
Electronic Communications of the EASST

Volume 67 (2014)

Proceedings of the
13th International Workshop on Graph Transformation

and Visual Modeling Techniques
(GTVMT 2014)

Verification of Graph-based Model Transformations Using Alloy

Xiaoliang Wang, Fabian Büttner, Yngve Lamo

13 pages

Guest Editors: Frank Hermann, Stefan Sauer

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Verification of Graph-based Model Transformations Using Alloy

Xiaoliang Wang1, Fabian Büttner2, Yngve Lamo1

1 xwa@hib.no,yla@hib.no
Bergen University College, Norway

2 fabian.buettner@gmx.org
École des Mines de Nantes-INRIA, France

Abstract: Model transformations are fundamental in model driven development.
Thus, verification of model transformations is indispensable to ensure the quality
and the reliability of transformation results. In this paper we focus on graph-based
model transformation systems using the double-pushout (DPO) approach and study
their correctness w.r.t. conformance. It means that, given a transformation system
and a valid source model, any applicable sequences of model transformations will
produce a valid target model. A procedure is presented to verify firstly if a model
transformation system is correct w.r.t. conformance by checking the Direct Con-

dition, i.e., each direct model transformation produces a valid target model from a
valid source model. Then, for systems not satisfying the direct condition, it checks
the Sequential Condition, i.e., if a direct model transformation t produces an invalid
target model from a valid source model, then there exists a sequence of direct model
transformations succeeding the transformation t that produces a valid target model.
The satisfiability of the latter condition cannot always promise correctness, but it
ensures that, from every valid source model, a valid target model can be produced.
The procedure uses a bounded verification approach based on First Order Logic
(FOL). The approach encodes a transformation system and the two conditions into
a relational logic specification in Alloy. Then the specification is inspected by the
Alloy Analyzer to check if the system satisfies the conditions. When it violates the
conditions, the analyzer presents a counterexample, that may be used to redesign the
system. An example is given to illustrate the bounded verification approach in the
Diagram Predicate Framework (DPF).

Keywords: Model transformation system; Conformance; Alloy; Verification

1 Introduction

In model driven engineering (MDE), models are the basis for software development. They are
used to specify the domain under study, to generate program code and for documentation pur-
poses etc. Ideally, a model in the next development phase can be automatically generated from
a model in the previous phase by model transformations. Such automation makes MDE ap-
pealing by producing software with better quality at higher productivity. However, validation
of model transformations should be ensured. Without validation, errors in some transformations
are propagated to subsequent phases, which may cause erroneous software at the end.

1 / 13 Volume 67 (2014)

mailto:xwa@hib.no,yla@hib.no
mailto:fabian.buettner@gmx.org

Verification of Graph-based Model Transformations Using Alloy

In this paper, we focus on graph-based model transformations [EEPT06]. Such model trans-
formations are usually executed by applying model transformation rules on models. The rules
tell how to execute a transformation and generate a target model from a source model. A model
transformation system consists of a metamodel and a set of such rules along with a mechanism
to control rule applications. Our work aims to verify if a model transformation system is correct
w.r.t. conformance. Besides, for systems accepting invalid intermediate models in a sequence of
model transformations, a weaker correctness condition is verified.

We will present a procedure to verify firstly if a model transformation system is correct w.r.t.
conformance by checking if it satisfies a Direct Condition. Then, for systems not satisfying this
strong condition, a weaker Sequential Condition is checked. The procedure utilizes a bounded
verification approach based on First Order Logic (FOL). The main idea is to encode automat-
ically a model transformation system as a relational logic specification in Alloy [All], a mod-
elling language based on FOL. Then we resort to the Alloy Analyzer [All], which can generate
instances or counterexamples of a model. To verify if the system satisfies the conditions the an-
alyzer checks if the specification has any counterexamples within a user-defined bounded scope.

To illustrate our approach, we present a running example in Diagram Predicate Framework
(DPF) [RRLW09]. DPF provides diagrammatic modelling of both structure and constraints
based on category theory. Besides, it also offers functionality to specify graph-based model
transformations. We will present a DPF model transformation specification and show how it can
be encoded as an Alloy specification and verified with the Alloy Analyzer.

The paper is organized as follows. Section 2 firstly shows how to specify a model transfor-
mation system in DPF. Then Section 3 explains the verification procedure and the FOL-based
bounded verification approach. In Section 4 we give a short introduction to Alloy, explain the
encoding process from model transformations to relational logic specifications. Afterwards, in
Section 5 we present the result of the check of the Direct Condition and the Sequential Condi-

tion, before we discuss the given approach. Section 6 compares our work with related research
and finally Section 7 concludes the paper and envisions some future research directions.

2 Model Transformation System

In this section, we will show how to specify a model transformation system in DPF. A model
transformation system [EEPT06] consists of a metamodel M and a set of model transformation
rules. Figure 1 and 2 show a variant of Dijkstra’s algorithm for mutual exclusion [Dij01] as a
model transformation system in DPF. The algorithm ensures that a critical resource is exclusively
accessed by one process each time. In DPF, the structural syntax of a model is represented
by a directed graph and constraints as diagrammatic predicates on part of the graph. Those
predicates are denoted by [PredicateName]. Note that each predicate has a specific shape graph
defining which kind of graphs the predicate can constrain. For more information about predicate
in DPF, refer to [YXF+13]. Figure 1 is the metamodel used in the example. Because of space
limitation, some constraints are not shown in the example. R is the resource which processes
P can access. The node T tells which process that can access the resource. An arrow T → P

means that the process P is eligible to access the resource R. The flags {F1,F2} and the states
{nonActive,active,start,crit,check,setTurn} are used to control access to the resource. An arrow

Proc. GTVMT 2014 2 / 13

ECEASST

[xor] 76540123F2

[0,1]

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

/.-,()*+P

nonActive

��

active

start
;;

crit

MM

check

[[

setTurn

--

[0,1]

==⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤
[0,1]

// 76540123F1
[0,1]

///.-,()*+R

[xor] /.-,()*+T

[surj][inj]

[1]

[1]

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

[1,1]

aa❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇

[nand]

❂
✲
✧ [nand]

✎
✚★

♥♥

✏
✏

✎
✚

✲
✧

❃
✹

✱

✾
✰
✦

✄
✑
✜

❘
❏

❂
✴
✪
✢
✗

Figure 1: Metamodel

setFlag

setTurn1

setTurn2

enter

exit

Figure 2: Transformation rules

from a process to one of the two flags means that the process is tagged with such a flag. A
reflexive arrow on a process P labeled with one of the six states means that the process is in such
a state. Moreover, the model needs to satisfy the following constraints:

1. There is exactly one resource in a model, which is ensured by the multiplicity [1] on R. A
similar constraint also applies to T .

2. The states nonActive,active,start,crit,check,setTurn should be [reflexive].

3. Every process should be in one of the states nonActive, active, and also in one of the states
start, crit, check, setTurn. This is ensured by the [xor] constraints between the nonActive

and the active states, and among the start, crit, check, setTurn states.

4. Every process should only be in one of the state combinations {nonActive,start}, {active,crit},
{active,check} or {active,setTurn}.

5. Every process may be tagged with at most one of the flags {F1,F2}. This is ensured by
the multiplicity constraints [0,1] on both arrows P→ F1 and P→ F2, along with a [nand]
constraint between the two arrows.

6. Each flag may have at most one arrow to R, which is ensured by the multiplicity constraint
[0,1] on the respective arrows and a [nand] between the arrows.

7. T → R is bijective, this is ensured by [inj] and [surj] constraints.

8. It is at most one process in the system that is in state crit, is marked with the F2 flag and
is eligible to access the resource. This constraint is ensured by [critical].

A metamodel M, including structural syntax and constraints, defines its valid instances which
conform to M. The conformance states that an instance I should be typed by M, denoted as
I : M. Formally, it means that there is a graph morphism from the graph of I to the graph of M.
Moreover, it also states that I satisfies all the constraints defined on M, denoted as I ⊲ M. The
following figures show several graphs. Names of instance elements are omitted for brevity. For
example, /.-,()*+P denotes p1 : P, an instance element p1 typed by P. Figure 3 is a valid instance of
Figure 1 since it is well-typed and satisfies all the constraints; the others are not because P→ T

3 / 13 Volume 67 (2014)

Verification of Graph-based Model Transformations Using Alloy

causes type violation in Figure 4; in Figure 5 P is not in state active, which violates constraint 4.

RP

check

T

F1

active

Figure 3: An Instance

RP

check

T

F1

active

Figure 4: An invalid model

RP

check

T

F1

Figure 5: An invalid model

Based on the modelling framework, DPF also provides a framework to specify constraint-
aware model transformations[RRLW12], which means that the transformation rules may contain
constraints. However, in this paper, we only consider metamodel constraints. In a model trans-

formation rule {p : L
l
←− K

r
−→ R}, L, K and R are the left-hand side, the gluing graph and the

right-hand side, while the two graph morphisms l and r are injective. L and R are typed by M,
but not necessary valid instances of M. The model transformation rules in the example are shown
in Figure 2. Rule setFlag requests access to the resource. Rule setTurn1 and setTurn2 assign T

to one process depending on the context. Rule enter enables the eligible process to access the
resource, while rule exit releases the resource after access.

L

m

��

K
loo r //

��

R

n

��
S Doo // T

Figure 6: Double-pushout Diagram Figure 7: A model transformation

In this paper, the execution of model transformations follows the DPO approach [EEPT06].
For each transformation rule p, given an instance S, if there is a graph morphism m : L→ S,
we say that S has a match m of rule p. A direct model transformation is executed according to
the morphisms l and r and the match m by completing the double-pushout diagram in Figure 6.
After the direct model transformation, a target model T is produced. For example, the rule enter

changes the flag form check to crit, and the state of a process from F1 into F2. In the direct
model transformation in Figure 7, edge check and node F1 are deleted while edge crit and node
F2 are added. Other elements are preserved in the target model.

3 Bounded Verification of Graph-Based Model Transformation

In this section we will present a procedure to verify graph-based model transformation systems,
using a FOL-based bounded verification approach. The procedure firstly verifies if a system
is correct w.r.t conformance, i.e., given a valid source model, every sequence of direct model
transformations from the model can produce a valid target model. This is performed by check-

Proc. GTVMT 2014 4 / 13

ECEASST

ing if the system satisfy the Direct Condition, i.e., every direct model transformation is valid.
A direct model transformation is valid if it produces a valid target model from a valid source
model. The Direct Condition is quite strong in the sense that, in a sequence of direct model
transformation, no invalid intermediate model is allowed. However, some systems accept such
intermediate models and only require that the final target model should be valid. In such a situ-
ation, we weaken the correctness condition by checking the Sequential Condition, i.e., for each
counterexample S→ T0, a sequence of direct model transformations T0→ ··· → Tn can produce
a valid target model Tn. If the condition is satisfied, we assure that, given any valid source model,
a valid target model can be produced after some sequences of direct model transformations. It is
weaker since it does not promise to produce a valid target model after every sequence of direct
model transformations.

In this procedure, a bounded verification approach based on FOL is used to check if a graph-
based model transformation satisfies the Direct Condition or the Sequential Condition. The idea
is to encode a model transformation system into a relational logic specification. The encoding
can be executed automatically. Each component, metamodel (including structure and constraints)
and model transformation rules, can be encoded in relational logic. The structure of a metamodel
is encoded as functions and predicates, representing all the possible model instances typed by
the graph. Besides, the semantics of model transformations, or how to execute a transformation,
is also considered in the approach. In each direct model transformation, according to the applied
rule and the DPO approach, some elements in the source model are deleted while some elements
in the target model are added. Except those elements the rest of the source model is preserved in
the target model. In this way, a direct model transformation can be encoded as the following two
functions add : T → S and delete : S→ T :

add(e) =

{

NULL if e is added to T
e otherwise

delete(e) =

{

NULL if e is deleted from S
e otherwise

Based on the direct model transformation encoding, a graph-based model transformation sys-
tem, the Direct Condition(1) and the Sequential Condition(2) can be expressed as the following
FOL expressions (S→ T denotes that S is transformed into T, while⇒ is implication in FOL):

∀S,T : S ⊲ M∧ (S→ T)⇒ T ⊲ M (1)

∀S,T0 : (S ⊲ M∧S→ T0∧¬(T0 ⊲ M))⇒ (2)

∃T1, ...,Tn :
n−1
∧

i=1

¬(Ti ⊲ M)∧Tn ⊲ M∧
n−1
∧

i=0

Ti→ Ti+1

4 Encoding of Graph-based Model Transformation Systems

In this section, we will give the details about how to encode model transformation systems as a
relational logic specification in Alloy. Before that, a brief introduction to Alloy will be given.
Alloy consists of the Alloy specification language, used to define specifications or models, and
the Alloy analyser, used to reason about specifications. It is developed at MIT by a team led by
Daniel Jackson [All]. The Alloy specification language is a declarative language suited to de-
scribe complex model structures and constraints in a simple structural modelling language based

5 / 13 Volume 67 (2014)

Verification of Graph-based Model Transformations Using Alloy

on relational logic. The Alloy language defines a model structure as signatures. Each signature

defines a typed element in the structure, representing a set of instances of this type. Relations
among the typed elements are defined by the fields of the signatures. Constraints on the structure
can be defined as f acts while predicates as pred. The Alloy analyser can find valid instances
well-typed by the structure and satisfying its constraints by executing the run command. It can
also verify some properties by calling the check command to find counterexamples. Notice that
Alloy performs a bounded check, i.e., for each signature, a user-defined scope bounds the num-
ber of its instances. The Alloy Analyser performs the verification within a scope by running the
command {constraint} f or scope. For example, run{} f or m is used to find a valid instance of
a model specification within a scope containing at most m instances of each signature. Assuming
a specification contains n signatures, its instances contains at most m∗n elements. Here we only
mention the basic functionalities of Alloy, please refer to [All] for more information.

4.1 Encoding of Metamodels

sig Graph{ sig Nodei{}//1 ≤i≤m
nodes:set Node1+. . .+Nodem, sig Edge j{//1≤j≤n
edges:set Edge1+. . .+Edgen src:one Nodes,//1≤s≤m

} trg:one Nodet}//1≤t≤m
fact{all g:Graph|all e:Edge j&g.edges|g.src in g.nodes and g.trg in g.

nodes}//1≤j≤n

In graph-based model transformation systems, metamodel structures are type graphs. A type
graph, containing m nodes and n edges, is encoded as a Graph signature with set fields nodes

and edges, representing all the nodes and edges. nodes : set Node1 + · · ·+Nodem means that
each element of nodes can be typed by any node in the graph, where + is set union in Alloy.
This also applies to the field edges. Each node is encoded as a Node signature without any field
while each edge as an Edge signature with two fields src and trg of corresponding node types.
Both fields are declared with Alloy multiplicity constraint one. This means that each edge have
exactly one source node and one target node. Besides, the fact constrains that every edge and its
source and target nodes should be in the same graph (in is subset relation in Alloy).

Besides structural information metamodels contain also constraints. Constraints in DPF work-
bench are specified in Java or OCL [LWM+12]. They are encoded as FOL expressions in Alloy.
Furthermore, the Direct Condition requires the precondition that the source model S is valid in
every direct model transformation, while the Sequential Condition requires the precondition that
in each verification step, for each sequence of direct model transformations S→ T0 · · · → Tk, the
source model S is valid while the intermediate model Ti is invalid for i ∈ (0,k). For convenience,
a predicate pred valid[graph : Graph] is used to tell if a model satisfies some constraints. The
constraint 5 in the example is encoded as follows:

pred valid[graph:Graph]{

all n:(P&graph.nodes)|lone e:PF2&graph.edges|e.src=n

all n:(P&graph.nodes)|lone e:PF1&graph.edges|e.src=n

all n:(P&graph.nodes)|not ((some e:PF1&graph.edges|e.src=n) and (some

e:PF2&graph.edges|e.src=n))}

Proc. GTVMT 2014 6 / 13

ECEASST

4.2 Encoding of Direct Model Transformations

1 sig Trans{rule:one Rule,source,target:one Graph, dnodes, anodes:set

Node1+. . .+Nodem,dedges, aedges:set Edge1+. . .+Edgen}

2 all e:Edge|((e.src in t.dnodes or e.trg in t.dnodes) implies edge in

t.dedges) and ((e.src in t.anodes or e.trg in t.anodes) implies

edge in t.aedges)

3 t.dnodes in t.source.nodes and t.dedges in t.source.edges

4 t.anodes in t.target.nodes and t.aedges in t.target.edges

5 t.source.nodes-t.dnodes=t.target.nodes-t.anodes

6 t.source.edges-t.dedges=t.target.edges-t.aedges

7 rule1[t] or . . . or rulen[t]

Given a graph-based model transformation system, a direct model transformation trans : S
p
−→T is

executed by applying a model transformation rule p= L
l
←−K

r
−→ R with the DPO approach. A di-

rect model transformation is encoded as a Trans signature. In the signature, the rule field denotes
the rule applied in a transformation, while the source and target fields represent the source and
the target models. The other four fields represent the deleted elements and added elements. Be-
sides, a transformation trans satisfies some constraints: there is no dangling edge after the trans-
formation; the deleted elements and the added elements should be subset of the source graph’s
and the target graph’s elements, respectively; the source graph and the target graph should be
the same except for the deleted and the added elements. trans.dnodes and trans.dedges denote
the deleted elements in the transformation, while trans.anodes and trans.aedges the added el-
ements. trans.source.nodes− trans.dnodes represents the preserved nodes in the source model
while trans.target.nodes− trans.anodes the preserved nodes in the target model. According to
the semantics of transformations, those two sets of preserved nodes are equal. A similar con-
straint applies also to arrows. These are encoded as the constraints on lines 5-6.

Besides the general properties of a transformation, for each rule p, a predicate pred rulep[trans]
encodes if a rule p is applied to a transformation. Without loss of generality, we enforce that a
direct model transformation applies only one rule each time.

1. There is only one match m from L to S. During the transformation, the part m(L)\m(l(K))
of S is deleted. Similarly, there is also only one "match" n from R to T and the part
n(R)\n(r(K)) of T is added.

one m:L→ S|(all n:m(l(KN))|n in t.source.nodes-t.dnodes) and (all

e:m(l(KE))|e in t.source.edges-t.dedges)and (all n:m(LN)\m(l(KN))
|n in t.dnodes) and (all e:m(LE)\m(l(KE))|e in t.dedges)

one n:R→ T|(all n:n(r(KN))|n in t.target.nodes-t.anodes) and (all

e:n(r(KE))|e in t.target.edges-t.aedges) and (all n:n(RN)\ n(r(KN))
|n in t.anodes) and (all e:n(RE)\ n(r(KE))|e in t.aedges)

2. During a transformation, no element in S is deleted except the elements matched by L \
l(K). To fulfill this, a constraint restricts the number of deleted elements. For each type t

having instances in L \ l(K), the number of deleted elements typed by t in S equals to Nt ,
the number of elements typed by t in L \ l(K). A similar constraint applies to the added

7 / 13 Volume 67 (2014)

Verification of Graph-based Model Transformations Using Alloy

elements. In Alloy, # calculates the cardinality of a set. trans.source.nodes&t contains
elements in source typed by t where & is set disjunction in Alloy. For example, only one
edge of type T P is deleted in rule setTurn0, encoded as the constraint on line 3.

1 #{n:t.source.nodes&t|n in t.dnodes}=Nt

2 #{e:t.source.edges&t|e in t.dedges}=Ne

3 #e:t.dedges&TP=1

3. All the elements in S typed by t having no instance in L\ l(K) are unchanged. Similarly, all
the elements in T typed by t having no instance in R\ r(K) are unchanged. For example,
no node and edge typed by P and T → P is deleted or added when applying rule setTurn2
to a transformation. The constraint is encoded as:

no n:trans.dnodes&P no n:trans.anodes&P

no e:trans.dedges&TP no e:trans.aedges&TP

The encoding of rule setTurn2 to a predicate is shown follows (part of the predicate is omit):

1 pred rule_setTurn2[t:Trans]{

2 some t.rule&setTurn2

3 one se_tp0:TP&(t.source.arrows-t.darrows),se_st0:setTurn&t.

darrows, se_tr0:TR&(t.source.arrows-t.darrows)|let sv_t0=

se_TP0.src,sv_t0=se_TP0.trg,sv_r0=se_TR0.trg|(sv_p0=se_st0.src

and sv_p0=se_st0.trg and sv_t0=se_tr0.src and sv_p0 in P&(t.

source.nodes-t.dnodes) and sv_t0 in T&(t.source.nodes-t.dnodes

) and sv_t0 in R&(t.source.nodes-t.dnodes))

4 . . .

5 #setTurn&t.darrows=1 #check&t.aarrows=1

6 no P&t.dnodes . . . no R&t.dnodes

7 no P&t.anodes . . . no R&t.anodes

8 no check&t.darrows . . . no F2R&t.darrows

9 no crit&t.aarrows . . . no F2R&t.aarrows}

5 Result of Verification

After encoding a graph-based model transformation system to an Alloy specification, the Alloy
Analyzer is used to verify the system by finding counterexamples w.r.t. different conditions.

5.1 Check Direct Condition

When checking the direct condition, the Alloy Analyzer examines if some direct model trans-
formations produce an invalid target model from a valid source model. For example, we use the
following command to find a counterexample violating constraint [surj] on PF1 : P→ F1:

1 check{all trans:Trans}|all n:trans.target.nodes&F1|one e:trans.target

.edges&PF1|e.trg=n}for 3 but exactly 1 Trans, exactly 1 Graph,

exactly 1 Rule, exactly 1 R, exactly 1 T, exactly 1 TR

Proc. GTVMT 2014 8 / 13

ECEASST

In the command, f o3 but . . . , exactly 1 TR is the scope. It restricts the counterexample containing
at most 3 instances of each signature. The scope is further restricted: since only direct model
transformations are examined when checking the direct condition, for all systems, we enforce
that there are exactly 1 Transformation, 2 Graphs and 1 Rule. Besides, we ensures exactly 1 R, 1
T and 1 TR for this example. The Alloy keyword exactly implements these constraints.

If a counterexample is found violating a constraint, the Alloy Analyzer visualizes it show-
ing which rule is applied. We call such a rule a problem rule and say that the rule violates the
constraint. The designer can utilize the information to fix the problem, e.g., adding more con-
straints to the metamodel or consider if some NACs are necessary for the problem rules. If no
counterexample is found for any constraint, the system is verified correct within the scope.

For the example, the Alloy Analyzer gives counterexamples when checking constraints 3 and
5 (multiplicity on P→ F1 and [nand] between P→ F1 and P→ F2). Part of a counterexample
violating constraints 3 is given in Fig 8. Nodes with $ are elements violating the constraint. After

Trans

($tran)

source

Graph0

target

active0

aarrows

F1R1

aarrows

PF10

aarrows

setTurn0

aarrows

F11

anodes

nonctive

darrows

start

darrows setFlag

rule

arrows arrows

F1R2 PF11

arrows

F10

nodes

P2

($n)

nodes

arrowsarrows arrowsarrows

nodes

arrows arrowsarrows

nodes nodesnodes

src trg srctrg trgsrcsrc trgsrc trg src trgsrctrg trg srctrg

Figure 8: A counterexample

analyzing the counterexample, we find that the following constraints are missing. After adding
them, the Alloy Analyzer gives no further counterexamples, which indicates that the system is
correct w.r.t. conformance.

A process has no flag iff it is in {nonActive, start} state

A process has F1 flag iff it is in {active,setTurn} or {active,check} state

A process has F2 flag iff it is in {active,crit} state

5.2 Check Sequential Condition

We also apply our approach to a revised version of an example from [LMRL13] which trans-
forms Object Oriented systems (OO) into entity-relationship (ER) models. The authors use rule
amalgamation mechanism to perform transformations in their work; we verify the system using
DPO approach without amalgamation. Note that in this example, the source metamodel and the
target metamodel are different. Before applying the approach to such systems, we construct a
joint metamodel containing the two metamodels and correspondences between elements. Several
constraints are considered to verify the system. For example, (c1) each class should be trans-
formed into a table; (c2) each table should have a primary key. Because of space consideration,
we only briefly present the result here. When checking the Direct Condition, we found that both
constraints are violated by some rules. After using the counterexamples to fix the system, c2 is

9 / 13 Volume 67 (2014)

Verification of Graph-based Model Transformations Using Alloy

still violated by a rule. In the following, we show how to check the Sequential Condition. For c2,
we first consider a path consisting of 2 direct model transformations in a sequence. The source
model, trans0.source, is valid, as shown on line 2; the intermediate model, trans1.target, violates
c2. For each model violating a constraint c, violation[c] generalize how the model violates the
constraint, while f ix[v] generalizes the solution to fix the violation. For example, a violation for
c2 is apparently that, some table has no primary key. While for the violation, the solution is to
add a primary key for the table. Removing the table is not considered since no deletion happens
in the example. The violation and the correction are presented below on line 3:

1 sig Path{t0,t1:Trans}{t0.target=t1.source}

2 all tb:Table&t0.source.nodes|some pk:PK&t0.source.edges|pk.src=tb

3 some tb:Table&t0.target.nodes|(no pk:PK&t0.target.edges|pk.src=tb) and

(some pk1:PK}&t1.aedges|pk1.src=tb)

Before checking the Sequential Condition, it should be assured that there exists a rule fix-
ing such a violation. This is performed by executing command run{} but exactly 1 Path,
exactly 2 Trans, exactly 3 Graph, exactly 2 Rule to see if such a path exists. If no instance
is given, we can conclude that the system is not correct, i.e., from some valid source mod-
els, no model transformations can produce valid target models. Otherwise, we continues to
check the condition. The check is enforced by running the command check {all path : Path|
Table_one_pk[path.trans2.target]} with the same scope. If no counterexample is present, it is
assured that each violation of a constraints can be fixed by some succeeding transformations.
Therefore, we verify that the Sequential Condition is satisfied. Otherwise, a longer path should
be checked. In the example, the Sequential Condition is satisfied with a path of length 2.

5.3 Discussion

In order to show the performance of our approach, the verification times of checking the Direct

Condition for the example presented in Section 2, is shown in Table 1. All the cases are pre-
formed in the Alloy Analyzer on a Windows machine with a Intel Core i5-2410M processor and
4GB memory. The second line is for the scope f or 3 but . . . (s3), while the third line is for the
scope f or 4 but . . . (s4). Each column represents the time needed to verify a specific constraint.
It shows that the constraints are verified in a reasonable time. The longest time is 2700ms and
2371ms when checking [xor] between the 4 states with the scope s4. Because of the capacity of
the Alloy Analyzer, the verification cannot be performed with the scope f or 5 but

Table 1: Verification times(ms)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15
s3 133 62 105 49 24 40 47 98 24 601 495 100 67 73 24
s4 258 136 418 126 56 171 131 442 80 2700 2321 489 204 289 144

We have shown that the approach helps to find defects in graph-based model transformations.
But several limitations should be noticed. The Alloy Analyzer performs a bounded check within
a state space determined by a user-defined scope. Given a specification consisting of m sig-
natures, a scope [s1,s2, ...,sm] bounds the size of the ith signature to si. For a relation of arity

Proc. GTVMT 2014 10 / 13

ECEASST

n, the size of the state space containing all the possible instances is 2ˆ(∑m
i=1 si)

n. The analyzer
searches exhaustively within the state space for instances or counterexamples of a specification.
Alloy uses some optimisation to decrease the state space, but the state space still grows super-
exponentially with the scope. In the approach, the transformations encoding introduces some
relations with high arity. For example, rule enter is encoded as a relation with arity 5 (The
largest number of the edges in the left and the right side). As a result, the approach will not scale
well when applying to large systems or complex transformation rules.

However, some optimisation can be deployed to apply the approach to larger systems. We
verify systems by finding counterexamples violating a certain constraint. When a constraint is
checked, some elements in the metamodels and rules are not affected. They could be removed
from the scope. For example, in Figure 2, arrow T → R is not added or deleted by any rules.
When checking constraint 3 and 5, the arrow cannot affect the verification result. Those un-
related elements could be removed during verification. This could also be used to simplify a
counterexample, when it is too complex to analyse. PF2 and crit are not deleted or added by
any transformation applying rule setFlag and they do not affect the satisfiability of the con-
straint. They are unrelated elements and could be removed from the scope when verifying the
constraints. A further restricted scope with 0 PF2, 0 crit, can simplify the counterexample.

6 Related Work

Different verification techniques have been applied to model transformation verification. The
tool, GROOVE [GdR+12], verifies graph-based model transformation using model checking. In
this approach, the initial state must be given and it works only for finite state spaces. Besides, it
encounters the state space explosion problem similar to other model checking approaches. Basil
Becker et al. [BBG+06] encode safety properties as inductive invariants and present algorithms
to verify safety properties using model checking. The approach is largely dependent on the
number and especially the complexity of the rules and invariants. Similar to our approach no
start state is required. In contrast, we also offer a procedure to verify properties along a sequence
of model transformations.

Another verification technique, theorem proving, is also used in this area. Simone et al. [CR12]
uses relational structures to encode graph grammars and FOL to encode graph transformations.
In this way, they provide a formal verification framework to reason about graph grammars using
mathematical induction. Similarly, Leila et al. [RDCD10] translate graph grammars into Event-
B specifications and use theorem provers available for Event-B to analyze the reachable states.
However, the approaches is not automatic and requires mathematical knowledge. In contrast, our
approach offers an automatic procedure to verify the validity of produced models.

Automatic verification of model transformations is an evolving area of research; Several meth-
ods have already been proposed. Troya and Vallecillo [TV11] provide a rewriting logic se-
mantics for ATL [JABK08] and use Maude to simulate and verify transformations; Büttner et
al. [BEC12] provide a first-order logic encoding for ATL transformations and employ SMT
solvers to check their correctness. There are furthermore several verification approaches that
use OCL constraints to capture or specify semantics of rule-based transformations (sometimes
called transformation models), employing existing OCL model finders to check correctness prop-

11 / 13 Volume 67 (2014)

Verification of Graph-based Model Transformations Using Alloy

erties [GLW+13, CCGL10]. Those approaches are specific to some transformation languages.
While in our approach, we consider general cases to systems which conforms to the semantics
of model transformation system.

The works of Anastasakis et al. [ABK07] and Baresi and Spoletini [BS06] are closest to our
contribution, as they also use Alloy to analyze graph-based model transformation. They demon-
strate, by example, the feasibility of representing such a model transformation in Alloy. On
the other hand, they specify a (bounded) sequence of transformation rules in Alloy to check
properties related to a sequence of model transformations, e.g., if a model can be produces af-
ter a sequence of model transformations. By contrast, we provides an automatic encoding of
graph-based transformation systems to Alloy specifications. Besides, we address the checking
of individual transformations: We verify that all direct model transformations produce a valid
target model from a valid source model, which implies that the system is correct. Furthermore,
we also verify if, from every valid source model, a valid target model can be produced.

7 Conclusion and Future Work

Model transformations are of great importance in MDE, hence the correctness of model transfor-
mations should be ensured. We proposed an approach to verify static correctness (preservation
of metamodel conformance) of graph-based model transformations. The verification is realized
by automatically encoding systems into relational logic formulas which can be checked by Alloy
(given a bounded search space, using a SAT solver). At the current stage, the examples show
that our verification approach can check individual transformations and verify systems allowing
intermediate instances in a sequences of transformations. But the approach is not restricted to
the verification w.r.t. conformance. It also could be extended to verify safety proprieties and
liveness proprieties. We will systematically study when this approach should be used. Besides,
much more work should established in the future, e.g., how to automatically derive the unre-
lated elements when verifying a constraint; Currently, the counterexamples are visualized with
Alloy tools. How to present the result diagrammatically in DPF should be studied for a more
user-friendly feedback. Furthermore, the scalability problem should be addressed in the future.

Bibliography

[ABK07] K. Anastasakis, B. Bordbar, J. M. Küster. Analysis of Model Transformations via
Alloy. In MoDeVVa’2007, Proceedings. 2007.

[All] Alloy. Project Web Site. http://alloy.mit.edu/community/.

[BBG+06] B. Becker, D. Beyer, H. Giese, F. Klein, D. Schilling. Symbolic Invariant Verifica-
tion for Systems with Dynamic Structural Adaptation. In Proceedings of the 28th

International Conference on Software Engineering. ICSE ’06, pp. 72–81. 2006.

[BEC12] F. Büttner, M. Egea, J. Cabot. On verifying ATL transformations using off-the-shelf
SMT solvers. In ACM/IEEE MODELS 2012. LNCS. 2012.

Proc. GTVMT 2014 12 / 13

http://alloy.mit.edu/community/

ECEASST

[BS06] L. Baresi, P. Spoletini. On the Use of Alloy to Analyze Graph Transformation Sys-
tems. In ICGT. LNCS 4178. 2006.

[CCGL10] J. Cabot, R. Clarisó, E. Guerra, J. de Lara. Verification and validation of declarative
model-to-model transformations through invariants. JSS 83(2), 2010.

[CR12] S. A. da Costa, L. Ribeiro. Verification of graph grammars using a logical approach.
Science of Computer Programming 77:480–504, 2012.

[Dij01] E. W. Dijkstra. Solution of a problem in concurrent programming control. In Pioneers

and Their Contributions to Software Engineering. 2001.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-

formation. Springer. Springer-Verlag New York, Inc., 2006.

[GdR+12] A. H. Ghamarian, M. J. de Mol, A. Rensink, E. Zambon, M. V. Zimakova. Modelling
and analysis using GROOVE. International journal on software tools for technology

transfer 14:15–40, 2012.

[GLW+13] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
J. Schönböck, W. Schwinger. Automated Verification of Model Transformations
Based on Visual Contracts. Autom. Softw. Eng. 20(1), 2013.

[JABK08] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev. ATL: A model transformation tool. Sci.

Comput. Program. 72(1-2), 2008.

[LMRL13] Y. Lamo, F. Mantz, A. Rutle, J. de Lara. A Declarative and Bidirectional Model
Transformation Approach Based on Graph Co-spans. In Proceedings of the 15th

Symposium on Principles and Practice of Declarative Programming. ACM, 2013.

[LWM+12] Y. Lamo, X. Wang, F. Mantz, W. MacCaull, A. Rutle. DPF Workbench: A Diagram-
matic Multi-Layer Domain Specific (Meta-)Modelling Environment. In Computer

and Information Science 2012. Volume 429, pp. 37–52. 2012.

[RDCD10] L. Ribeiro, F. L. Dotti, S. A. da Costa, F. C. Dillenburg. Towards Theorem Proving
Graph Grammars using Event-B. ECEASST 30, 2010.

[RRLW09] A. Rutle, A. Rossini, Y. Lamo, U. Wolter. A Diagrammatic formalisation of MOF-
based modelling languages. Objects, Components, Models and Patterns, 2009.

[RRLW12] A. Rutle, A. Rossini, Y. Lamo, U. Wolter. A formal approach to the specification
and transformation of constraints in MDE. JLAP 81(4), 2012.

[TV11] J. Troya, A. Vallecillo. A Rewriting Logic Semantics for ATL. Journal of Object

Technology 10, 2011.

[YXF+13] L. Yngve, W. Xiaoliang, M. Florian, B. Øyvind, S. Anders, R. Adrian. DPF Work-
bench: a multi-level language workbench for MDE. In Proceedings of the Estonian

Academy of Sciences. Pp. 3–15. 2013.

13 / 13 Volume 67 (2014)

	Introduction
	Model Transformation System
	Bounded Verification of Graph-Based Model Transformation
	Encoding of Graph-based Model Transformation Systems
	Encoding of Metamodels
	Encoding of Direct Model Transformations

	Result of Verification
	Check Direct Condition
	Check Sequential Condition
	Discussion

	Related Work
	Conclusion and Future Work

