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ABSTRACT: Due to the potential of heterogeneous photocatalysis 

for wastewater treatment, the researches concerning the improvement 

materials modifications for its photocatalytic activity have been 

widely increased. One of the most employed methods is the metal 

doping into semiconductors. Herewith, we demonstrated the 

influence of Cu doping into TiO2 in its photocatalytic properties. The 

powder samples with 0.0 to 0.7% mol were obtained by the Pechini 

method and characterized by XRD, micro-Raman spectroscopy, FE-

SEM, and photoluminescence spectroscopy. The Cu insertion into 

TiO2 structure induced the stabilization of anatase phase, increasing 

its content in the samples in relation to the bare TiO2. The PL results 

indicated that a decrease in the PL emission intensity and a shift of 

the emission band to the blue region. The photocatalytic activity for 

rhodamine B degradation under UV light irradiation indicated that the 

Cu-doping into TiO2 led to an enhancement of the photocatalytic 

activity compared to the bare one. 
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1. Introduction 
 

Due to increasing of industrial disposal and domestic 

effluents on recent years, such as wastewater, it has 

become necessary an effective treatment alternative to 

improve the environment quality. Among several 

methods, heterogeneous photocatalysis has been studied 

as an alternative to such problem due to its potential 

degradation of organic compounds, allowing water and 

air purification (Fujishima et al., 2000; Galindo et al., 

2000; Gaya and Abdullah, 2008; Qourzal et al., 2005; 

Silva et al., 2020). Therefore, the search for materials 

with high photocatalytic activity and potential to solar 

applications has been the main target of researches. 

The titanium dioxide (TiO2) is odorless, has high acid 

resistance and act as a UV absorbent. The most 

important functions are as a widely used pigment, solar 

protection and photocatalyst for organic compounds. 

Titanium dioxide also has been used as a bleaching and 

opacifying agent in porcelain enamels, giving them 

brightness, hardness, and acid resistance. TiO2 is one of 

the most widely investigated for photocatalytic 

applications due to its high oxidizing ability for organic 

pollutants, low cost, photostability, nontoxicity and 

chemical stability (Dashora et al., 2014; Nakata and 

Fujishima, 2012; S. Wang et al., 2014). Numerous 

studies were published on the photocatalytic TiO2 

applications for the decomposition of organic 

compounds due to the ability of TiO2 to oxidize organic 

and inorganic substances in water and air through redox 

processes (S. Wang et al., 2014), TiO2 only absorbs 

ultraviolet (UV) light of broad solar spectrum due to its 

large bandgap energy (λ < 388 nm), which was 

comprised of only 4% of the entire solar spectrum 

(Dashora et al., 2014; H. Wang et al., 2015). 

Furthermore, the high recombination rate of 

electron/hole pair (e–/h+) within the semiconductor is the 

main problem for the photocatalytic performance of the 

semiconductor, since it disables the photoexcited 

electron and the hole for redox reactions (Rashad et al., 

2014; Li Zhang et al., 2014). 

In order to improve the photocatalytic performance 

of TiO2, modifications in its structure have been 

investigated, such as doping with metals ions (Li et al., 

2016; Sanchez-Dominguez et al., 2015; Q. Wang et al., 

2017; Xiao et al., 2016). The substitution of a Ti4+ by 

another transition metal ion promotes changes in the 

coordination parameters, thus altering the electronic and 

optical properties, resulting in attractive characteristics 

for photocatalytic applications (Chen et al., 2018a; 

Vargas Hernández et al., 2017). Several advantages 

concerning doping on TiO2 have been reported, such as 

increase of specific surface area, light absorption 

capacity, and charge transfer rate on particle surface, 

and band gap energy reduction (Carp et al., 2004; G. Liu 

et al., 2010). The Cu doping on TiO2 has shown 

improvement and desirable results for antibacterial 

applications (Lan Zhang et al., 2016) and for high-rate 

capability for lithium-ion batteries (Y. Zhang et al., 

2016), possibly making it an attractive dopant metal for 

photocatalytic applications. 

In this work, we report the influence of Cu-doped on 

TiO2 powders prepared by the Pechini method and its 

effects on structural and photocatalytic properties for 

degradation of rhodamine B dye (RhB) under UV light 

irradiation. These obtained powders were characterized 

using XRD, MR spectroscopy, FE-SEM, and PL 

spectroscopy. 

 

2. Experimental 
 

2.1 Synthesis 
 

All chemical reagents were of analytical grade and 

used without further treatment. The powders were 

obtained by the Pechini method, which were used 

titanium isopropoxide (purity 95%, Alfa Aesar), citric 

acid (purity 99.5%, Synth) and ethylene glycol (purity 

99%, Synth) in a ratio of 1:4:16 moles, respectively. 

Ethylene glycol was heated to 70 °C and then, titanium 

isopropoxide was added and stirred for 20 min. Citric 

acid was added to the mixture and this was stirred for 

2 h at 90 °C. The polymeric solution was standardized 

by gravimetry method in order to define content of TiO2 

generated per gram of solution. For the Cu-doped TiO2 

samples, Cu(NO3)2.3H2O was added to the polymeric 

solution in stoichiometric contents to obtain 0.3, 0.5 and 

0.7 at.% of Cu related to Ti, which the samples were 

denominated as CTO-0, CTO-0.3, CTO-0.5, and CTO-

0.7, respectively. The polymeric solutions were 

annealed at 380 °C for 4 h to form the root solid, and 

then 400 °C for 10 h to eliminate organic compounds. 

All concentrations of Cu-doped and bare TiO2 samples 

were annealed 600 °C for 4 h. 

 

2.2 Characterizations 

 

The morphological, structural and optical properties 

of samples were characterized by field-emission 

scanning electron microscopy (FE-SEM, JEOL 7500F), 

X-ray diffraction (XRD, Rigaku-Rotalex Dmax/2500 

PC) with Cu Kα radiation, micro-Raman spectroscopy 

(MR, Horiba Jobin Yvon LabRAM iHR550) with a laser 

wavelength of 514 nm. The optical spectroscopy in UV-

Vis on diffuse reflectance mode was performed in a 
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Perkin Elmer spectrophotometer (Lambda 1050 

UV/Vis/NIR). The photoluminescence spectroscopy 

(PL) was performed at room temperature under air 

atmosphere using a Monospec 27 monochromator 

(Thermal Jarrel Ash, USA) coupled to an R955 

photomultiplier (Hamamatsu Photonics, Japan). A 

krypton ion laser (Coherent, Innova 200) with 

wavelength of 350 nm, with maximum output power 

maintained at 500 mW and maximum power of 14 mW 

on the sample due to the passage through an optical 

chopper. The surface area was measured using 

Brunauer-Emmett-Teller (BET) methods and 

Micromeritics ASAP 2010 equipment. 

 

2.3 Photocatalytic experiments 

 

The photocatalytic performance of all samples was 

carried out in a Philips Ouro reactor, which was 

fitted with a quartz tube and an inner UV germicide 

lamp (λ = 254 nm, 11 W, Osram, Puritec HNS 2G7). 

The reactor was 9.4 cm of inside diameter and 17.2 cm 

of height, the quartz tube was 4.1 cm of the inside 

diameter and 22 cm of height which was sustained by a 

support. The UV germicide lamp was inside the quartz 

tube and has dimensions of 1.2 × 2.6 × 19 cm. The 

experiments were conducted with 700 mL of rhodamine 

B dye (RhB) solutions (10–5 mol L–1), 70 mg of catalyst 

and under constant agitation and pumping air to 

saturation of O2 dissolved. At certain times, aliquots 

were withdrawal and centrifuged for absorbance 

measurements in a Perkin Elmer spectrophotometer 

(Lambda 1050 UV/Vis/NIR). 

 

3. Results and discussion 
 

Figure 1a shows the XRD patterns of Cu-doped and 

bare TiO2 samples obtained by the Pechini method. For 

all samples, the anatase and rutile phases of TiO2 were 

observed, according to the Inorganic Crystal Structure 

Database (ICSD) code 9852 and code 9161, 

respectively. The presence of rutile phase is due to its 

thermodynamic stability in synthesis temperature from 

600 °C (Hu et al., 2003; Zhu et al., 2015). No peaks 

related to any Cu-related phase were observed, 

indicating the incorporation of Cu2+ into the TiO2 lattice 

as dopant. 

 

 

 
Figure 1. XRD patterns (a) and phase content (b) of 

CTO-0, CTO-0.3, CTO-0.5, and CTO-0.7 samples. 

 

In order to quantify the proportions of anatase and 

rutile phases in the prepared samples, the Spurr and 

Myers (1957) method was employed, according to the 

Eq. 1, in which, fa is the anatase percentage in sample, 

IR and IA are the integrated intensity of rutile (110) and 

anatase (101) peaks. 

fa = 
1

(1 + 1.265 
IR
IA
)
 (1) 

The anatase and rutile crystallite sizes of all prepared 

samples were calculated according to the Scherrer’s 

Eq. 2 (Alexander and Klug, 1950). 

D = 
k λ

β cos θ
 (2) 

The k is a constant related to shape factor (about 0.9), 

λ is the X-ray wavelength of Cu Kα radiation 
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(0.15406 nm), β is the full width at half maximum 

(FWHM) of the diffraction peak, and θ is the diffraction 

angle. The values of β and θ used were related to the 

predominant phase on sample, being the (101) and (110) 

crystal planes for anatase and rutile phases, respectively. 

The calculated anatase crystallite sizes were 37.0, 28.8, 

23.7, and 27.6 nm for CTO-0, CTO-0.3, CTO-0.5, and 

CTO-0.7 samples, respectively. For rutile crystallite 

sizes, the obtained values were 42.3, 35.2, 25.3, and 33.7 

nm for CTO-0, CTO-0.3, CTO-0.5, and CTO-0.7 

samples, respectively. 

It can be observed that the Cu insertion on the TiO2 

lattice promoted an anatase phase stabilization 

compared to the bare one, as can be seen by the higher 

weight fractions (Fig. 1b). The anatase to rutile phase 

transformation in TiO2 is strongly dependent on the 

synthesis temperature and also on the intrinsic 

physicochemical properties and concentration of 

impurities on lattice (Choi et al., 2010; Shannon and 

Pask, 1965). As already reported, Cu2+ ions are most 

probably located in interstitial positions into TiO2 lattice 

on anatase phase and primarily on grain surface due to 

its relatively large difference in ionic radius related to 

Ti4+ ions, i.e., 73 and 60.5 pm for Cu2+ and Ti4+ in 

octahedral sites. Besides that, the lower density and 

higher volume of unit cell of anatase compared to rutile 

phase also contribute for the Cu2+ interstitial occupation 

(Choi et al., 2010; Gupta and Tripathi, 2011). The 

interstitial Cu2+ into TiO2 lattice generates Ti–O–Cu 

bonds that led to an increase in strain energy necessary 

to anatase to rutile phase transformation, resulting in an 

inhibition of the grain growth (Choi et al., 2010; Hanaor 

and Sorrell, 2011; Qi et al., 2011; Shannon and Pask, 

1965), as can be observed in the reduction of average 

crystallite size of anatase with increasing doping 

concentration. This strain energy needs to be overcome 

to the rearrangement of [TiO6] clusters, which have 

different spatial organizations in both phases. Once Cu2+ 

ions are located at interstitials positions, the energy 

required for rearrangement has increased due to its 

interactions with [TiO6] clusters. 

Figure 2a shows the micro-Raman spectra for the Cu-

doped and bare TiO2 samples. Both anatase and rutile 

phase of TiO2 exhibits characteristics Raman shift 

bands, being six vibrational modes Raman active for 

anatase and four for rutile phase. The characteristics 

Raman bands of anatase phase are approximately 

located at 144 cm–1 (Eg), 197 cm–1 (Eg), 399 cm–1 (B1g), 

513–519 cm–1 (overlap in Raman shifts values by two 

vibrational modes with symmetries A1g e B1g), and 639 

cm–1 (Eg). For rutile phase, the Raman shifts bands are 

located at approximately 143 cm–1 (B1g), 447 cm–1 (Eg), 

612 cm–1 (A1g), and 826 cm–1 (B2g) (Naumenko et al., 

2012; Ohsaka et al., 1978; Ricci et al., 2013; Sahoo et 

al., 2009). Another band nearly 238 cm–1 for rutile phase 

is characteristic of a second order scattering due to 

coupling of two optical phonons (Ohsaka et al., 1978; 

Ricci et al., 2013; Swamy and Muddle, 2006). 

 

 

 
Figure 2. Raman spectra (a) and Eg Raman bands (b) of 

CTO-0, CTO-0.3, CTO-0.5, and CTO-0.7 samples. 

 

It can be observed that the increase in Cu 

concentrations into TiO2 induced a decrease in the 

intensities of Raman bands compared to the bare one. 

The structural Ti–O–Cu linkage formed by the 

interstitial Cu results in a hindrance of the [TiO6] 

clusters, reducing its freedom degree for the vibrational 

modes, hence decreasing the intensity of the Raman 

bands. Figure 1b shows the Eg Raman band position for 

the anatase phase for all prepared samples. It can be seen 

that the insertion of Cu into TiO2 lattice induced a shift 

to higher frequencies, thus corroborating with the 
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presence of Ti–O–Cu linkage that results in an increase 

in the strain energy. 

Figure 2 shows the FE-SEM images of the Cu-doped 

and bare TiO2 samples. It can be observed that all 

samples are composed of agglomerates of nanoparticles, 

which is characteristic of the Pechini method (Chen et 

al., 2018b; Neris et al., 2018). Furthermore, the 

agglomeration of these nanoparticles also arises from 

the annealing procedure, thus inducing their 

coalescence. 

Photoluminescence spectroscopy emission 

measurements were performed to understand the effect 

of Cu insertion into TiO2 structure in its optical 

behavior. Figure 3a shows the PL spectra of bare and 

Cu-doped TiO2 samples. As can be seen, all spectra 

indicated the presence of two major emission bands, one 

located at 400–700 nm and the other centered at 

approximately 800 nm. The first one is characteristic of 

anatase phase emission and the second is characteristic 

of rutile phase emission, corroborating the XRD and 

Raman results (Jin et al., 2015; Nasr et al., 2015). The 

PL spectra for all prepared samples indicate a broadband 

profile, which is assigned to multiphonon processes. 

These processes arise from the presence of a high 

density of energy levels within the band gap, in which 

the electron momentum relaxation and hence photon 

emission occur in several pathways (Cruz et al., 2020; 

Tello et al., 2020). It can be seen that all Cu-doped 

samples presented a lower emission intensity compared 

to the bare one. This indicates a higher density of 

intermediate energy levels within the band gap for Cu-

doped samples, which results in a lower recombination 

rate of the electron-hole pairs. 

 

 

 

 

 
Figure 3. FE-SEM images of CTO-0 (a), CTO-0.3 (b), 

CTO-0.5 (c), and CTO-0.7 (d) samples. 

 

In order to investigate the contribution of defects for 

PL emissions in bare and Cu-doped TiO2 samples, 

deconvolution of emission bands was performed using 

the PeakFit v.4 software. It is known that emissions in 

different color regions are due to different type of 

defects in the structure that contribute to the electronic 
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transitions. The blue emissions have been associated 

with the structural distortions in the composing clusters 

of the lattice, whereas the green and yellow emissions 

have been associated with the oxygen vacancies (Longo 

et al., 2008; Silva Junior et al., 2015). As can be seen, 

the insertion of Cu into the TiO2 lattice promoted a shift 

of the band emission for the blue region, as observed by 

the maximum emission wavelength and its percentage 

contribution in the Fig. 3b–e. 

For clearer evidence, the contribution percentages of 

blue emission in function of the Cu-doping content are 

shown in Fig. 4f. It can be seen that the blue emission 

percentage directly increases with increasing Cu-doping 

content. Once the Cu2+ ions are occupying 

interstitial positions in the anatase phase of TiO2, 

resulting in a Ti–O–Cu linkage, it is expected higher 

structural distortions in the [TiO6] clusters compared to 

the bare one due to the atomic rearrangement. These 

structural distortions were confirmed by a higher 

contribution percentage of blue emission and 

corroborate the XRD and Raman results. Furthermore, 

the structural distortions in the [TiO6] clusters caused by 

the Cu insertion into the TiO2 lattice generate 

intermediate energy levels within the band gap, which 

decrease the recombination rate of electron-hole pairs 

and hence the PL emission intensity, as observed in 

Fig. 4a. 

The photocatalytic activity of bare and Cu-doped 

TiO2 samples was tested for RhB dye degradation under 

UV light irradiation. Figure 5a shows the RhB 

degradation percentage against the irradiation time for 

all prepared samples and the controlling test 

(photolysis). 
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Figure 4. Photoluminescence spectroscopy spectra of 

all prepared samples (a), deconvolution of emission 

band of CTO-0 (b), CTO-0.3 (c), CTO-0.5 (d), and 

CTO-0.7 (e) samples, and blue emission percentage of 

all prepared samples (f). 

 

It was observed that all Cu-doped samples present a 

higher photocatalytic activity compared to the bare one. 

Further, the increase in the Cu-doping content led to an 

increase in the RhB degradation percentage in 90 min of 

reaction. However, the CTO-0.5 and CTO-0.7 samples 

presented similar photocatalytic activity, indicating a 

saturation of the Cu-content for the improvement of 

photocatalytic activity of the TiO2. According to the 

Langmuir-Hinshelwood plot (Fig. 4b), the 

photocatalytic activity of all prepared samples presents 

a pseudo-first order kinetics (B. Liu et al., 2014). The 

rate constants for those samples are depicted inset the 

Fig. 4b. 

As previously mentioned, the Cu insertion into the 

TiO2 lattice leads to the structural distortions in the 

[TiO6] clusters, which generate a higher density of 

intermediate energy levels within the band gap. These 

energy levels act as traps for the electronic transitions, 

thus decreasing the recombination rate of electron-hole 

pairs, as observed by PL analysis. Herewith, the 

decrease in the recombination rate leads to an increase 

in the lifetime of electron-hole pairs. Once these pairs 

have a higher lifetime, their availability to perform the 

redox reactions with the reaction medium are also 

increased. Therefore, the Cu insertion into the TiO2 

lattice caused structural distortions in the [TiO6] clusters 

that act as trap for electronic transitions, thus increasing 

the availability of electrons to promote the reduction 

reactions and holes to promote the oxidation reactions. 

These redox reactions rule the RhB degradation 

mechanism either by the generation of radical species 

that can degrade the RhB molecules as also by the direct 

degradation of RhB molecules adsorbed on the TiO2 

particle surface. 

 

 

 
Figure 5. Relative absorbance of RhB dye solution 

against photocatalytic reaction time (a) and pseudo first-

order kinetics plot (b) for CTO-0, CTO-0.3, CTO-0.5, 

and CTO-0.7 samples. 
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The prepared CTO-0 sample has a composition very 

close to Degussa P25 (85% wt rutile and 15% wt 

anatase), one of the world’s most used photocatalysts, 

but the photocatalytic active of this and of the all the 

CTOs obtained are small from the P25 activity. This was 

attributed to surface area difference since the P25 

surface are 83 m2 g–1 and the obtained is a maximum 

of 15 m2 g–1) for CTO 0.5. 

 

4. Conclusions 
 

The Cu-doping into TiO2 as powders samples were 

successfully obtained by the Pechini method. The 

insertion on Cu2+ into the TiO2 structure promoted the 

anatase phase stabilization, increasing its content on the 

samples in relation to the pure TiO2. This stabilization 

has been assigned to the interstitial occupation of Cu2+ 

in the anatase phase of TiO2, thus increasing the strain 

energy required to the structural rearrangement for the 

transformation in rutile phase. The shift to higher 

vibrational frequencies in Raman analysis corroborated 

the occupation of Cu2+ in interstitial positions into TiO2 

structure. PL results indicated that the Cu-doping in 

TiO2 induced structural distortions in [TiO6] clusters, 

which resulted in shift of PL emission band to blue 

region and a decrease in the PL emission intensity. The 

photocatalytic performance of TiO2 samples under UV 

light irradiation were enhanced by the Cu-doping, which 

has been related to the formation of intermediate energy 

levels within band gap. These levels can act as electron 

trap, thus decreasing the recombination rate of electron-

hole pairs and hence increasing their availability to 

perform the redox reactions with the reaction medium. 

Therefore, the Cu-doping into TiO2 allowed structural 

and photocatalytic advantages in relation to the pure 

sample. 
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