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Abstract: The CFLP system T OY (FD) is implemented in SICStus Prolog, and
supports FD constraints by interfacing the CP(FD) solvers of Gecode and ILOG
Solver. In this paper, T OY (FD) is extended with new search primitives in a
setting easily adaptable to other Prolog CLP or CFLP systems. The primitives are
described from a solver-independent point of view, pointing out some novel con-
cepts not directly available in the Gecode and ILOG Solver libraries. Also, we
describe how to specify some search criteria at T OY (FD) level and how easily
these strategies can be combined to set different search scenarios. The implementa-
tion of the primitives is described, presenting an abstract view of the requirements
and how they are targeted to the Gecode and ILOG libraries. Finally, some bench-
marks show that the new search strategies actually improve the solving performance
of T OY (FD).

Keywords: CFLP, FD Search Strategies, Solver Integration

1 Introduction

The use of ad hoc search strategies has been identified as a key point for solving Constraint Sat-
isfaction Problems (CSP’s) [Tsa93], allowing the user to interact with the solver in the search
of solutions (exploiting its knowledge about the structure of the CSP and its solutions). Differ-
ent paradigms provide different expressivity for specifying search strategies: Constraint Logic
Programming CLP(FD) [JM94] and Constraint Functional Logic Programming CFLP(FD)
[Han07] provide a declarative view of this specification, in contrast to the procedural one of-
fered by Constraint Programming CP(FD) [MS98] systems (which make the programming
of a strategy to depend on low-level details associated to the constraint solver, and even on
the concrete machine the search is being performed). Also, due to their model reasoning ca-
pabilities, CLP(FD) and CFLP(FD) treat search primitives as simple expressions, making
possible to place a search primitive at any point of the program, combine several primitives to
develop complex search heuristics, intermix search primitives with constraint posting, and use
non-determinism to apply different search scenarios for solving a CSP.
∗ This work has been partially supported by the Spanish projects TIN2013-44742-C4-3-R, TIN2008-06622-C03-01,
UCM-BSCH-GR58/08-910502, and S2009TIC-1465
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Improving the Search Capabilities of a CFLP(FD) System1

The main contribution of this paper is to present a set of search primitives for CLP(FD)
and CFLP(FD) systems implemented in Prolog, and interfacing external CP(FD) solvers
with a C++ API. The motivation of this approach is to take advantage of the high expressiv-
ity of CLP(FD) and CFLP(FD) for specifying search strategies, and of the high efficiency of
CP(FD) solvers. The paper focuses on the CFLP(FD) system T OY (FD) [FHSV07], more
precisely in the system versions T OY (FDg) and T OY (FD i) [CS12] which interface the
external CP(FD) solvers (with C++ API) of Gecode 3.7.3 [Gec] and IBM ILOG Solver 6.8
[ILO10], respectively. Regarding search, T OY (FD) offers two possibilities up to now. First,
defining a new search from scratch at T OY (FD) level (using reflection functions to repre-
sent the search procedure). Second, use the search primitive labeling, which simply relies
on predefined search strategies already existing in Gecode and ILOG, respectively. The use of
external CP(FD) solvers (with C++ API) opens a third possibility, which is exploited in this
work: Enhancing the search language of T OY (FDg) and T OY (FD i) with new parametric
search primitives, which are implemented in Gecode and ILOG by extending their underlying
search libraries.

The paper is organized as follows: Section 2 presents a brief introduction to T OY (FD).
Section 3 presents an abstract description of the new T OY (FD) search primitives. It points
out some novel concepts not directly available in Gecode and ILOG Solver libraries. It also de-
scribes how to specify some search criteria at T OY (FD) level, and how easily these strategies
can be combined to set different search scenarios. Section 4 describes the implementation of
the primitives in T OY (FD), presenting an abstract view of the requirements, and how they
are targeted to the Gecode and ILOG libraries. Section 5 presents some benchmarks, showing
that the use of the search strategies improve the solving performance of both T OY (FDg) and
T OY (FD i). Section 6 presents some related work. Finally, Section 7 presents some conclu-
sions and future work.

2 The T OY (FD) System

T OY (FD) (available at http://gpd.sip.ucm.es/ncasti/TOY(FD).zip) is implemented in SICS-
tus Prolog [SIC]. It supports the solving of syntactic equalities and disequalities (via a host
Herbrand solver: H ), and of FD constraints (via a connected CP(FD) solver). The T OY
compiler uses SICStus Prolog as an object language [LLR93]. Its declarative semantics is based
on a Conditional Term-Rewriting Logic: CRWL [GHLR99], and its operational semantics on a
Constraint Lazy Narrowing Calculus: CLNC(FD) [LRV04].

A T OY (FD) program consists of a set of data constructors and a set of functions, that can
be higher-order and non-deterministic (with possibly several reductions for given, even ground,
arguments). The syntax is mostly borrowed from Haskell [PJ02], with the remarkable excep-
tion that program and type variables begin with upper-case letters whereas data constructors,
types and functions begin with lower-case. The repertoire of FD constraints and operators is
presented in Table 1, also including == and /=, as they are truly polymorphic (with the same
operators for H and FD).

The two syntactic domains patterns and expressions must be distinguished. Whereas an ex-
pression is susceptible of being reduced by the rules of the functions defined in the program, a
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Type Constraints and Operators
Relational Constraints ==, /=, #>, #>=, #<, #<=
Arithmetic Operators #+, #-, #*, #/

Propositional Constraints post implication
Domain Constraint domain, domain valArray
Global Constraints all different, count, sum, scalar product

Table 1: Repertoire of FD Constraints and Operators

pattern denotes a data value not subject of further evaluation (this includes variables, constants,
data constructors and partial application of functions). A (user-)defined function is character-
ized by an optional principal type, which is checked/inferred by the system, and by a set of
constrained rewriting rules f t1 . . . tn =e ⇐= l1==r1, . . . , lk==rk where t1, . . . , tn form a tu-
ple of linear patterns (i.e., with no repeated variables), and e, li,ri are expressions. Rules have
a conditional reading: f t1 . . . tn can be reduced to e if all the constraints l1 == r1, . . . , lk == rk
are satisfied. For the case of non-deterministic functions, rules are applied following their tex-
tual order, and both failure and user request for a new solution trigger backtracking to the next
unexplored rule.

A T OY (FD) goal consists of a set of constraints. Goal solving follows lazy narrowing: If
a constraint is either an equality/disequality Herbrand constraint between patterns or a primitive
finite domain constraint, then it is directly posted to its corresponding solver. Otherwise, the
arguments of the constraint being expressions are lazily evaluated, applying matching function
rules. This transforms the initial constraint into a primitive one, possibly producing more prim-
itive or composed constraints to be processed. Once all the constraints of the goal have been
processed, a T OY (FD) solution consists of the simplified H and FD constraint stores.

3 Search Primitives

This section presents eight new T OY (FD) primitives for specifying search strategies, allow-
ing the user to interact with the solver in the search for solutions. Each primitive is presented
from an abstract (solver independent) point of view, emphasizing some novel search concepts
they provide. The specification of some search criteria at T OY (FD) level and the combina-
tion of primitives (to specify complex search strategies) are also presented.

3.1 Labeling Primitives

In this section, four search primitives are described: lab, labB, labW and labO.

Primitive lab
lab :: varOrd -> valOrd -> int -> [int] -> bool

This primitive collects (one by one) all possible combinations of values satisfying the set of con-
straints posted to the solver. It is parameterized by four basic components. The first and second
ones represent the variable and value order criteria to be used in the search strategy, respectively.
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myVarOrder:: [int] -> int
myVarOrder V = fst (foldl cmp (0,0)

(zip (take (length V) (from 0))
(map (length . get_dom) V)))

%
myValOrder:: [[int]] -> int | from:: int -> [int]
myValOrder D = head (last D) | from N = [N | from (N+1)]
%
cmp:: (int,int) -> (int,int) -> (int,int)
cmp (I1,V1) (I2,V2) = if (V1 >= V2) then (I1,V1) else (I2,V2)
----------------------------------------------------------------
TOY(FD)> domain [X,Y,Z] 0 4, Y /= 1, Y /= 3, Z /= 2,

lab userVar userVal 2 [X,Y,Z], ... (rest of goal)

Figure 1: Variable and Value User-Defined Criteria

To express them we have defined in T OY the enumerated datatypes varOrd and valOrd,
covering all the predefined criteria available in the Gecode documentation [STL13]. They also
include a last case (userVar and userVal, respectively) in which the user implements its
own variable/value selection criteria at T OY (FD) level. The third element N represents how
many variables of the variable set are to be labeled. This represents a novel concept which is not
available in the predefined search strategies of Gecode and ILOG Solver. The fourth argument
represents the variable set S. Thus, the search heuristic uses varOrd to label just N variables of
S.

Figure 1 presents a T OY (FD) program (top) and goal (bottom) showing how expressive,
easy and flexible is to specify a search criteria in T OY (FD). In the example, the search strat-
egy of the goal uses the userVar and userVal selection criteria (specified by the user in
the functions myVarOrder and myValOrder, respectively). The lab search strategy is ap-
plicable to the constraint network posted by the T OY (FD) goal domain [X,Y,Z] 0 4,
Y /= 1, Y /= 3, Z /= 2. Then, the computation continues by processing the “rest of
goal” for each feasible solutions found by the lab strategy. It acts over the set of variables
[X,Y,Z], but it is only expected to label two of them.

The function myVarOrder selects first the variable with more intervals in its domain. It
receives the list of variables involved in the search strategy, returning the index of the selected
one. To this end, it uses the auxiliary functions from and cmp; the predefined functions fst,
foldl, zip, take, length, map, head, last and (.) (all of them with an equivalent
semantics to those of Haskell); and the reflection function get dom, which accesses the internal
state of the solver to obtain the domain of a variable (this domain is presented as a list of lists,
where each sublist represents an interval of values).

The function myValOrder receives as its unique argument the domain of the variable, re-
turning the lower bound of its upper interval. So, in conclusion, the first two solutions ob-
tained by the lab strategy are: {X in 0..4, Y -> 4, Z -> 3} and {X in 0..4,
Y -> 4, Z -> 4}.

Primitive labB
labB :: varOrd -> valOrd -> int -> [int] -> bool

Proc. PROLE 2013 4 / 18
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This primitive uses the same four basic elements as lab. However, its behavior is different, as
it follows the varOrd and valOrd criteria to explore just one branch of the search tree, with
no backtracking allowed. The 4-Queens problem is used to explain this behavior.

Using lab unassignedLeftVar smallestVal 0 [X1,X2,X3,X4] (where 0 in
the third argument stands for labeling all the variables) two solutions are obtained: {X1 ->
1, X2 -> 3, X3 -> 2, X4 -> 4} and {X1 -> 2, X2 -> 4, X3 -> 1, X4 -> 3}.
However, if labB unassignedLeftVar smallestVal 0 [X1,X2,X3,X4] is used, then
the strategy fails, getting no solutions. Figure 2 (4×4 square board and tree) shows the compu-
tation process. First, the selected criteria assigns X1 -> 1 at root node (1), leading to node 2.
Propagation reduces the search space to {X2 in 3..4, X3 in 2 ∨ 4, X4 in 2..3},
pruning nodes 3 and 4. Then, computation assigns X2 -> 3 (leading to node 5), and propaga-
tion leads to an empty domain for X3. So, the explored tree path leads to no solutions as well as,
therefore, its computation. As it is seen, propagation during search modifies the intended branch
to be explored (in the goal example, it explores the branch 1-2-5 instead of 1-2-3).

Primitive labW
labW :: varOrd -> bound -> int -> [int] -> bool

This primitive performs an exhaustive breadth exploration of the search tree, storing the satisfi-
able leaf nodes achieved to further sort them by a specified criteria. A first example is considered
to understand the behavior of labW. Figure 3 presents a T OY (FD) goal with four variables,
where two implication constraints relate X and Y with V1 and V2, respectively.

If lab unassignedLeftVar smallestVal 2 [X,Y,V1,V2] strategy had been used
(instead of the labW one) to label the first two unbound vars of [X,Y,V1,V2], then the search
would have explored the search tree obtaining (one by one) the next four feasible solutions:
{X -> 0, Y -> 0}, {X -> 0, Y -> 1}, {X -> 1, Y -> 0} and {X -> 1, Y
-> 1}. Figure 4 represents the exploration for obtaining those solutions, where each black node
represents a solution, and the triangle it has below represents the remaining size of the search
space (product of cardinalities of V1 and V2). As it is seen, whereas the first solution computed
by lab leads to compute the “rest of goal” from a 12 candidates search space, the third solution
leads to a 6 candidates one. The primitive labW explores exhaustively the search tree in breadth,
storing in a data structure DS each feasible node leading to a solution. Once the tree has been
completely explored, the solutions are obtained (one by one) by using a criteria to select and
remove the best node from DS. In the example, the selected criteria smallestSearchTree
selects first the node with smaller product of cardinalities of V1 and V2 (returning first the solu-
tion of the 6 candidates). The order in which the labW strategy of the goal delivers the solutions
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Figure 2: Applying labB to the Queens problem
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TOY(FD)> domain [X,Y] 0 1, post_implication X (#=) 1 V1 (#>) 1,
domain [V1,V2] 0 3, post_implication Y (#=) 0 V2 (#>) 0,
labW unassignedLeftVar smallestSearchTree 2 [X,Y,V1,V2],
... (rest of goal)

Figure 3: labW Example

is presented in Figure 4.
Coming back to the definition of labW, the first parameter represents the variable selection

criteria (no value selection is necessary, as the search would be exhaustive for all the values of
the selected variables). The second parameter represents the best node selection criteria. To
express it in T OY (FD), the enumerated datatype ord has been defined, ranging from the
smallest/largest remaining search space of the product cardinalities of the labeling/solver-scope
variables. Again, a last case (userBound) allows to specify the bound criteria at T OY (FD)
level. The third parameter sets the breadth level of exhaustive exploration of the tree (represented
as a horizontal black line in Figure 4). Finally, as usual, the last parameter is the set of variables
to be labeled.

Figure 5 presents a T OY (FD) program (top) and goal (bottom) with a bound criteria spec-
ified in the user function myBound. The best node procedure selection traverses all the obtained
nodes in DS, selecting first the one with minimal bound value. In this context, the user criteria
specified in myBound assigns to each node (minus) the number of its singleton value search
variables. Once again, the function myBound also relies on auxiliary, predefined and reflec-
tion functions. The first two obtained solutions are {X -> 1, Y -> 1, A -> 0, B -> 0,
C -> 0} and {X -> 2, Y -> 1, A in 0..1, B -> 0, C -> 0}, respectively.

In summary, labW represents a novel concept which is not available in the predefined search
strategies of Gecode and ILOG Solver. However, it must be used carefully, as exploring the
tree very deeply can lead to a explosion of feasible nodes, producing memory problems for DS
and becoming very inefficient (due to the time spent on exploring the tree and selecting the best
node).

Primitive labO
labO :: optType -> varOrd -> valOrd -> int -> [int] -> bool
This primitive performs a standard optimization labeling. The first parameter optType contains
the optimization type (minimization/maximization) and the variable to be optimized. The other
four parameters are the same as in the lab primitive.

1st 2nd3rd 4th

X = 0 X = 1

Y = 0 Y = 0
Y = 1

Y = 1

6

8
12 16

Figure 4: labW Search Tree Exploration
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3.2 Fragmentize Primitives
frag :: domFrag -> varOrd -> intervalOrd -> int -> [int] -> bool
fragB:: domFrag -> varOrd -> intervalOrd -> int -> [int] -> bool
fragW:: domFrag -> varOrd -> bound -> int -> [int] -> bool
fragO:: domFrag -> optType->varOrd->intervalOrd->int->[int]-> bool

These four new primitives are mate to the labeling ones, but each variable is not labeled
(bound) to a value, but fragmented (pruned) to a subset of the values of their domain. An in-
troductory example is used to motivate the usefulness of these new primitives: A goal contains V
variables and C constraints, with V’ ≡ {V1, V2, V3} a subset of V. The constraint domain V’
1 9 belongs to C. And no constraint of C relates the variables of V’ by themselves, but some
constraints relate V’ with the rest of variables of V.

Figure 6 presents the search tree exploration achieved by frag* and lab* search primitives,
respectively, where search nodes have been numbered. In the case of frag*, the three vari-
ables of V’ have been fragmented into the intervals (1,. . .,3), (4,. . .,6) and (7,. . .,9), leading to
exponentially less leaf nodes (27) than the lab* exploration (729). On the one hand, if it is
known that there is only one solution to the problem, the probabilities of finding the right com-
bination of V’ values is thus bigger in frag* than in lab*. On the other hand, the remaining
search space of the leaf nodes of lab* are expected to be exponentially smaller than the ones of
frag*, due to the more propagation in V’ (also expecting to lead to more pruning in the rest of
variables V). Thus, the frag* search strategies can be seen as a more conservative technique,
where there are less expectations of highly reducing the search space, as variables are not bound,
but there is more probability of choosing a subset containing values leading to solutions (in what
can be seen as a sort of generalization of first-fail). Coming back to the definition of each frag*
primitive, two main differences arise w.r.t. its mate lab* primitive: First, it contains as an extra
basic component (first argument) the datatype domFrag, which specifies the way the selected
variable is fragmented. The user can choose between partition n and intervals. The
former fragments the domain values of the variable into n subsets of the same cardinality. The
latter looks for already existing intervals on the domain of the variables, splitting the domain on
them. For example, in the goal domain [X] 0 16, X /= 9, X /= 12 whereas apply-
ing partition 3 to X fragments the domain in the subsets S1≡ {0. . .4}, S2≡ {5. . .8}∪{10}
and S3 ≡ {11}∪{13. . .16}, applying intervals fragments the domain in the subsets S1’ ≡

isBound:: [[int]] -> bool
isBound [[A,A]] = true
isBound [[A,B]] = false <== B /= A
isBound [[A,B] | RL] = false <== length RL > 0
%
myBound:: [int] -> int
myBound V = - (length (filter isBound (map get_dom V)))
---------------------------------------------------------
TOY(FD)> domain [X,Y] 1 2, domain [A,B,C] 0 5,

A #< X, B #< Y, C #< Y,
labW unassignedLeftVar userBound 2 [X,Y,A,B,C]

Figure 5: Bound User-Defined Criteria
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Figure 6: frag vs. lab Search Tree

{0. . .8}, S2’ ≡ {10. . .11} and S3’ ≡ {13. . .16}. As a second difference, it contains an enu-
merated datatype intervalOrd (replacing the lab* argument valOrd), to specify the order
in which the different intervals should be tried: First left, right, middle or random interval.

In summary, it is claimed that frag* primitives are an remarkable tool, to be taken into ac-
count in the context of search strategies as an alternative or a complement to the use of exhaustive
labelings. Also, its use in T OY (FD) represents a novel concept which is not available in the
predefined search strategies of Gecode and ILOG Solver.

3.3 Applying Different Search Scenarios

The use of T OY (FD) non-deterministic functions allows to sequentially apply different search
strategies for solving a problem. For example, after posting V and C to the solver, the T OY (FD)
program (top) and goal (bottom) presented in Figure 7 uses the non-deterministic function f to
specify three different scenarios for the solving of the goal described in Section 3.2. Each sce-
nario ends with an exhaustive labeling of the set of variables V. However, the search space s this
exhaustive labeling has to explore can be highly reduced by the previous evaluation of f.

Scenario 1: The first rule of f performs the search heuristic h1 over V’ ≡ {V1,V2,V3}. h1
fragments the domain of V1 into 4 subsets, selecting one randomly. If propagation succeeds, then
h1 bounds V2 and V3 to their smallest value. If propagation succeeds (with a remaining search
space s1), then h1 succeeds, and the exhaustive labeling explores s1. If propagation fails in one of
those points, or the exhaustive labeling does not find any solution in s1, then h1 completely fails

f:: [int] -> bool
f [V1,V2,V3] = true <==

fragB (partition 4) unassignedLeftVar random 0 [V1],
labB unassignedLeftVar smallestVal 0 [V2,V3]

f [V1,V2,V3] = true <==
fragW (partition 4) unassignedLeftVar smallestTree 0 [V1],
labB unassignedLeftVar smallestTotalVars 0 [V2,V3]

f [V1,V2,V3] = true
--------------------------------------------
TOY(FD)> Post of (V,C), f V’, lab userVar userVal 0 V

Figure 7: Applying Different Search Strategies
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(as well as the first rule of f), as both the labB and fragB primitives just explore one branch.
Scenario 2: The second rule of f is tried, performing the heuristic h2 over V’. Here a fragW

primitive is first applied. So, if further either labB of h2 or the exhaustive lab (acting over s2)
fails, backtracking is performed over fragW, providing the next best interval of V1 (according
to the smallest search tree criteria, as in Figure 4). If, after trying all the intervals a solution is
not found, then h2 completely fails (as well as the second rule of f).

Scenario 3: If both h1 and h2 fail, the third rule of f trivially succeeds, and the exhaustive
labeling is performed over the original search space obtained after posting V and C to the solver.

4 Implementing the Search Primitives

The implementation of the eight new search primitives is based on the Gecode and ILOG Solver
underlying search mechanisms. First, an abstract specification of the requirements the new
T OY (FD) search strategies must fulfill is presented. Then, it is described how to adapt those
requirements to Gecode and ILOG Solver.

4.1 Abstract Specification of the Search Strategy

A single entry point (C++ function) for the different primitives is specified. Its proposed al-
gorithm is parameterizable by the primitive type and its basic components. It is described as
follows:

1. The algorithm explores the tree by iteratively selecting a variable var and a value v, cre-
ating two options: (a) Post var == v. (b) Post var /= v to continue the exploration
taking advantage of the previously explored branch, recursively selecting another value to
perform again (a) and (b).

2. For frag* strategies it selects an interval i instead of a value, posting in (a) both var
#>= i.min and var #<= i.max. However, the (b) branch can not take advantage
by posting var #< i.min and var #> i.max, as the constraint store would become
inconsistent. Thus, (b) just removes i from the set of intervals, and continue the search by
selecting a new interval.

3. For labB and fragB strategies, only the (a) option is tried.

4. For labO and fragO strategies, branch and bound techniques are used to optimize the
search.

5. Specific functions are devoted to variable and value/interval selection strategies, as well
as to the bound associated to a particular solution found by labW and fragW. Those
functions include the possibility of accessing Prolog, to follow the criteria the user has
specified at T OY (FD) level (using T OY (FD) functions which are compiled to mate
Prolog predicates).

6. The primitives labW and fragW perform the breadth exploration of the upper levels of
the search tree, storing all the satisfiable leaf nodes to further provide them (one by one)

9 / 18 Volume 64 (2013)
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on demand. Thus, ss contains an entity performing the search and a vector DS (cf. Sec-
tion 3.2) containing the solutions. The notion of solution is abstracted as the necessary
information to perform the synchronization from ss to the main constraint solver. Also, a
status indicates whether the exploration has finished or not.

7. The algorithm finishes (successfully) as it founds a solution, except for labW and fragW
strategies, where it stores the solution node and triggers an explicit failure, continuing the
breadth exploration of the tree.

8. A counter is used to control that only the specified amount of variables of the variable set
is labeled/pruned.

Next two sections adapt this specification to Gecode and ILOG Solver, respectively. Table 2
summarizes the different notions provided by both libraries.

4.2 Gecode

Search strategies in Gecode are specified via Branchers, which are applied to the constraint
solver (Space) to define the shape of the search tree to be explored. The Space is then passed
to a Search Engine, whose execution method looks for a solution by performing a depth-
first search exploration of the tree. This exploration is based on cloning Spaces (two Spaces
are said to be equivalent if they contain equivalent stores) and hybrid recomputation techniques
to optimize the backtracking. As Spaces constitute the nodes of the search tree, a solution
found by the Search Engine is a new Space. The library allows to create a new class of
Brancher by defining three class methods: status, which specifies if the current node is a
solution, or their children must be generated to continue with their exploration; choice, which
generates an object o containing the number of children the node has, as well as all the necessary
information to perform their exploration; commit, which receives o and the concrete children
identifier to perform its exploration (generating a new Space to be placed at that node).

Adaptation to the Specification. The search strategies are implemented via two layers. First,
a new class of Brancher MyGenerate, which carries out the tree exploration by the combi-
nation of the status, choice and commitmethods. As each node of the tree is a Space, the
methods are applied to it. Second, a Search Engine, controlling the search by receiving the

Search Concept Gecode ILOG Solver
Search trigger Search Engine IloGoal stack

Tree node Space IloGoal attributes
Node exploration Brancher Commit IloGoal execution
Child generation Brancher Choice IloGoal constructor
Solution check Brancher Status Stack with no IloAnd

Solution abstraction Space Tree path (var,value) vector

Table 2: Different Search Concept Abstractions in Gecode and ILOG Solver

Proc. PROLE 2013 10 / 18
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initial Space and making the necessary clones to traverse the tree. In this setting, the abstract
description presented before is instantiated to Gecode as follows:

1. The choicemethod deals with the selection of the variable var and the value v, creating
an object o with them as parameters, as well as the notion of having two children. The
variable selection must rely on an external register r, being controlled by the Search
Engine and thus independent on the concrete node (Space) the choice method is
working with. The register is necessary to ensure that, whether a father generates its
right hand child by posting var /= v, this child will reuse r to select again var (as a
difference to the left hand child, which removes the r content to select a new variable).

2. For frag* strategies, instead of passing val to o, the choicemethod generates a vector
with all the different intervals to be tried, and the size of this vector is passed as its number
of children.

3. For labB and fragB, only one child is considered.

4. For labO and fragO, a specialized branch and bound Search Engine provided by
Gecode is used.

6 The search entity is the Search Engine and the solution is a Space.

7 For labW and fragW, the Search Engine uses a loop, requesting solutions one by
one until no more are found (the breadth exploration of the search tree has finished).

8 Only the left hand child of lab* strategies increments the counter value, and the status
method checks the counter to stop the search at the precise moment.

4.3 ILOG Solver

Search strategies in ILOG Solver are performed via the execution of IloGoals. An IloGoal
is a daemon characterized by its constructor and its execution method. The constructor creates
the goal, initializing its attributes. The execution method triggers the algorithm to be processed
by the constraint solver (IloSolver), and can include more calls to goal constructors, making
the algorithm processed by IloSolver to be the consequence of executing several IloGoals.
An IloGoal fails if IloSolver becomes inconsistent by running its execution method; oth-
erwise the goal succeeds. The library allows to create a new class of IloGoal by defining its
constructor and execution method. Four basic goal classes are provided for developing new goals
with complex functionality. Goals IlcGoalTrue and IlcGoalFalse make the current goal
succeed and fail, respectively. Goals IlcAnd and IlcOr, both taking two subgoals as argu-
ments, make the current goal succeed depending on the behavior of its subgoals. While IlcAnd
succeeds only if its two subgoals succeed, IlcOr creates a restorable choice point which exe-
cutes its first subgoal, restores the solver state at the choice point on demand, and executes its
second subgoal.

Adaptation to the Specification. The search strategies are implemented via the new IloGoal
classes MyGenerate and MyInstantiate. Whereas the former deals with the selection of a
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variable, the latter deals with its binding/prunning to a value/interval. In this setting, the abstract
description presented before is instantiated to ILOG Solver as follows:

1. The control of the tree exploration is carried out by MyGenerate, which selects a vari-
able and uses the recursive call IlcAnd(MyInstantiate, MyGenerate) to bind
it and further continue processing a new variable. In MyInstantiate, the alternatives
(a) and (b) are implemented with IlcOr(var == val, IlcAnd( var /= var,
MyInstantiate)).

2. It dynamically generates a vector with the available intervals on each different MyGenerate
call.

3. Only the goal var == val is tried.

4. The branch and bound is explicitly implemented. Thus, before selecting each new vari-
able, it is checked if the current optimization variable can improve the bound previously
obtained; otherwise an IloGoalFail is used to trigger backtracking (as well as if, af-
ter labeling the required variables, the obtained solution does not bind the optimization
variable).

6 The entity performing the search is an IloSolver. Also, a solution is represented by a
vector of integers (representing the indexes of the labeled/pruned variables) and a vector of
pairs, representing the assigned value or bounds of these variables. This explicit solution
entity is built towards the recursive calls of MyGenerate, which adds on each call the
index of the variable being labeled. Once found the solution, it stores it in DS.

7 After storing a solution in labW or fragW, an IloGoalFalse is used, triggering back-
tracking to continue the breadth exploration.

8 Each call to MyGenerate increments the counter value.

5 Performance

This section analyzes the new performance achieved by T OY (FDg) and T OY (FD i). The
benchmark includes four of the CP(FD) problems available at CSPLib [HMGW]: Magic Se-
quence, N-Queens, Langford’s number and Golomb Rulers. The set of problems is claimed to be
representative enough because: First, all are parametric, and thus they allow to test the perfor-
mance of the T OY (FD) versions as the instances of each problem scale. And, second, they
include the whole set of FD constraints of the T OY (FD) repertoire.

The structure of the solutions of each problem is discussed, pointing out how the new search
strategies reduce the search exploration to find them. Thus, for each problem, two T OY (FD)
models are created: problem bs.toy, which applies a single labeling primitive as its search
strategy; problem is.toy, which applies some of the new proposed search primitives before ap-
plying the ending labeling (to still guarantee completeness of the search process).

Benchmarks are run in a machine with an Intel Dual Core 2.4Ghz processor and 4GB RAM
memory. The OS used is Windows 7 SP1. The SICStus Prolog version used is 3.12.8. Mi-
crosoft Visual Studio 2008 tools are used for compiling and linking the T OY (FD i) and
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T OY (FDg) C++ code. All the T OY (FD) models are available at: http://gpd.sip.
ucm.es/ncasti/models.zip. For the sake of simplicity, from now on the different ver-
sions of the models will be simply referred to as bs and is.

5.1 Analyzing the Applied Search Strategies

Magic Sequence. The bs model uses a single labeling [ff] L as its search strategy. Ana-
lyzing the solutions of the problem it is observed that, if the parameter n ≥ 9 then the sequence
follows the pattern: L ≡ [(n− 4),2,1,0, 0, . . . ,1,0,0,0]. In this context, the new search strat-
egy of the is model first applies labB unassignedRightVar smallestVal 3 L, labB
unassignedRightVar largestVal 1 L, which matches the last four variable 1,0,0,0
pattern. At that point, propagation leads to L≡ [(n−4),A,B,C,0, . . . ,1,0,0,0] (with A in 1..3, B
in 0..1 and C in 0..1), highly reducing the search space the further labeling has to deal with.

Queens. The bs model uses a single labeling [ff] L as its search strategy. Analyzing
the solutions of the problem, an intuitive way for reducing the initial search space of the problem
consists of: First, splitting the n variables into k variable sets (vs1,vs2, . . . , vsk) (where consecu-
tive variables are placed in different variable sets). Second, splitting the initial domain 1 . . .n into
k different intervals (1..(n/k), . . . ,(n/k) ∗ (i− 1)+ 1..(n/k) ∗ i, . . . ,(n/k) ∗ (k− 1)+ 1..n). And,
finally, assigning the variables of vsi to the ith interval.

In this context, the new search strategy of the is model first applies split into 3 L ([],
[], []) == (K1,K2,K3), fragB (partition 3) unassignedLeftVar
firstRight 0 K1, fragB (partition 3) unassignedLeftVar firstMiddle
0 K2, fragB (partition 3) unassignedLeftVar firstLeft 0 K3. This splits
the variables and their domains into three sets, highly reducing the search space the further
labeling has to deal with.

Langford’s Number. The bs model uses a single labeling [ff] L as its search strat-
egy. Analyzing the solutions of the instances proposed, it is observed that they follow the pat-
tern: L ≡ [X1,X2, . . . ,A,B,C,D,E,F ], with an inductive mapping between the set of variables
{A,B,E,F} and the set of values {1,2,3,4}. In this context, the new search strategy of the is
model first applies fragB (partition ((round ((M*N)/4)) - 1)) unassigned-
RightVar firstLeft 0 [A,B,E,F], labW unassigned- RightVar smallest-
TotalDomain 0 [A,B,E,F].

The fragB fragments the domain of [A,B,E,F] in the (M*N)/4 intervals of values 1..4,
5..8, . . ., M*N-3..M*N. It selects the first interval starting from the left (i.e., the smallest
one), and it precludes any further backtracking to explore the remaining intervals. Then, with
the domain of [A,B,E,F] pruned to be in 1..4, labW labels them, exploring all their feasible
combinations before selecting the one leading to the smallest search space for L. Thus, it is clear
that the use of the previous fragB is crucial for the success of the labW strategy. A deep breath
exploration with labW implies a tradeoff between obtaining an ordered hierarchy of relevant
intermediate tree-level nodes and the computational effort to obtain this hierarchy. With an
initial domain of 1..M*N, the feasible combinations of values for [A,B,E,F] is unaffordable
in terms of time and memory. However, with a domain of 1..4 (and knowing that they are
constrained with an all di f f erent) the amount of feasible combinations is reduced to, at most,
24 (which is clearly affordable).
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Golomb Rulers. The bs model uses a single labeling [toMinimize Mn] M as its
search strategy. Analyzing the solutions of the instances proposed, it is observed that the ini-
tial domain of their variables is huge, and that the value they take in the optimal solution is not
far away from their initial lower bound. For example, in G-11 (an instance benchmark for 11
rulers, for which M ≡ [0,A,B, ...,H, I,J]), the initial domains of the last three variables are H in
36..1020, I in 45..1021 and J in 55..1023 (with known optimal solution 64, 70 and 72, respec-
tively) and the initial domain of the first three variables is 0, A in 1..977 and B in 3..987 (with
known optimal solution 0, 1 and 4, respectively).

In this context, an intuitive way of reducing the initial search space is by reducing as much as
possible the upper bound of these variables. The new search strategy of the is model first applies
fragW (partition 3) unassignedRightVar smallestSearchTree 2 L, fragW
(partition 12) unassignedLeftVar largestSearchTree 2 L, fragmenting first
the last two variables and then the first two. Note that, whereas the former selects as best interme-
diate node the one minimizing the remaining search space, the latter selects the one maximizing
it (which intuitively makes sense, as the smaller interval is the one pruning the least the upper
bound of the first two variables, thus pruning less the search space).

5.2 Running the Experiments

Table 3 compares the performance of mate bs and is instances. Columns 2 and 4 represent the
CPU solving time in seconds of bs and is (respectively), both of them using incremental prop-
agation mode. Columns 3 and 5 represent the speed-up of T OY (FDg) w.r.t. T OY (FD i)
for bs and is, respectively. Finally, column 6 focuses on each concrete T OY (FD) version,
representing the speed-up of is w.r.t. bs. Some conclusions are obtained:

First, the use of the new search strategies is encouraging, as the performance of T OY (FDg)
and T OY (FD i) for solving is instances is better than the achieved for solving bs ones (except-
ing Q-90 and L-119, where T OY (FD i) spends about 0.4 seconds more in solving is). In any
case, the differences range from a 5% to nearly the 100%, so a more detailed analysis by prob-
lems and instances is required.

For Queens and Langford’s is instances, the better performance achieved by T OY (FDg)
and T OY (FD i) clearly scales as the sizes of the instances scale. More specifically, for Q-90
and L-119 (solved in tenths of seconds) T OY (FDg) achieves an improvement of 22% and
5%, respectively. This improvement grows an order of magnitude for Q-105 and L-127 (with an
improvement of 92%) and two orders of magnitude for Q-120 and L-131 (with an improvement
of nearly the 100%). In T OY (FD i), it is observed the same growing pattern, but it is less
noticeable. For Q-90 and L-119 the is performance is even worse than the bs one. Then, for
Q-105 and L-127 the is performance improves a 38% and a 63%, respectively, but still in the
same order of magnitude as bs. Finally, for Q-120 and L-131 the is performance reaches the two
orders of magnitude improvement w.r.t. bs, reaching nearly a 100%.

For Magic is instances, the better performance achieved by T OY (FDg) and T OY (FD i)
remains stable as the size of the instances scale (with around a 33%-34% for T OY (FDg) and
a 23%-24% for T OY (FD i)). Last, for Golomb is instances the better performance decreases
a 20% per instance (as they scale), with a 75%, 60% and 41% improvement of T OY (FDg)
for G-9, G-10 and G-11, respectively, and a 74%, 59% and 39% of T OY (FD i).
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Instance bs Sp-Up is Sp-Up on/off
M-400 FDi 0.530 1.00 0.402 1.00 0.76
M-400 FDg 0.422 0.80 0.280 0.70 0.66
M-900 FDi 2.53 1.00 1.95 1.00 0.77
M-900 FDg 2.00 0.79 1.34 0.69 0.67
Q-90 FDi 0.110 1.00 0.514 1.00 4.67
Q-90 FDg 0.078 0.71 0.061 0.12 0.78
Q-105 FDi 1.25 1.00 0.78 1.00 0.62
Q-105 FDg 1.05 0.84 0.08 0.10 0.08
Q-120 FDi 154.00 1.00 1.11 1.00 0.01
Q-120 FDg 129.88 0.84 0.09 0.08 0.00
L-119 FDi 0.530 1.00 0.984 1.00 1.86
L-119 FDg 0.296 0.56 0.282 0.29 0.95
L-127 FDi 4.35 1.00 1.17 1.00 0.27
L-127 FDg 4.62 1.06 0.39 0.33 0.08
L-131 FDi 87.00 1.00 1.19 1.00 0.01
L-131 FDg 98.53 1.13 0.33 0.28 0.00

G-9 FDi 0.421 1.00 0.109 1.00 0.26
G-9 FDg 0.250 0.59 0.062 0.57 0.25
G-10 FDi 3.56 1.00 1.47 1.00 0.41
G-10 FDg 2.11 0.59 0.84 0.57 0.40
G-11 FDi 72.65 1.00 43.98 1.00 0.61
G-11 FDg 42.01 0.58 24.85 0.57 0.59

Table 3: Performance of T OY (FD) using the Search Strategies

Second, it is clearly observed that the improvement achieved by T OY (FDg) for is instances
is bigger than the one achieved by T OY (FD i), revealing that the approach Gecode offers to
extend the library with new search strategies is more efficient than the one of ILOG Solver. That
is, for any is instance, the speed-up of T OY (FDg) w.r.t. T OY (FD i) is bigger than the
achieved for its mate bs instance.

In this context, two different behaviors are observed. First, for Queens and Langford’s is
instances the speed-up improvement achieved w.r.t. bs instances increases as the instances scale:
A 59%, 74% and 76% for Q-90, Q-105 and Q-120, respectively. A 27%, 73% and 85% for
L-119, L-127 and L-131, respectively. Second, for Magic and Golomb is instances the speed-up
improvement achieved w.r.t. bs instances remains stable as the instances scale: A 10% for M-400
and M-900. A 2%, 2% and 1% for G-9, G-10 and G-11, respectively.

6 Related Work

The approach of taking advantage of both the high expressivity of T OY (FD) and of the high
efficiency of Gecode and ILOG Solver can be related to the one followed in Search Combinators
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[STW+13]. It provides a lightweight and solver-independent method bridging the gap between
a conceptually simple search language (high level, functional and naturally compositional) and
an efficient implementation (low-level, imperative and highly non-modular). T OY (FD) is
more rigid than [STW+13], but some of the features provided by the search combinators can
be matched with the new set of primitives presented in Section 3: The basic primitive heuris-
tics base search and prune can be obtained with the primitive lab, controlling the ex-
act number of variables to be labeled (which allows T OY (FD) to support composite search
strategies). Regarding the set of combinators proposed, T OY (FD) matches {let, assign,
post} via intermixing search procedures with constraint posting, and {and, or} via the com-
posed search strategies presented in Section 3.3. Finally, the T OY (FD) primitives are also
extensible, as users can program their own criteria at T OY (FD) level with no extra effort at
the SICStus and C++ core implementation of the system.

Similar approaches to search combinators are proposed for Constraint Funcional Programming
(CFP(FD)), with Monadic Constraint Programming [SSW09], and for CLP(FD), with the
library Tor [STD12] (available in SWI-Prolog). They decouple the definition of the search tree
and the search method. In T OY (FD), it is not possible to specify the way to explore the
search tree (as, for example, by limited discrepancy search). However, the primitives labW and
fragW perform a breadth search exploration. Also, whereas these primitives include a depth
bound, it can be implicitly imposed as well for the rest of primitives (by using the parameter
setting the amount of variables to be labeled). Moreover, at least in T OY (FDg) it would not
be difficult to support new ways of exploring the search tree, as the Gecode library provide the
mechanisms to implement them.

7 Conclusions and Future Work

This paper has presented eight new T OY (FD) search primitives, describing their behavior
from a solver independent point of view, and using examples to show their application. It has
emphasized the novel concepts those primitives include, as performing an exhaustive breadth
exploration of the search tree further sorting the satisfiable solutions by a specified criteria, frag-
menting the domains of the variables by pruning each one to a subset of its domain values instead
of binding it to a single value, and applying the labeling or fragment strategy only to a subset of
the variables involved. It has also pointed out how expressive, easy and flexible it is to specify
some search criteria at T OY (FD) level, and also to apply different search strategies (setting
different search scenarios) to the solving of a CP(FD) problem.

A new version of T OY (FDg) and T OY (FD i) including these search primitives has been
presented. It has been described their implementation in Gecode and ILOG Solver, by extending
their libraries relying on their underlying search mechanisms. It has been observed that these
search mechanisms are quite different in Gecode (Search Engine, Brancher methods,
hybrid recomputation) and ILOG Solver (IloGoal, goal constructor, goal stack). Thus, an
abstract view of the requirements needed to integrate the search strategies in T OY (FD) has
been first presented (with the scheme further instantiated to Gecode and ILOG Solver).

Finally, standard benchmarks have been used to point out how the use of the proposed search
strategies allow to reduce the search exploration to find them. Mate T OY (FD) models, ei-
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ther with a classical labeling and with an improved ad hoc search strategy have been devel-
oped. It has been proven that the use of the new search strategies improve the performance of
both T OY (FDg) and T OY (FD i), but the improvement achieved (ranging in 5%-100%)
is dependent on the concrete problem and instance solved: Whereas for Queens and Langford’s
instances the better performance achieved clearly scales as the sizes of the instances scale, for
Magic ones it remains stable, and for Golomb ones it decreases. Moreover, the speed-up of
T OY (FDg) w.r.t. T OY (FD i) is bigger for the new improved T OY (FD) models, re-
vealing that the approach Gecode offers to extend the library with new search strategies is more
efficient than the one of ILOG Solver.

As future work, we will analyze the applicability of the search strategies presented in this
paper to other CP(FD) paradigms. In particular, we will implement the search primitives in the
CFP(FD) system Monadic Constraint Programming, the CLP(FD) system Tor and the C++
CP(FD) system Gecode (using the search combinators [STW+13] to implement the strategies).
We will discuss if there are aspects of T OY (FD) that are not easily implemented in the other
systems, such as the use of non-deterministic functions (to apply different search scenarios to
tackle a problem), and the specification of some search criteria in the proper native language
(and the impact it may have in the system architecture). We will also reuse the benchmark used
in this paper to compare the solving efficiency achieved by each system when applying the ad
hoc strategies, analyzing any possible overhead arisen due to their use.

Besides that, focusing again in T OY (FD), scripting techniques can be applied, to solve
the benchmarks under multiple and very precisely controlled scenarios. In them, an exhaustive
combination of applying one or different search strategies (as well as the variable subset used on
each of them) will be studied. The results will be analyzed, in order to find out which strategies
had lead to a solution or, at least, to a minimum search space containing a solution. Moreover,
this analysis will help to find out new patterns about the relation between the structure of a
concrete problem and the concrete search strategy (or combination of search strategies) to be
applied to successfully solve it.
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