
Electronic Communications of the EASST
Volume 68 (2014)

Proceedings of the
8th International Workshop on Graph-Based Tools

(GraBaTs 2014)

A Modular and Statically Typed Effectful Stack for Custom Graph
Traversals

Norbert Tausch, Michael Philippsen

14 pages

Guest Editors: Matthias Tichy, Bernhard Westfechtel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

A Modular and Statically Typed Effectful Stack for Custom Graph
Traversals

Norbert Tausch1, Michael Philippsen2

University of Erlangen-Nuremberg, Programming Systems Group, Germany
1norbert.tausch@fau.de, 2michael.philippsen@fau.de

Abstract: Programmers often have to implement custom graph traversals by hand as
either there are no suitable text-book algorithms for their tasks, or their problems are
too complex for a pure querying language that lacks modularity or static typing. Our
new Scala-based graph traversal language uses an effectful stack that adapts monads
and type classes. Arbitrary graph effect computations and graph processing rules
can be defined and composed in a modular and statically typed way. Custom graph
traversals become expressible in a concise notation, run both in-memory and on
graph databases, and also allow for parallelization. We evaluate the usability of our
approach by detecting occurences of an anti-pattern in a Java source code archive.
Our approach outperforms the well-known Gremlin approach due to parallelization.

Keywords: graph, modular, monad, Scala, statically typed, traversal language

1 Introduction

When working with graph-based data, programmers often have to implement graph traversals
and transformations by hand, as known graph libraries, query languages, or traversal frame-
works seem inapplicable. A flexible and concise way to implement custom graph traversals is
to use a general programming language and a workflow-like programming pattern, e.g., Scala

Element

properties: Map[String, Any]

Vertex Edge+target

1

+inEdges

0..*

+source

1

+outEdges

0..*

Figure 1: Property graph model.

(scala-lang.org) collection library, Java 8 streams, or
TinkerPop Gremlin (tinkerpop.com) graph traversal
language. All those approaches use fluent interfaces
[Fow10] that are based on method chaining and data
flow programming. We illustrate this with the property
graph model in Fig. 1, an object-oriented representa-
tion of a directed, labeled and attributed pseudo-graph
that is widely used in graph based systems [RN10], e.g., Neo4j (neo4j.org) and TinkerPop.

The property graph model is advantageous for custom graph traversals as it represents graphs
a) Set of vertices b) Set of edges c) Set of vertices

2

4

a

b c

d

e

3

1

.flatMap(_.outEdges) .map(_.target)

2

4

a

b c

d

e

3

1 2

4

a

b c

d

e

3

1

Figure 2: A successors graph traversal with Scala Set.

as collections of vertices and
edges. Fig. 2 holds code for a
successors traversal that is
based on Scala’s Set collection
class. Starting from a set of ver-
tices in (a), flatMap applies
the one-to-many value compu-

1 / 14 Volume 68 (2014)

mailto:norbert.tausch@fau.de
mailto:michael.philippsen@fau.de
http://scala-lang.org
http://tinkerpop.com
http://neo4j.org

A Modular and Statically Typed Effectful Stack for Custom Graph Traversals

tation to each vertex to compute a set of outgoing edges (b). With a one-to-one transfor-
mation, map then transforms this set into a set of vertices (c) that contains all the succes-
sors of all the initial vertices. With Scala’s syntax enhancements, we can shorten the code to
vertices.successors which indicates the strength of our internal domain-specific lan-
guage (DSL) for custom graph traversals.

Unfortunately, working with graphs often includes two types of tasks that break this short
workflow pattern. Effect computations gather additional information during the traversal or
influence its result. For example, gather-the-current-traversal-path or do-not-visit-twice are ef-
fects that are applied after each traversal step (e.g. successors). Processing rules influence
the traversal order. The above example uses a breadth-first search (BFS) order, but often we need
a depth-first search (DFS) order or have to run traversals in parallel.

Without a DSL, complex code is needed to freely compose such tasks for custom graph traver-
sals. Our new graph traversal language that builds upon a so-called effectful stack provides a so-
lution for this problem. Its main attributes are modularity and static typing. Modularity allows
to compose arbitrary effect computations and processing rules that influence a graph traversal.
It also makes effect computation results accessible in a structured way. Static typing allows to
define effects in a way that lets the compiler decide statically whether an effect has to be applied
to a traversal and which implementation fits best to the current data set. For example, a gather-
the-current-traversal-path effect only gathers vertices along a traversal, but it can be skipped on
edges for better performance. Our DSL is based on the object-functional programming language
Scala. It leverages monads [Mog89] and type classes [WB89] but modifies them for improved
modularity and static typing.

Sec. 2 briefly introduces monads and sketches our contributions. Then we address different
interest groups: Sec. 3 is for effect programmers who define effects. Sec. 4 explains how the
stack infrastructure makes effects available to query programmers, targeted in Sec. 5, who uses
the traversal language. Section 6 covers related work. Sec. 7 holds an evaluation.

2 General Concept

2.1 Monads

In Sec. 1 we implemented custom graph traversals by means of (but not limited to) Scala col-
lection classes. This workflow pattern is powerful as it offers monad [Mog89] methods like
map and flatMap that bring three different computations and processing rules to graph traver-
sals. (1) Value computations are distinct steps of a graph traversal, e.g., the _.outEdges
and _.target functions in Fig. 2. Both require that flatMap and map apply methods of the
property graph model to each vertex or edge in the current collection. (2) There can be additional
effect computations that are implicitly applied along a traversal. For example in Fig. 2, the Set
collection automatically removes duplicate elements after each step, such that in (c) vertex i2
only occurs once, although both edges a and c target it. With a List collection instead, the
results of the map operation would be concatened and hence, vertex i2 would occur twice. (3)
Collection monads can have processing rules. In Fig. 2, the traversal automatically skips empty
collections and runs in BFS order. Other traversal orders like DFS or even parallel execution
order are possible by simply inserting a .view or .par in front of the flatMap operation.

Proc. GraBaTs 2014 2 / 14

ECEASST

2.2 Basic Idea

The basic idea is to use a collection monad’s workflow pattern, but to add missing task-related
additional effect computations. We illustrate this by adding two typical effect computations to
the successors example. First, a gather-the-current-traversal-path effect traces the path that
led to the current vertex in a traversal, for instance in a cycle detection. Second, a do-not-visit-
twice effect assures that vertices are only visited once. Vertex i3 is in the result set of Fig. 2
although it is among the initial vertices and hence visited twice.

As such additional effect computations are cumbersome to implement with extra code, our
DSL brings them into the easy to understand workflow (see Fig. 3). First, the user lifts the needed

V(,)
Set
1 3

Set
PP()1 PP()3

1 3

1 3

VV(, , ,)
Set

P(,)1

1 3

2

P(,)2 3

4

4

2 4

.path.visit .successors

V()
Set

P() P()
1 3

.run

Figure 3: successors with additional Path and Visit effects.

effects into the collection. We
provide appropriate .path
and .visit syntax enhance-
ments for that. As a result,
each vertex is wrapped into a
path object P that holds and
represents the path that led to
the currently wrapped vertex. The collection of those path objects is wrapped into a visit object
V that holds a set of already visited vertices and represents the corresponding effect computa-
tion. Instead of a pure value collection (vertices, bold in Fig. 3), the user now gets a nested
object comprising a collection, values, and effects (P and V). We call such an object an effectful
stack. In a second step, the user applies value computations with flatMap and map – or even
better with predefined syntax enhancements like .run or .successors. The former explic-
itly performs all effect computations in the stack without a value computation. It adds the initial
vertices to the set of already visited vertices in V and adds each current vertex to the current
traversal path in each P. From this point on, effect computations are implicitly performed after
each value computation that is applied to the stack. Fig. 3 shows this for the successors step
that internally applies value computations with flatMap and map to the stack. Both operations
also automatically trigger the effect computations afterwards. Thus, each path effect P adds its
new vertex to its internal path list, previously visited vertices are removed from the collection,
and remaining vertices are added to the set of already visited vertices. Hence, in contrast to Fig.
2, vertex i3 is no longer in the resulting vertex set.

In order to get such an effectful stack, we can use monads and monad transformers [LHJ95].
Monads allow for the implementation of effect computations and monad transformers combine
several monads into a new one. Unfortunately, due to their powerful but also restrictive inter-
face (flatMap), they cannot be combined as freely as we would need them for custom graph
traversals. Our DSL brings arbitrary effects in any combination into the stack.

2.3 Contributions

Below we will show how to express arbitrary effects in a modular and statically typed way
such that they can be combined together with collection classes to an effectful stack. For free
composability of more than a restricted set of simple effects, novel and slightly impure monad
transformers are needed that allow for a modular and statically typed effect definition. Moreover,

3 / 14 Volume 68 (2014)

A Modular and Statically Typed Effectful Stack for Custom Graph Traversals

I[_], A

<<type>> U[X] = PathT[I, X]
<<val>> inner: I[A]
<<val>> pathList: List[Vertex]

PathT

I[_]

AnyPath
<<type class>> <<bind>><M[X] → PathT[I, X], B → Any>

I[_]

<<type class>> <<bind>><M[X] → PathT[I, X], B → Vertex>

<<bind>><IA → I[A]>

IA

<<type>> U[X]
<<val>> inner: IA

<< trait >>
M[_], B

<< trait >>

value[A] (ma: M[A]): A
map[A] (ma: M[A])(f: A => B): M[B]
smap[A](ma: M[A])(f: A => B): M[B]

MonadicData Monadic

VertexPath

Figure 4: Schema of a PathT monadic class.

we present how such effects can be added to a stack without affecting the simple signature of
flatMap and map too much, so that the basic query programmer can still apply operations to
collections without noticing the effect processing that is being triggered under the hood – and
that of course is implemented efficiently by our effect engine.

3 Classes with Monadic Effects

A design goal of our DSL is that an effect programmer can pre-define effect computations for the
query programmer to later use them without having to know how the effects are implemented.
This section is mainly of interest for the effect programmer.

To define the above mentioned path and visit we need: first, a data type that represents an
effect computation on the stack and that holds intermediate effect computation results. And
second, the actual implementation of the effect in a modular and statically typed way. For both,
we extend monad transformers (that are also monads) and type classes. The latter offer ad-hoc
polymorphism and decouple a data type from its monad implementation so that the compiler can
statically choose the right type-dependent code for an effect.

We introduce monadic classes that are based on Scala’s implicit feature [OMO10] and
make it straightforward to implement new effects as shown in Fig. 4. The effect programmer
simply implements the data type and the type class of an effect and automatically inherits all that
is needed for the effectful stack.

3.1 Data Type

MonadicData prescribes how an effect programmer has to define effects. This is advantageous
over pure monads that usually do not prescribe a distinct data structure at all. The task is to make
effects composable and its intermediate computations results accessible within an effectful stack.

For composability data types must resemble monad transformers. In Fig. 4 the data type
PathT (T for transformer) represents a path effect computation. The type parameter I[_]
represents a unary nested data type; A is the current value type, e.g., a vertex or an edge.
MonadicData enforces that sub-classes define their unary type reprasentation using the ab-
stract type member U[X]. Thus, the compiler can later use it to select suitable type classes (Sec.
3.2). The unary type representation of PathT is U[X]=PathT[I,X] where I is the unary

Proc. GraBaTs 2014 4 / 14

ECEASST

type of a nested monadic class. This results in a multi-layered stack of monadic classes where
each stacked data type has its unary type projection that uses the value type of the bottom data
type as its type parameter.

For type-safe accessibility to the whole structure of a multi-layered monadic class, a data type
has to implement the inner attribute declared in MonadicData. In the example, path=ma.
inner.inner.pathList gives access to the pathList attribute even if PathT is nested
in two other monadic classes. As the MonadicData’s type parameter IA binds the inner
attribute to I[A] and as it holds the concrete type of the nested data type, access to all monadic
classes is type-safe. The pathList attribute can also be accessed without explicitly denoting
any calls of inner, which the compiler can insert implicitly without loss of type-safety.

3.2 Type Class

A type class implements an effect’s computational part. We improve a pure functional monad
transformer’s type class [CB14] with both an easier implementation (with focus to our effectful
stack) and statically typing (to improve performance and type safety).

The effect programmer has to fulfill the interface Monadic. It has two type parameters:
M[_] is the unary type projection of the monadic classes’ data type. For example, a type class
AnyPath for PathT in Fig. 4 has to use the binding M[X]=PathT[I,X]. The second type
parameter B is bound to Any. What is new is that the compiler loads them implicitly if needed.
It also loads the type classes of all inner monadic classes that then can be used in a monadic type
class implementation. Hence, a type class sees the unary type projection of the inner monadic
class as its type parameter I[_].

To ease implementation a type class only has to implement map, smap, and a value func-
tion. A pure structural map (smap) is needed for a value computation without effect compu-
tation. A type class also needs a value function to access the base value of a multi-layered
monadic class. In a pure monad with more layers it gets more unlikely that flatMap can be
called with a function of type A=>M[N[O[P[...[B]]]]] instead of just A=>M[B]. Instead
Monadic exploits that for graph traversals it suffices to have one-to-one transformations (map
and smap) of the form A=>B or one-to-many transformations (flatMap) like A=>C[B] with
an arbitrary collection type C. Sec. 4.3 shows how our stack infrastructure automatically reduces
the latter to one-to-one transformations.

Multiple parameter type classes [Jon00] improve static typing. A problem of pure monads is
that although a type class is chosen at compile time, there is still pattern matching. For example,
map of PathT only has to append the result of the value computation f:A=>B to its recorded
path list if B is of type Vertex. Otherwise it has no effect. Pure monads would have to use slow
runtime pattern matching on the type of B. To solve this problem Monadic has the target type
B as an extra type parameter. As map then returns type B we can provide statically selectable
type class instances. Two type classes for PathT are in Fig. 4. VertexPath for B is bound to
Vertex (for path computation) and AnyPath for B is bound to Any (default/no effect).

The strength of multiple parameter type classes becomes even more apparent for monadic
classes that work on collection types instead of single value types. The monadic class VisitT in
Fig. 5 rejects all pre-visited vertices from the resulting collection. A mutable (and synchronized)
HashSet attribute visited is used for that purpose. Beside the obligatory effect-free default

5 / 14 Volume 68 (2014)

A Modular and Statically Typed Effectful Stack for Custom Graph Traversals

<<bind>><M[X] → VisitT[I, X], B → ParIterable[Vertex]>

I[_], A

<<type>> U[X] = VisitT[I, X]
<<val>> inner: I[A]
<<val>> visited: HashSet[Vertex]

MonadicData
VisitT <<trait>>

I[_]

AnyVisit
<<type class>>

M[_], B

Monadic
<<trait>>

<<bind>><M[X] → VisitT[I, X], B → Any>

I[_]

CollVisit
<<type class>> <<bind>><M[X] → VisitT[I, X], B → Traversable[Vertex]>

IA

<<bind>><IA → I[A]>

I[_]

ParCollVisit
<<type class>>

Figure 5: Schema of a VisitT monadic class.

AnyVisit, Fig. 5 also depicts CollVisit and ParCollVisit that are selected statically
if a value computation results in a collection of vertices. Their map functions filter the vertex
collection, reject pre-visited vertices, and otherwise add them to the HashSet.

Together with monadic data types, monadic type classes provide the necessary modularity
that allows the query programmer to freely combine the desired effect computations. The next
section shows how the effects are combined to an effectful stack.

4 Effectful Stack

How predefined effect computations are combined to an effectful stack is mainly of interest to
readers who want to know the details. Sec. 4.1 describes the multi-level nature of our stack
for both effect and query programmers. Only effect programmers have to define syntax enhance-
ments (Sec. 4.2) to offer an effect for query programmers who only need rudimentary knowledge
about the stack to trigger all effect computations and uniform stack operations (Sec. 4.3).

4.1 Stack Levels

Level Stack Content Type S[A]

Value A

Monadic Class M*

Collection C

Monadic Class M3*

Monadic Class M4*

0

1

2

3

4

A

M[A]

M4[M3[C[M[A]]]]

M3[C[M[A]]]

C[M[A]]

Vertex

RepeatT†[VisitT†[...]]

VisitT†[Set[...]]

Set[PathT†[Vertex]]

PathT†[Vertex]

Example

*Can comprise multiple layers to support multiple effects.
†A unary type projection of the shown type.

Figure 6: Schema of a multi-level stack S[A].

The multi-level stack in Fig. 6 allows
a modular composition of monadic
classes and collections. It consists
of arbitrary different stack levels de-
pending on the needed graph trans-
formation complexity. Each level
can hold multiple layers of monadic
classes to support the combination of
effects within a level. For demon-
stration, the shown 5 levels suffice.

As effects work on distinct stack levels, an effect programmer needs to know about those lev-
els. Level 1 represents one-to-one transformations using monadic classes (cf. PathT) that work
on single values of a level 0 type A. To support multiple values and one-to-many transformations,

Proc. GraBaTs 2014 6 / 14

ECEASST

1 implicit def vSyntax[T](t: T)(implicit v: StackType[T, Vertex]) = new {

2 def successors(implicit S1: Stack[T, v.A0, Edge], S2: ...) = ... }

Figure 7: Syntactic sugar for multi-level stacks.

level 2 adds a collection class that works on level 1 types (M[A]). To allow for many-to-many
transformations, monadic effects that work on top of collections live on stack level 3. They wrap
a collection class into another multi-layered monadic class M3 that works on the collection type
C[M[A]]. For example in S[A]=VisitT[Id,Set[PathT[Id,A]]] VisitT has the
Set collection as its value type that holds PathT monadic classes for value type A. Hence, the
whole stack is of type S[A]. Id is a pre-defined data-type-free special monadic class that has
to be used on the bottom of each multi-layered monadic class. In order to support repetitions of
many-to-many transformations, we use stack level 4 to put another multi-layered monadic class
M4 on top of a level 3 stack to work on types M3[C[M[A]]], see Sec. 5.2 for the rationale.

4.2 Syntactic Sugar for Multi-Level Stacks

Recall that the successors shorthand works on a vertex collection (Sec. 1). As the effect pro-
grammer needs such a syntax enhancement mechanism for all types of effectful stacks, e.g. a ver-
tex based stack, we provide an easy to use implementation pattern that is based on StackType
and Stack which we pre-define, see Figs. 7 and 8. The method vSyntax (line 1) takes an
object of type T that can be decomposed into an effectful stack based on Vertex. vSyntax
results in an anonymous class comprising all syntax enhancements (e.g. successors) that
are applicable to such a stack. This is ensured if the compiler finds a type class instance for
StackType (line 1). The definition of StackType in Fig. 8 that comes with predefined type
class instances for each stack level (0 to 4). They decompose a given type T into an effectful
stack and ensure that T can be seen as S[A] with A being a sub-type of a given type A00. The
type members A0–A4 are filled with the concrete value types of the stack. For example, A0
is the level 0 value type A, A1 is the level 1 value type M[A], etc. The type members U0–U4
provide unary type projections for those value types, e.g. U1[X]=M[X], etc. Thus, it suffices to
implement a successors traversal step only once for all stack combinations.

4.3 Multi-Level Stack Operations

Both effect and query programmers need traversals like map, smap, and flatMap that work
on an effectful stack instead of just value collections. We provide such operations within the
predefined Stack type class (Fig. 8) that solve the problem of how to implement such common
operations for an effectful stack. The successors method in line 2 of Fig. 7 internally uses
map and flatMap (not shown) and needs the type class instances S1 and S2 that both provide
the statically typed stack implementations. S1 is based on the StackType’s type v.A0 (line 1)
and ends in an edge-based stack after calling flatMap. S2 is based on the result type of S1
and ends in a vertex-based stack after calling map.

The map and smap functions of a Stack are straightforward to implement. A schematic
body of a map function for a level 4 stack type class instance that accepts a value computation
f of type A=>B is (we use a recursive naming scheme – m4m3cma is a multi-layered monadic

7 / 14 Volume 68 (2014)

A Modular and Statically Typed Effectful Stack for Custom Graph Traversals

Stack
<<trait>>

T, A, B

map (sa: S[A])(f: A => B): S[B]
smap (sa: S[A])(f: A => B): S[B]
flatMap(sa: S[A])(f: A => Traversable[B]): S[B]
filter (sa: S[A])(f: A => Boolean): S[A]

<<type>> S[X]

StackType
<<trait>>

T, A00

<<type>> A0 <: A00,
 A1, A2, A3, A4
<<type>> U0[X], U1[X],
 U2[X], U3[X], U4[X]

Level0
<<type class>>

Level4
<<type class>>

T, A00

T, A00<<bind>><...>

Level0
<<type class>>

Level4
<<type class>>

T, A, B

T, A, B<<bind>><...>

Figure 8: StackType and Stack type class.

class data type on stack level 4, that has a value type m3cma, that has a value type cma, that . . .):
M4.map(m4m3cma)(m3cma => M3.map(m3cma)(cma => cma.map(ma => M.map(ma)(f)))

Due to their collection-based nature flatMap and filter cannot be implemented by monadic
classes alone. Their code differs from a map’s code in the collection part on stack level 2:
cma => cma.flatMap(ma => f(M.value(ma)).map(b => M.map(ma)(a => b)))

Unwrapping each value on stack level 1 with the value function and later re-wrapping into
the level 1 monadic class M makes flatMap more expensive than (s)map (see Sec. 7.1).

5 Stack-based Traversal Steps

Query programmers only have to know about the existence of monadic classes and only deal with
their data types and pre-defined syntactic sugar. We provide syntax enhancements and additional
effect computations to simplify expressing custom graph traversals.

5.1 Traversal Steps using Stack Operations

Table 1: Traversal steps using stack operations.
Step Description

Level 0 value type: Vertex
successors All vertices reachable via out-
predecessors or incoming edges
Level 0 value type: Any
values All level 0 values
run Trigger all effect computations
Level 2 value type: a collection
bfs, dfs, par Change traversal order
toList, toSet Change collection type

The pre-defined syntactic sugar for traversal
steps in Table 1 is available on all stacks
with the denoted value types. For example,
predecessors is similar to successors
of Sec. 4.2, but computes all adjacent ver-
tices that are reachable via incoming edges.
values is a shortcut for unwrapping all level 0
values and produces a collection of type C[A].
run performs a map(a=>a) on an arbitrary
stack and triggers all effects in the stack with-
out an explicit value computation (cf. Sec. 2.2). bfs, dfs, and par select an execution order.
toList and toSet change the collection type, the latter purges duplicates after each step.

5.2 Traversal Steps using Monadic Classes

We provide pre-defined monadic classes (see Table 2).

Value-based Monadic Classes: The path syntax enhancement lifts PathT (Fig. 4) into stack
level 1. CountT can be used for faster cycle detection at the expense of a higher memory
footprint. It holds a map of vertex/counter pairs and increases a counter whenever a vertex is
visited. A counter above 1 indicates a cycle. Access to the map is in constant time, whereas with

Proc. GraBaTs 2014 8 / 14

ECEASST

Table 2: Traversal steps using monadic classes.
Step Monadic Description

Class
Monadic class on stack level 1:
path PathT Path computation
count CountT Count vertex visits
Monadic class on stack level 3:
context(T => Boolean) FilterT Implicitly filter Ts
mfilter1(M[A] => B) FilterT Impl. filter M[A]s
gather(T => Boolean) GatherT Gather T values
visit VisitT Visit vertices once
Monadic class on stack level 3 or 4:
repeat(T => T) RepeatT Repeat until end

PathT it takes a linear iteration over the
path list. CountT and PathT demon-
strate the ability to define and to use ef-
fect computation in a modular way.

Collection-based Monadic Classes: In
addition to stack operations like map
and filter, there are corresponding
monadic classes MapT and FilterT
for implicit graph transformations and
filtering (cf. context). They apply
effect computations continuously after
each traversal step. The statement below continuously applies the pre-defined edge filter
dependsOn to the traversal and turns a multi-relational graph into a single-relational one:
vertices.context(dependsOn).successors.successors.successors

Since FilterT works on the value level we also provide mfilter1 to express filter opera-
tions that are based on effect computations. It takes a filter function of type M[A]=>Boolean
instead of A=>Boolean. The monadic class GatherT gathers elements of type T. As it only
works on collections, it has to reside on levels 3 or 4.

Stack-based Monadic Classes: The stack level 4 (Fig. 6) is necessary for effect computations
that are based on whole stacks, e.g. a repetition of traversal steps. We offer the RepeatT
monadic class that takes a function of type T=>T and performs a repeat-until-end effect compu-
tation until the collection on stack level 2 is empty. To repeatedly apply the successors step
to a level 3 stack one writes: vertices.visit.repeat(_.successors).run

6 Related Work

Query programmers can choose from many approaches but often only graph traversal languages
are suitable for custom graph traversals. The reasons are first, that graph libraries like JUNG
(jung.sourceforge.net), SNAP (snap.stanford.edu/snap), or TinkerPop Furnace are often only spe-
cialized to single-relational graphs, work in-memory but not on databases, expect a different data
format, or do not provide the desired functionality. Second, graph query languages like Neo4j
Cypher or SPARQL (w3.org/TR/rdf-sparql-query) are often external DSLs, come with a concise
declarative syntax, but also a limited functionality [Woo12]. Query languages are cumbersome
to use for traversals that rely on custom traversal orders as it is difficult to influence their internal
processing order and optimization technique. On the other hand, graph traversal languages or
frameworks like the Neo4j Traverser API or TinkerPop Gremlin combine the advantages of both
prementioned worlds and allow for the definition of custom graph traversals in a concise way.

Closest to our effectful stack is TinkerPop Gremlin. It is also an internal DSL, extends its host
language syntax (Groovy) with graph traversal operations, and hence overcomes the limitations
of query languages. Compared to our approach Gremlin’s modularity is not always sufficient.
For example, Gremlin is bound to a DFS traversal order due to its pipe-based architecture. To
switch to BFS or parallel execution order a different backend is needed that comes with further
requirements. It is also cumbersome to continuously apply implicit graph transformations to

9 / 14 Volume 68 (2014)

http://jung.sourceforge.net
http://snap.stanford.edu/snap
http://w3.org/TR/rdf-sparql-query

A Modular and Statically Typed Effectful Stack for Custom Graph Traversals

see a multi-relational graph as single-relational for easier implementation. Due to Gremlin’s
dynamically-typed nature, it is also difficult to access the results of additional effects during a
traversal in a structured and statically typed way and it allows to apply traversal steps even on
inappropriate types. The query programmer often only discovers errors at runtime and has to
guess if a query is correct or not. A Scala-based Gremlin dialect merely provides a front-end to
the existing framework that we consider also untyped.

Pure functional programming on graphs is slower than imperative codes [Erw97], but our
object-functional approach performs much better. King [Kin96] combines pure functional graph
algorithms with state monads but does not offer syntax enhancements. Erkok [Erk02] describes
value recursion on monads but omits effect recursion that we need for RepeatT. Schrijvers
and Oliveira [SO11] suggest the use of so-called zippers and views to provide modular monadic
components. While being purely functional, zippers mask layers within a monad stack and are
an alternative to our object-oriented multiple-parameter type class. But as they do not consider
collection monads in their stack, zippers are unsuitable for graph traversals.

7 Evaluation

Sec. 7.1 evaluates the runtime overhead caused by the effectful stack infrastructure that uses
multiple wrapper classes and type class instances. Statically typed monadic type class instances
are faster than untyped ones (Sec. 7.2). Sec. 7.3 benchmarks a detection of dependency cycles in
several real-world Java codes (see Table 3). We extracted the corresponding vertices and edges
with the help of the ASM library (asm.ow2.org).

Table 3: Java codes used for the evaluation.
ID Project Element Count

vertices edges
A Cobertura 2.0α 12,310 26,385
B Squirrel SQL Client 3.5.0α 24,617 57,105
C Apache Ant 1.9.1α 44,801 103,580
D Eclipse Debug UI 3.8.2β 76,904 195,227
E Eclipse JDT UI 3.8.2β 340,378 896,326
F Scala Compiler 2.10.1γ 562,122 1,555,970

Combined Java codes: 1,061,132 2,834,593
α : sourceforge.net, β : eclipse.org, γ : scala-lang.org

For all our measurements we mask
outliers by taking the best out of 10 mea-
surements on a Windows 7 x64 PC with
16 GB RAM and a quad-core CPU with
hyperthreading (8 cores) and a nominal
3.5 GHz. Test programs use Scala 2.10.1
and run on a Java SE 7u25 (x64) VM. We
use Gremlin 2.3.0 and Groovy 2.0.7. 12
GB have been allocated for Java to mini-
mize garbage collection runs.

7.1 Infrastructure Runtime Overhead

Although all parts of an effectful stack influence the runtime, we are interested in the infrastruc-
ture overhead caused just by monadic classes, the multi-level stack, and the type class instances
created and executed at runtime. Hence, we work with effect-free IdT monadic classes and a
list collection with an effect-free flatMap operation.

The stack operation determines which functions of the monadic classes are called, especially
on level 1. For example, the map operation in Sec. 4.3 is only called per level 1 monadic class,
whereas flatMap uses value and map in addition to a collection-based map. The com-
plexity of filter/foreach lies between map and flatMap. Hence, to evaluate we group

Proc. GraBaTs 2014 10 / 14

http://asm.ow2.org
http://sourceforge.net
http://eclipse.org
http://scala-lang.org

ECEASST

stack operations according to their complexity and measure the overhead for map/smap (using
map(_.outEdges.size)), filter/foreach (using filter(Class)), and flatMap
(using flatMap(_.outEdges)) on a vertex set. We also distinguish level 1 and level 3
monadic classes. For example, a simple map operation on a level 3 stack has to trigger all level 1
monadic classes within the collection, whereas a level 3 monadic class is triggered only once.

Table 4: Infrastructure runtime overhead.
IdT map [s] filter [ms] flatMap [s]

0x 3.70 63.2 3.68
1x 3.71 +0.2% 68.5 +8.4% 4.36 +18%
2x 3.73 +0.8% 69.2 +9.5% 4.46 +21%
3x 3.75 +1.4% 70.2 +11% 4.61 +25%
3x, PAR 1.15 -69% 22.7 -64% 1.62 -56%

The percentages refer to the line 0x in which a pure collection is
used and no stack overhead is applied.

Table 4 shows the results of our mea-
surements. As a worst case scenario,
we used all vertices of the combined
projects A–F (Table 3) and a level 2 ef-
fectful stack using a vertex list (in a list,
flatMap has no additional effect after
a step) with the shown number of level 1
IdT monadic classes in it. We applied
each of the mentioned functions to the stack once. On the large graph, we can see the influ-
ence of multiple level 1 monadic classes. map causes little infrastructure overhead, about 0.6%
per monadic class layer, whereas filter (8.4%) and flatMap (18%) are more costly. The
last line of Table 4 shows that parallelization boosts performance for a computation with three
monadic classes (3x IdT). We also measured the overhead of level 3 and level 4 monadic classes,
but as they only produce overhead per traversal step, the vertex count does not matter and the
runtime overhead (about 0%) can be ignored.

7.2 Advantages of Static Typing

To illustrate the advantage of statically typed monadic type class instances over untyped monad
type class instances, we compare the runtime of a graph traversal that uses VisitT to a monad-
based implementation. We again traverse the combined Java code graph of projects A–F with:
vertex.visit.repeat(_.successors).run

The statement starts at the project’s CodeBase vertex and traverses in BFS order to each
vertex once. With VisitT this takes 5.63 seconds which is 16.5% faster than the monad-based
code (6.56 seconds). Hence, in addition to a productivity gain due to bug detection at compile-
time, statically typed monadic classes also have a performance advantage, mainly due to static
code selection instead of runtime pattern matching.

7.3 Dependency Cycle Detection

Class3

aMethod

aField

Class4

aMethod

Class2

Class1

Declaration

nesting

nesting

nesting

FieldAccess

nesting

MethodCall

dependsOn

dependsOn

Figure 9: Some dependsOn edges
between top level types.

We now benchmark a custom graph traversal that de-
tects dependency cycles in Java code, which is an anti-
pattern to good software [MT06]. Fig. 9 holds an ex-
ample code graph. Cycles among top level types (not
nested within other types) are the anti-pattern. The
code in Fig. 10 finds the first 10 disjunct elementary
cycles [Joh75] that consist of at least 4 different ver-
tices. This code works in two steps:

11 / 14 Volume 68 (2014)

A Modular and Statically Typed Effectful Stack for Custom Graph Traversals

1 def s t e p 1 (v : V e r t ex) : Ve r t ex = { v a l s = v . r e p e a t (. g a t h e r (CodeElement) . run ,
2 . s u c c e s s o r s (n e s t i n g)) . run . g a t h e r e d ; . . . v }
3 v a l c y c l e s = { v a l cMap = HashMap [S e t [V e r t e x] , L i s t [V e r t ex]] ()
4 v e r t i c e s . map (s t e p 1) . c o u n t . p a t h . run . c o n t e x t (dependsOn) . m f i l t e r 1 (ma =>
5 (cMap . s i z e < 10) && ! ((ma . c o u n t == 2) && addCycle (ma . c y c l e))) .
6 r e p e a t (. s u c c e s s o r s) . run ; /∗ r e t u r n found c y c l e s : ∗ / cMap . v a l u e s }

Figure 10: Finding elementary cycles with the effectful stack.

Step 1 computes the dependencies between top level types and persist them temporarily by
means of new edges of type dependsOn. In Fig. 9 the top level type Class1 depends on
Class2 and Class3, as at least one of its members has a dependency to a member of each of
the target classes. As Class4 is not a top level type it is not a dependence for Class1. This is
coded in Lines 1–2 of Fig. 10. The method step1 expects a top level type vertex and gathers in
s all its nested code elements (using pre-defined vertex filters CodeElement and nesting).
Note the additional GatherT monadic class. We lift it into stack level 4 (RepeatT) to make
all visited vertices available in the gathered attribute. Afterwards (not shown) the function
traverses over existing dependencies to all dependent code elements and gathers their top level
types. We then create new dependsOn edges between the vertex v and all of those top level
type vertices (without creating any self-loops). step1 returns its input vertex v in line 2 as it
performs an in-place transformation. Later, line 4 applies the step1method to all vertices once,
using the effectful stack’s map operation.

Step 2 searches for cycles among top level types using only dependsOn edges until an
abort criterion is met (lines 3–6). First, we create a HashMap for the found elementary cycles
that are represented as a vertex list and stored using this Set representation in order to filter
out isomorphic cycles. Second, we lift all necessary effects into the stack in line 4: CountT,
PathT, and FilterT (using context). We do not need a VisitT as there is no need to
filter out previously visited vertices. Instead we need to detect a cycle first and then filter out
already visited vertices. We use another FilterT for that in lines 4–5. It returns false if we
already found 10 cycles or if the current vertex was already visited on its traversal path. In the
latter case, the count attribute of CountT equals to 2 and the addPath function (not shown,
but always returns true) checks if the found cycle has an appropriate length and adds it to cMap
if necessary. Line 6 contains the core traversal function that repeats a successors step until
the level 2 collection is empty and hence until we collected 10 relevant cycles or we reached the
end of the graph. The last statement returns the found cycles.

On a Neo4j 1.9.2 database we get the results in Table 5 when applying both traversal steps to
each project A–F. Table 5(a) shows the measurements for step 1 in milliseconds. As expected,
the BFS runtime (average is set to 100% in the last column) grows proportional with the project
graph size (all projects have a similar edge/vertex ratio of about 2.45). Parallelization (insert
.par before map in line 4) speeds up the runtime by about a factor of 4 on average. It only takes
24% of the sequential BFS effort. As step 1 has to transform the whole graph, DFS order (insert
.dfs before map in line 4) has the same runtime, even when parallelized. Hence, Gremlin
cannot benefit from its pipe-based architecture and shows slower results.

Table 5(b) shows both the number of dependsOn edges that step 1 inserts into the graphs
and the ratio of the projects’ total edge counts and the dependsOn edge counts. The ratios of

Proc. GraBaTs 2014 12 / 14

ECEASST

Table 5: Runtime for finding elementary cycles.
a) Time measurements for step 1 [ms]

A B C D E F avg.
Effectful Stack
BFS 61 107 201 453 2,421 4,857 100%
BFS,PAR 20 37 65 121 576 1,127 24%
DFS 60 107 199 452 2,416 4,872 100%
Gremlin 192 378 647 1,113 4,596 9,269 200%

b) Count of dependsOn edges created in step 1
A B C D E F

Count 740 3,384 7,972 17,496 70,042 22,970
Ratio % 2.80 5.93 7.70 8.96 7.81 1.48

c) Time measurements for step 2 (BFS/PAR in [s], others [ms])
A B C D E F avg.

Effectful Stack
BFS 0.08 0.84 4.52 8.64 47.3 11.6 100%
BFS,PAR 0.05 0.21 1.12 2.04 11.9 2.49 24%
DFS 61.7 7.0 12.3 15.1 51.7 45.5 0.3%
Gremlin 173 22.4 37.5 45.2 159 142 0.8%

d) Best accumulation of steps 1 and 2 [ms]
A B C D E F avg.

Effectful Stack
82 44 77 136 628 1,173 100%

Gremlin 365 400 685 1,158 4,755 9,411 784%

projects A and F are well below
average. The ratio directly influ-
ences the runtime of step 2 as a high
dependsOn density makes cycles
more likely.

Table 5(c) shows the measure-
ments for step 2 in seconds (for DFS
order in milliseconds) that were run
in BFS (set to 100%), BFS+PAR,
and DFS order. As cycle detec-
tion is a DFS problem, DFS order is
much faster (on average 0.3% of the
BFS runtime) even with paralleliza-
tion engaged for BFS. There are two
outliers in the DFS performance. As
project A has no cycle that fits the
requirements, the whole graph has
to be traversed which results in a bad
DFS performance. In project F the
DFS runtime is better than in project
E due to the low edge ratio, even if
the total graph size of F is twice that
of project E.

The total runtimes to find dependency cycles in two steps are in Table 5(d). As Gremlin
cannot parallelize step 1 and is also slower in step 2, our effectful stack performs much better.
Moreover, the Gremlin code needs about 70% more code (measured using compiler tokens) than
our monadic graph stack approach. This use case also clearly shows the advantages of the free
combinability of any traversal order with parallelization, simply by adding dfs/par traversal
steps to a query. Our effectful stack allows to add necessary effect computations in a modular
way, e.g. path computations, as they are fully interoperable with all traversal orders.

8 Conclusion

This paper presents an effectful stack for custom graph traversals that allows for the modular
application of additional effect computations and processing rules. We leverage the concepts of
monads, monad transformers, and type classes, but modify them into monadic classes to achieve
modular composability of multi-layered monadic classes that also provide structured access to
their data. Monadic classes are easy to implement and statically typed. The latter speeds things
up as only necessary effects are executed. Monadic classes are combined with collection monads
into an effectful stack. Syntax enhancements ease modifying and working with this stack. The
infrastructure runtime overhead of our effectful stack is low. We showed the applicability of our
ideas by finding an anti-pattern (elementary cycles) in real-world Java codes. With the ability of
running traversals in parallel we outperform a Gremlin version of this analysis.

13 / 14 Volume 68 (2014)

A Modular and Statically Typed Effectful Stack for Custom Graph Traversals

References

[CB14] P. Chiusano, R. Bjarnason. Functional Programming in Scala. Manning, March 2014.

[Erk02] L. Erkok. Value recursion in monadic computations. PhD thesis, Oregon Health &
Science Univ., Oct. 2002.

[Erw97] M. Erwig. Functional Programming with Graphs. In Proc. ACM Intl. Conf. Funct.
Progr. ICFP ’97, pp. 52–65. Amsterdam, Netherlands, June 1997.

[Fow10] M. Fowler. Domain-Specific Languages. Addison-Wesley, 1st edition, Oct. 2010.

[Joh75] D. B. Johnson. Finding All the Elementary Circuits of a Directed Graph. SIAM J.
Comput. 4(1):77–84, March 1975.

[Jon00] M. P. Jones. Type Classes with Functional Dependencies. In Proc. Europ. Symp.
Progr. Lang. and Syst. ESOP ’00, pp. 230–244. Berlin, Germany, March/April 2000.

[Kin96] D. J. King. Functional programming and graph algorithms. PhD thesis, Univ. of
Glasgow, March 1996.

[LHJ95] S. Liang, P. Hudak, M. Jones. Monad transformers and modular interpreters. In Proc.
ACM Symp. Principles of Progr. Languages. POPL ’95, pp. 333–343. San Francisco,
CA, Jan. 1995.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proc. Symp. Logic in
Comp. Science. LICS, pp. 14–23. Pacific Grove, CA, June 1989.

[MT06] H. Melton, E. Tempero. Identifying Refactoring Opportunities by Identifying Depen-
dency Cycles. In Proc. Australasian Comp. Science Conf. Pp. 35–41. Hobart, Aus-
tralia, Jan. 2006.

[OMO10] B. C. Oliveira, A. Moors, M. Odersky. Type classes as objects and implicits. In Proc.
ACM Intl. Conf. Obj.-Orient. Progr. Sys. Lang. & Appl. OOPSLA ’10, pp. 341–360.
New York, Oct. 2010.

[RN10] M. A. Rodriguez, P. Neubauer. Constructions from Dots and Lines. Bulletin American
Soc. Information, Science and Techn. 36(6):35–41, Aug./Sep. 2010.

[SO11] T. Schrijvers, B. C. Oliveira. Monads, zippers and views: virtualizing the monad
stack. In Proc. ACM Intl. Conf. Funct. Progr. ICFP ’11, pp. 32–44. Tokyo, Japan,
Sep. 2011.

[WB89] P. Wadler, S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. ACM
Symp. Principles of Progr. Languages. POPL ’89, pp. 60–76. Austin, TX, Jan. 1989.

[Woo12] P. T. Wood. Query languages for graph databases. SIGMOD Rec. 41(1):50–60, April
2012.

Proc. GraBaTs 2014 14 / 14

	Introduction
	General Concept
	Monads
	Basic Idea
	Contributions

	Classes with Monadic Effects
	Data Type
	Type Class

	Effectful Stack
	Stack Levels
	Syntactic Sugar for Multi-Level Stacks
	Multi-Level Stack Operations

	Stack-based Traversal Steps
	Traversal Steps using Stack Operations
	Traversal Steps using Monadic Classes

	Related Work
	Evaluation
	Infrastructure Runtime Overhead
	Advantages of Static Typing
	Dependency Cycle Detection

	Conclusion

