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1. Introduction 
 

The Magnetic Resonance Imaging (MRI) is 

considered to be an effective technique for 

diagnosing lesions and cancer. Currently, this 

technique is widely used in radiology to obtain 

detailed tissue images1,2. Currently, there are many 

techniques used in the diagnosis of cancer. Among 

the most used diagnostic techniques for cancer, we 

can highlight Tomography, Ultrasonic Endoscopy, 

and Magnetic Resonance Imaging (RMI). RMI is 

one of the most successful techniques, it is a 

noninvasive technique based on the magnetic 

properties of 1H and 17O atoms, which are the most 

abundant elements in the human body. However, 

only with the natural relaxation (T1 and T2) of these 

atoms it is not possible to obtain clear images of the 

tissues, so the Contrast Agents (CAs) are used3. CAs 

are paramagnetic compounds and their use is of 

utmost importance for a better visualization of the 

images in the MRI exams. Currently, the most 

commonly used CAs are Gd3+ complexes with 

different ligands, such as DOTA, DTPA, EDTA, etc. 

The most commonly used CAs are Gd3+ 

complexes, gadolinium is an internal transition metal 

belonging to the lanthanide family. Since the initial 

reports Gd has become the most used metal center 

for the production of CAs. The seven unpaired 
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electrons of Gd combined with a relatively long 

relaxation time, makes this lanthanide an effective 

CAs. Gd has been used as CA since the late 1980s, 

these CAs alter both T1 and T2 relaxation times, 

however studies show that they are more effective in 

T1
3-5. The Gd3+ complexes with poly 

(aminocarboxylate) ligands are the contrast agents 

most commonly used commercially, these 

compounds have nitrogen and oxygen atoms that are 

able to coordinate with the Gd3+ ion. It is worth 

stressing that Gd complexes increase both relaxation 

rates (r1=1/T1 and r2=1/T2), however, a higher 

longitudinal relaxation rate is observed6,7. In 

contrast, iron oxides have properties that 

significantly shorten the T2 and T2* values of tissue 

water molecules, this characteristic is due to the 

difference in susceptibility between the iron oxide 

nucleus and the surroundings water8,9. Thus, the two 

compounds together can have very important 

properties, especially in the reduction of both 

relaxation times and these materials are known as 

hybrid compounds and have been widely studied10. 

Studies show that such hybrid compounds applied in 

MRI have been shown to be about 8 times larger in 

imaging effects than Magnevist (widely used CAs)11. 

With that in mind, the purpose of this paper is to 

investigate the water molecules coordinated with the 

complexes ([Gd (DOTA)(H2O)]-, 

[Gd(DTPA)(H2O)]2-, [Gd(DTPA-BMA)(H2O)]) and 

the hybrids δ-FeOOH(100).[Gd(DTPA)(H2O)]2- and 

δ-FeOOH(100).[Gd(DTPA-BMA)(H2O)]), where 

DOTA = 1,4,7,10-Tetraazacyclododecane-1,4,7,10-

tetraacetic acid; DTPA= 2-[Bis[2-

[bis(carboxymethyl)amino]ethyl]amino]acetic acid 

and BMA = bis-methylamide, in order to assess the 

hyperfine interactions of the 1H and 17O, studying its 

applicability as potential contrast agents for tracking 

of cancer cells. Fig. 1 show the hybrid compounds 

used in this work. 

 

 

 
Figure 1. Structure of the hybrid a) δ-FeOOH (100).[Gd(DTPA)(H2O)]2- and b) δ-FeOOH (100).[Gd(DTPA-

BMA)(H2O)]. 

 

2. Computational methods 

 
2.1 Optimization of structures and Molecular 

Dynamics Simulations calculations 

 
Initially optimize the complexes 

([Gd(DOTA)(H2O)]-, [Gd(DTPA)(H2O)]2- and 

[Gd(DTPA-BMA)(H2O)])12,13 and the hybrids δ-

FeOOH(100).[Gd(DTPA)(H2O)]2- and δ-

FeOOH(100).[Gd(DTPA-BMA)(H2O)]), in the 

gaussian 09 program14, using the semi-empirical 

Parameterization Method 6 (PM6)15,16. 

After optimization, we made the molecular 

dynamics simulations (MD) for the complexes of 

Gd(III) using the program developed by van Duin 

and col. (REAX-FF)17, which is part of ADF-

BAND program package. For the simulations was 

used the force field NiCH. For the MD simulation 

the box size was fixed at 8000 Å3 and was held at a 

temperature 310.65 K (physiologic temperature) 

throughout the simulation. Studies have shown that 

this temperature is adequate to simulate this type of 

model. For these simulations a 500 ps 

thermalization face (for system stabilization) and 

an additional 2.0 ns period are required, the box 

was built by the density of liquid water (ρ=0.996 g 

cm-3)18. 

 

2.2 Statistical inefficiency, surface, and hyperfine 

coupling constant (HFCC) Calculations 

 

After the MD simulation it is necessary to try to 

reduce the number of conformations for the later 

quantum calculations (decrease the computational 

cost). For this, we selected the uncorrelated 

configurations of the Gd(III) complexes, Scilab 
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2.719 program was used. The method was 

developed and applied for the first time by the 

Canuto’s group20. This method uses the statistical 

interval obtained from the energy autocorrelation, 

the interval between uncorrelated configurations, 

or the correlation step s, is calculated by integration 

from zero to infinity of C(n), Eq. 1. The interval 

between uncorrelated configurations, or the 

correlation step τ (the molecular rotational 

correlation time in Eq. 2) is calculated by 

integration from zero to infinity of C(n). The theory 

shows that separate the settings by 2τ, or larger 

intervals, are considered uncorrelated. 

 

𝐶(𝑛) = ∑ 𝐶𝑖𝑒−𝑛 𝜏𝑖⁄𝑁
𝑖=1  (1) 

 

𝜏 = ∫ 𝐶(𝑡)𝑑𝑡
∞

0
 (2) 

 

With uncorrelated structures we did the 

constant calculations of hyperfine coupling (Aiso) 

for the complexes with water molecules. 

The hyperfine coupling constant (Aiso) 

calculations were carried out in the program 

Gaussian 09, with uncorrelated structures from MD 

simulation of Gd3+ complexes and with the lowest 

energy structure of the hybrid. For the Gd3+ 

complexes, the simulation was performed using the 

functional PBE1PBE21 and basis set EPR-III for the 

H and O atoms, 6-31G for the C and N atoms, 

MWB53 for the Gd atom. For the hybrid 

compounds was also used the above-mentioned 

base function and we added the lanl2dz for the Fe 

atom. 

 

3. Results 

 
3.1 Method validation 

 

The geometry of the complex was fully 

optimized using the method PM6, the geometry 

according mounted as shown in Fig. 2 and the bond 

distances from the metal coordination environment 

are listed in Tab. 17. 

From the results of Tab. 1, it is possible to 

observe that our calculations were able to 

reproduce reasonably well the distances between 

the GdIII and the ligand, observed with the 

experimental results performed by x-ray. 

We observed for the complex that 

[Gd(DOTA)(H2O)]-, the inner sphere water 

molecule has a bond distance around 2.45 Å, what 

satisfies our theoretical value 2.56 Å. For the 

complexes [Gd(DPTA)(H2O)]- and [Gd(DTPA-

BMA)(H2O)] water molecules in the inner sphere 

have a connection distance between 2.49 Å, and 

2.44 Å, which satisfies the theoretical values 2.52 

Å and 2.46 Å, respectively. This can be attributed, 

at least in part, to the fact that the implicit solvation 

model (which uses the dielectric constant of the 

medium) cannot explain some specific interactions 

between the complex and the solvent, for example, 

the hydrogen bonds. Indeed, it has been shown that 

continuous dielectric solvent models are often 

inadequate to investigate solutes that concentrate 

on the charge density with strong local solute-

solvent interactions7. Thus, to try to overcome this 

deficiency, we performed calculations of geometry 

optimization using only one coordinated water 

molecule with Gd. Table 1 shows the distances of 

the complex bonds compared with the 

experimental values. 

   
a) [Gd(DOTA)(H2O)]- b) [Gd(DTPA)(H2O)]2- c) [Gd(DTPA-BMA)(H2O)] 

Figure 2. Structure of Gd(III) complexes. 
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Table 1. Distance values of experimental and theoretical bond for the complex. 

 [Gd(DOTA)(H2O)]- 12 [Gd(DPTA)(H2O)]2-15 [Gd(DTPA-BMA)(H2O)]16 

Bonds Distances / Å Exp./ Å Distances / Å Exp. / Å Distances / Å Exp. / Å 

Gd-Ow 2.56 2.45 2.52 2.49 2.46 2.44 

Gd-N 2.68 2.65 2.51 2.64 2.50 2.67 

Gd-Oc 
1 2.10 2.36 2.45 2.40 2.30 2.37 

Gd-OA
2 - - - - 2.35 2.44 

1Coordinated oxygen atoms of acetate groups. 
2Oxygen atoms of amide groups. 

 

3.2 Time correlation 

 

MD calculations provide thousands of 

conformations, so it is possible to perform quantum 

calculations of all these conformations. Thus, 

methods to select the main structures of MD have 

been studied. Currently, one method that has been 

highly effective is statistical inefficiency18-21. With 

this in mind, in the present work we use statistically 

different structures for quantum mechanics 

calculations, the method uses the energy 

correlation function of MD simulations22,23. It is 

important to mention that this method was 

developed and studied deeply by the Coutinho and 

Canuto group23. The Canuto and Coutinho group 

showed that the statistical interval, C(n), is 

particularly important for a Marovian process, 

where C(n) follows an exponential deterioration22. 

In this way, uncorrelated configurations, τ, is 

calculated by integrating zero to infinity of C(n). 

Configurations separated by 2τ, or larger intervals, 

are considered uncorrelated23-25. Figure 3 shows 

exponential decay. 

From the simulation MD, as can be seen in 

Fig. 3, the correlation time of the complex 

coordinated with water molecules 

([Gd(DOTA)(H2O)]-, [Gd(DTPA)(H2O)]2- and 

[Gd(DTPA-BMA)(H2O)] were 4.09, 6.01 and  6.53 

ps, respectively. According to the calculations of 

statistical inefficiency for the complex 

[Gd(DOTA)(H2O)]- 244 structures were 

uncorrelated, for the [Gd(DTPA)(H2O)]2- 164 

structures were uncorrelated and for the complex 

[Gd(DTPA-BMA)(H2O)] 153 structures were 

uncorrelated. We observed that the complex 

[Gd(DTPA-BMA)(H2O)] has a larger correlation 

time relative to other complexes, thus has a smaller 

number of uncorrelated structures. 

 

 

 
Figure 3. Graphic of the auto-correlation function for the time in picoseconds. a) ([Gd(DOTA)(H2O)]-, b) 

[Gd(DTPA)(H2O)]2-, c) [Gd(DTPA-BMA)(H2O)]. The blue curve is the correction and the red curve the adjustment done. 

 

3.3 Electronic and Geometric Effects on the 

Hyperfine Coupling Constant 
 

In recent decades, the MRI has emerged as a 

powerful diagnostic tool that uses longitudinal 

relaxation times (T1) and transverse (T2) of the 

atoms 1H and 17O of water molecules to obtain 

tissue images. The value T1 is related to the return 

time magnetization to the longitudinal axis and it is 

influenced by the interaction of spins with the 

network (environment). The value of T2 refers to 

the reduction of magnetization in the transverse 

plane and it is influenced by the spin-spin (dipole-

dipole) interaction. The dipolar magnetic 
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interactions between protons of water with other 

local interactions, are able to gradually restore the 

original orientation of the magnetization vector 

along the main magnetic field26, that way, to 

evaluate the influence of contrast agents on T1 and 

T2 times it is necessary that the compound be 

paramagnetic. Thus, the Eqs. 3 and 4 represent the 

relaxation time T1 and T2, respectively. 

 

R1 =
1

T1
≅

1

15

S(S+1)g𝑒²β²g²N  β²N

ħ²r6 + (
A

ħ
)2 S(S+1)

3
[

2τe

1+(ωIτe)2 (3) 

 

𝑅2 =
1

𝑇2
≅  

1

15
  

𝑆(𝑆+1)𝑔𝑒 
2 𝛽2𝑔𝑁 

2 𝛽𝑁
2

ℎ2 𝑟6 + (
𝐴

ħ
 )2 𝑆(𝑆+1)

3
 [ 𝜏𝐶 +

𝜏𝐶

1+(𝜔𝑆 𝜏𝑒)2] (4) 

 

Observing Eqs. 1 and 2, we have that the 

longitudinal relaxation time (T1) depends on 

several parameters, such as: the electron spin (S), 

the electronic (ge) and proton g factors (gN), the 

Bohr magneton (β), the nuclear magneton (βN), the 

hyperfine coupling constant (A), the ion-nucleus 

distance (r), and the Larmor frequencies for the 

proton (𝜔𝐼) and electron spins (𝜔𝑆),  𝜏𝑒 is the 

correlation time that characterizes the time of 

internal rotational correlation of molecules. In the 

Eq. 2, besides the constants already mentioned we 

also have 𝜏𝑐, which is the correlation time 

characterized by the rate of change of the ion 

interactions between metal and neighboring 

hydrogens. In these equations it is important to 

highlight the hyperfine coupling constant, which is 

the most sensitive parameter and what our 

calculations were performed21. 

We evaluate the constant values of hyperfine 

coupling to 1H e 17O, and was chosen the Aiso 

parameters to evaluate the effects of structures, 

because the Aiso values are more sensitive to 

geometric parameters of structures, thereby 

facilitating the observation of a variation of the 

parameters27. Initially we will start to analyze the 

Aiso coupling constant of the complex 

[Gd(DOTA)(H2O)]- water molecules coordinated 

with. According to Tab. 2, we note that for the 

structure in equilibrium 

A𝑖𝑠𝑜
eq

(PBE1PBE(H2O)//PBE1PBE(H2O)) obtained 

Aiso values equal to 0.53 MHz for the 1H and 0.87 

MHz for the 17O. It was also made calculations with 

the implicit solvent and explicit A𝑖𝑠𝑜
eq

(PBE1PBE 

(H2O)/PCM//PBE1PBE(H2O)). The values were 

0.33 MHz and 0.82 MHz for the 1H and 17O, 

respectively, the result indicate that the implicit 

solvent does not influence significantly our system 

and it shows that the amount of water molecules are 

allowed sufficient to realistically simulate our 

system. Thus, analyzing the calculations now 

uncorrelated with the values of MD A𝑖𝑠𝑜
300K 

(MD(H2O)//MD(H2O)) we have 0.92 MHz for the 
1H and 0.72 MHz for the 17O. By analyzing these 

results, it is observed that the thermal effects 

influence the system, making the Aiso values closer 

to the experimental. This increase in Aiso values is 

to be expected since thermal effects are important 

in the system. 
 

Table 2. Values of Aiso of the Water in the presence of [Gd(DOTA)(H2O)]-. 

Water in the presence of [Gd(DOTA)(H2O)]-  

 
Aiso

 

1H(MHz) 17O (MHz) 

A𝑖𝑠𝑜
eq

(PBE1PBE(H2O)//PBE1PBE(H2O)a) 0.53 0.87 

A𝑖𝑠𝑜
eq

 ( PBE1PBE (H2O)/PCM// PBE1PBE (H2O)) 0.33 0.82 

A𝑖𝑠𝑜
300K (MD(H2O)//MD(H2O)) 0.92 0.72 

Experimental - 0.59 
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Analysing now the complex 

[Gd(DTPA)(H2O)]2-, in Tab. 3, the Aiso values of 

equilibrium structure, A𝑖𝑠𝑜
eq

 

(PBE1PBE(H2O)//PBE1PBE(H2O)), was of 0.38 

MHz for the 1H and 0.85 MHz for the 17O. The 

calculations with the implicit solvent and explicit 

 A𝑖𝑠𝑜
eq

 (PBE1PBE (H2O)/PCM// PBE1PBE (H2O)), 

the values obtained were of 0.47 MHz for the 1H 

and 0.80 MHz for the 17O, it was observed that the 

values of the explicit and implicit solvent next are 

the values only with explicit solvent, in other 

words, the water molecules placed as solvent were 

able to realistically represent our system. The 

calculations with uncorrelated structures of the 

MD, A𝑖𝑠𝑜
300K (MD(H2O)//MD(H2O)), we have the 

values of 0.65 MHz for the 1H and 0.75 for the 17O. 

Thus, the thermal effects were also shown to be 

important. In fact, the molecular dynamics 

calculations are important to simulate a more real 

system, thus, it is expected that the results are 

closer to the experimental ones. 

 
Table 3. Values of Aiso of the Water in the presence of [Gd(DTPA)(H2O)]2-. 

Water in the presence of [Gd(DTPA)(H2O)]2- 

 
Aiso 

1H / MHz 17O / MHz 

A𝑖𝑠𝑜
eq

 (PBE1PBE(H2O)//PBE1PBE(H2O)) 0.38 0.85 

A𝑖𝑠𝑜
eq

 ( PBE1PBE (H2O)/PCM// PBE1PBE (H2O)) 0.47 0.80 

A𝑖𝑠𝑜
300K (MD(H2O)//MD(H2O)) 0.65 0.75 

Experimental - 0.61 

 

Analyzing the last complex of work (Tab. 4), 

[Gd(DTPA-BMA)(H2O)], the equilibrium 

structure, A𝑖𝑠𝑜
eq

 

(PBE1PBE(H2O)//PBE1PBE(H2O)), the values 

obtained were 0.33 MHz for the 1H and 0.89 MHz 

for the 17O, and calculations with the implicit 

solvent and explicit A𝑖𝑠𝑜
eq

 ( PBE1PBE (H2O)/PCM// 

PBE1PBE (H2O)), the values obtained were of 0.55 

MHz for the 1H and 0.75 MHz for the 17O. 

Calculations with uncorrelated structures of the 

MD, A𝑖𝑠𝑜
300K (MD(H2O)//MD(H2O)), the values 

obtained were 0.95 MHz for the 1H and 0.72 MHZ 

for the 17O. The thermal effects were important, the 

Aiso values were closer to the experimental. In 

Fig. 2 are shown the structures of Gd(III) 

complexes with different ligands. 

As noted, in both cases ([Gd(DOTA)(H2O)]- 

and [Gd(DTPA)(H2O)]2-) in both cases 

([Gd(DOTA)(H2O)]-  and [Gd(DTPA)(H2O)]2-) the 

thermal effects were important. With the incessant 

movement of water molecules, more interactions 

can occur between the solvent and the solute and 

between solvent molecules (such as hydrogen 

bonds). These interactions are the main responsible 

for the considerable increase in Aiso values. The 

fact, thermal effects are important because they 

consider the movement of all solvent molecules, 

thus, this model is considered more realistic. 

 

 
Table 4. Values of Aiso of the Water in the presence of [Gd(DTPA-BMA)(H2O)]. 

Water in the presence of Gd(DTPA-BMA)(H2O)] 

 
Aiso 

1H / MHz 17O / MHz 

A𝑖𝑠𝑜
eq

 (PBE1PBE(H2O)//PBE1PBE(H2O)) 0.33 0.89 

A𝑖𝑠𝑜
eq

 ( PBE1PBE (H2O)/PCM// PBE1PBE (H2O)) 0.55 0.75 

A𝑖𝑠𝑜
300K (MD(H2O)//MD(H2O)) 0.95 0.72 

Experimental - 0.61 
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As already mentioned, thermal effects are 

important. However, for our proposal of a new 

contrast agent this effect was neglected, in fact 

despite the importance of this effect, our objective is 

to verify if the hybrid compound can be used as CA. 

In this way, to reduce the computational cost, we 

perform calculations only with the balance structure. 

Thus, it was made Aiso calculations only with the 

lowest energy conformer of hybrids (δ-

FeOOH(100).[Gd(DTPA)(H2O)]2-, δ-

FeOOH(100).[Gd(DTPA-BMA)(H2O)]). The values 

of Aiso for the hybrid compounds (Tab. 5) show that 

both significantly increase. For the first hybrids δ-

FeOOH(100).[Gd(DTPA)(H2O)]2- values of 4.25 

MHz and 5.30 MHz were obtained for the 1H e 17O 

atoms, respectively. For the hybrid δ-

FeOOH(100).[Gd(DTPA-BMA)(H2O)] the values 

of Aiso were found to be 4.15 MHz and 5.15 MHz, 

respectively. Thus, it is noted that the hybrid 

compounds can be promising contrast agents for 

MRI since they showed a significant increase in the 

values of Aiso. Figure 4 shows the structures of 

hybrid compounds. 

 

Table 5. Values of Aiso of the water in the presence of hybrids. 

Water in the presence of δ-FeOOH (100).[Gd(DTPA)(H2O)]-2 

 Aiso 
1H / MHz 17O / MHz 

𝐴𝑖𝑠𝑜(PBE1PBE(H2O)//PBE1PBE(H2O)) 4.25 5.30 

Water in the presence of δ-FeOOH(100).[Gd(DTPA-BMA)(H2O)] 

𝐴𝑖𝑠𝑜(PBE1PBE(H2O)//PBE1PBE(H2O)) 4.15 5.15 

 

 
a) 

 
b) 

Figure 4. Structures of hybrid compounds. a) δ-FeOOH(100).[Gd(DTPA)(H2O)]2- b) δ-FeOOH(100).[Gd(DTPA-

BMA)(H2O)]. 

 

4. Conclusions 
 

This work proposed a new hybridizing contrast 

agent, δ-FeOOH(100).[Gd(DTPA-BMA)(H2O)], 

capable of increasing both T1 and T2 relaxation 

times. The results allow to conclude that the hybrid 

compound may be an alternative to the classical 

contrast agents. 
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The interaction between solvent (water) and 

solute (complex) significantly influences the 

results, that way, this is a central concern in 

computational chemistry simulations. Thus, the 

calculations suggest that the use of implicit solvent 

did not influence the results, showing that the 

solvation sphere was adequate. Therefore, the 

proposed hybrid compound may be a promising 

contrast agent for MRI. 
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