis in Java.

At 7646 LOC, 24 classes it is not a large API, but what we have seen from the evaluation
suggests that it is the complexity of the individual operations, in terms of the number of objects
involved, that determines the effort. This in turn depends on the number of classes we choose to

5 http://sir.unl.edu

9 / 12 Volume 67 (2014)

http://sir.unl.edu


Towards Dynamic Reverse Engineering Visual Contracts from Java

observe. The case study was selected because it offers a range of operations of significant struc-
tural complexity, creating objects and creating and destroying links, sometimes with complex
structural preconditions. In that sense it is the kind of example for which an approach like ours
may be useful. The choice of operations to be traced and the test cases used for it is motivated by
trying to explore all aspects of this complexity, and our test cases do indeed cover all the cases
of Table 1.

5 Related Work

Automated reverse engineering is typically based on static or dynamic analysis. The static ap-
proach, exemplified by [SCM13, RVR05, TP03], examines the source code only, with the inten-
tion of extracting all possible behaviours. It is useful with incomplete systems, e.g., components
that cannot be executed independently [RVR05]. However, it is limited in its ability to detect dy-
namic object-oriented behaviours such as dynamic binding or method calls. For example, [TP03]
propose a static approach for generating sequence and collaboration diagrams from C++ code,
thereby potentially over-approximating the actual behaviour. Our solution is dynamic, based on
running the system, as are others [BMT+12, ZDHZ11, ZKZ10]. The potential drawback here is
that the extracted model represents only those behaviours that are actually executed.

Many dynamic reverse engineering approaches take advantage of aspect oriented concepts
for instrumentation at different levels. We use AspectJ to instrument low-level Java bytecode
and generate visual contract instances at runtime. A similar strategy lies behind [BMT+12]
generating object graphs or [ZDHZ11] extracting sequence diagrams.

Using Java bytecode instrumentation for extracting a context-free graph grammar is [ZKZ10].
Their use of graph grammars is for representing nested hierarchical call graphs, not to model the
behaviour of the system in terms of transformations on objects. Their tracing focusses on method
calls only. A mining approach infers the graph grammar from the set of extracted call graphs.

At the level of models [ALCN10] discovers traceability relationships [GG07], e.g., the rela-
tion between elements of source and target models in a model transformation. The approach is
based on aspect-oriented programming, tracing access to objects by creation, update and deletion
actions based on transformation events and aggregating them into a relational model. While the
observed actions are similar, our approach works at the level of Java programs.

6 Conclusion

We propose a dynamic approach to reverse engineering of instantiated versions of visual con-
tracts from Java code. We use instrumentation based on AspectJ to observe executions of existing
test cases, record these observations in traces and analyse them to filter out irrelevant objects and
aggregate their basic steps into rules covering the overall precondition and effect for that execu-
tion.

We have validated the correctness and scalability of our approach by applying it on the NanoXML
case study. The results are consistent with the class diagram and the expected behaviour of the
operations based on the documentation. We observe an overhead factor of up to 348 compared
to the execution of the same tests without rule extraction, increasing with the number of objects

Proc. GTVMT 2014 10 / 12



ECEASST

accessed, but manageable for all operations we encountered in the case study.
One limitation of the approach, due to the semantics of Java, is the inability to detect the dele-

tion of objects. This is handled implicitly by Java’s garbage collector. As long as the main appli-
cation of our technique is in program understanding, this aspect of Java’s semantics is reflected
correctly in the extracted contracts, Where a more high-level, language-independent model is
sought, this limitation may have to be addressed.

Each extracted rule (contract instance) describes one possible behaviour of the operation, cov-
ering only the part executed by one test case. Therefore, we usually obtain more than one rule for
a specific operation, which then need to be combined or generalised. As future work, we plan to
apply our approach to rule learning to this problem [AHK13]. We also intend to infer advanced
features such as NACs and multi objects, which will increase the accuracy of the specification.
The present the solution may already be useful for program understanding, e.g., as part of testing
or debugging, but does not deliver a general specification of the operation’s behaviour.

Bibliography

[AHK13] A. M. Alshanqiti, R. Heckel, T. Khan. Learning Minimal and Maximal Rules from
Observations of Graph Transformations. Electronic Communications of the EASST
58, 2013.

[ALCN10] B. Amar, H. Leblanc, B. Coulette, C. Nebut. Using Aspect-Oriented Programming
to Trace Imperative Transformations. In Enterprise Distributed Object Computing
Conference (EDOC), 2010 14th IEEE International. Pp. 143–152. 2010.

[BLL06] L. Briand, Y. Labiche, J. Leduc. Toward the Reverse Engineering of UML Sequence
Diagrams for Distributed Java Software. IEEE Transactions on Software Engineer-
ing 32(9):642–663, 2006.

[BMT+12] H. Brito, H. Marques-Neto, R. Terra, H. Rocha, M. Valente. On-the-fly extraction
of hierarchical object graphs. Journal of the Brazilian Computer Society, pp. 1–13,
2012.

[GG07] I. Galvao, A. Goknil. Survey of traceability approaches in model-driven engineering.
In Enterprise Distributed Object Computing Conference, 2007. EDOC 2007. 11th
IEEE International. Pp. 313–313. 2007.

[KRH12] T. A. Khan, O. Runge, R. Heckel. Testing against Visual Contracts: Model-Based
Coverage. In ICGT. Pp. 279–293. 2012.

[RKH13] O. Runge, T. A. Khan, R. Heckel. Test Case Generation Using Visual Contracts.
ECEASST 58, 2013.

[RVR05] A. Rountev, O. Volgin, M. Reddoch. Static Control-flow Analysis for Reverse En-
gineering of UML Sequence Diagrams. SIGSOFT Softw. Eng. Notes 31(1):96–102,
Sept. 2005.

11 / 12 Volume 67 (2014)



Towards Dynamic Reverse Engineering Visual Contracts from Java

[SCM13] M. K. Sarkar, T. Chatterjee, D. Mukherjee. Reverse Engineering: An Analysis of
Static Behaviors of Object Oriented Programs by Extracting UML Class Diagram.
International Journal of Advanced Computer Research 3(3), 2013.

[TP03] P. Tonella, A. Potrich. Reverse engineering of the interaction diagrams from C++
code. In Software Maintenance, 2003. ICSM 2003. Proceedings. International Con-
ference on. Pp. 159–168. 2003.

[ZDHZ11] T. Ziadi, M. A. A. Da Silva, L. M. Hillah, M. Ziane. A fully dynamic approach
to the reverse engineering of UML sequence diagrams. In 16th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS). Pp. 107–116.
2011.

[ZKZ10] C. Zhao, J. Kong, K. Zhang. Program Behavior Discovery and Verification: A Graph
Grammar Approach. IEEE Transactions on Software Engineering 36(3):431–448,
2010.

Proc. GTVMT 2014 12 / 12


	Introduction
	Representing Object-oriented Structure and Behaviour
	Java Classes and Objects Structures
	Behavioural Code

	Dynamic Extraction of Visual Contracts
	Tracing
	Analysis

	Evaluation
	Related Work
	Conclusion

