Volume 39

ECLÉTICA química

AVALIAÇÃO DA INFLUÊNCIA DA RAZÃO CA/P NOS VALORES DE CRISTALINIDADE E CRESCIMENTO DE CRISTALITOS DURANTE A SINTERIZAÇÃO DE PÓS DE HIDROXIAPATITA

AZEVEDO, A. G. S¹, STRECKER, K.¹

¹Programa de pós-graduação em física e química de materiais (FQMat) – Departamento de ciências naturais (DCNat), Universidade Federal de São João del-Rei (UFSJ). 36301-160 - São João Del Rei, MG – Brasil.

Resumo: Amostras de hidroxiapatita (HAp) foram sintetizadas por meio da precipitação de soluções aquosas contendo os íons precursores. Ao final das sínteses, amostras com diferentes razões Ca/P foram obtidas e submetidas a sinterização em diferentes temperaturas. A análise por difração de Raios X comprovou que a estequiometria final dos pós de HAp influenciou nas respostas à sinterização. As amostras deficientes em cálcio (Ca/P=1,47) apresentaram além dos picos de difração do composto hidroxiapatita, fases de tricálcio fosfato - TCP (Ca₃(PO₄)₂). As intensidades dos picos de TCP aumentaram com o aumento da temperatura devido a decomposição da HAp. Os difratogramas das amostras com cálcio em excesso (Ca/P=1,73) apresentaram picos de pequena intensidade de Ca(OH)₂ e CaO. Os cristais do material Ca/P=1,47 tiveram uma diminuição do tamanho e cristalinidade com o aumento da temperatura e sua consequente decomposição, se diferenciando dos pós com Ca/P=1,73, que aumentaram seus tamanhos e a ordenação atômica devido ao processo de sinterização.

Palavras-chave: Hidroxiapatita, Sinterização, Estequiometria, Decomposição.

INTRODUÇÃO

A hidroxiapatita (HAp) é um mineral da família das apatitas e possui fórmula química $Ca_{10}(PO_4)_6(OH)_2$. É um mineral raramente encontrado livre na natureza, porém, é constituinte inorgânico majoritário nos tecidos ósseos [1,2]. O mineral apatítico pode ser obtido em laboratório e apresenta grande interesse nas pesquisas médicas devido sua similaridade aos tecidos ósseos naturais, podendo ser utilizado como material de partida na fabricação de próteses e enxertos [3–5]. Sua utilização vai muito além das áreas médicas, sendo esse mineral

muito utilizado como remediador ambiental em processos de adsorção de metais pesados [6–9] e outros íons indesejados de efluentes líquidos contaminados [10,11].

Na literatura, várias rotas de obtenção da hidroxiapatita são descritas, cada uma apresentando diferenças nas propriedades finais das matrizes cerâmicas obtidas. A HAp pode ser fabricada a partir de precipitação de soluções aquosas contendo os íons precursores, reação de neutralização, reação em estado sólido, gelcasting, dip Coating, spin Coating, entre outros [6,9,12–15]. Na maioria dos processos de síntese dos pós de hidroxiapatita se faz necessário um posterior tratamento térmico para consolidar a matriz cerâmica por meio de mecanismos de sinterização [12,16,17]. Os pós sinterizados possuem características que os diferem daqueles chamados "verdes", os quais não passaram por nenhum tratamento térmico [17]. A razão Ca/P das amostras de hidroxiapatita devem ser severamente controlada pra que a não estequiometria acarrete em decomposições com consequente aparecimento de novas fases, cinética de crescimento de grãos e cristalinidade das amostras. As amostras que possuem uma razão Ca/P final próxima de 1,667 são ditas como estequiométricas e suas propriedade são bem discutidas na literatura [1,18].

Propriedades como cristalinidade e tamanho de partículas de duas amostras de hidroxiapatita com diferentes razões Ca/P foram estudadas nesse trabalho. Os materiais foram sinterizados em diferentes temperaturas e caracterizados por Espectrometria de Emissão Atômica por Plasma Acoplado Indutivamente (ICP-AES) e Difração de Raios X (DRX) para observação da influência da razão Ca/P na cristalinidade e no crescimento de grãos dos pós de HAp. Os valores de cristalinidade dos pós foram obtidos aplicando a técnica descrita no trabalho de LANDI *et al* (2000) e o tamanho médio dos grãos foi calculando por meio da equação de Debye-Scherrer [16].

PROCEDIMENTOS EXPERIMENTAIS

Os pós de HAp foram sintetizados por meio da precipitação de soluções aquosas contendo os íons precursores. As soluções foram preparadas utilizando água de elevada pureza, do tipo MiliQ® e reagentes do tipo P.A. Foram empregados como fonte de obtenção dos pós os reagente $CaCl_2.2H_2O$ e (NH₄)₂HPO₄. Solução de NH₄OH foi utilizada para manter o pH das soluções em valores alcalinos (pH 9-11), em que a síntese de pós de HAp é favorecida [20]. As concentrações das soluções foram preparadas visando a obtenção de materiais com razões Ca/P finais diferentes. Soluções com razão Ca/P = 1,47 e Ca/P=1,77 foram confeccionadas e empregadas na síntese das hidroxiapatitas (HAp A) e (HAp B) respectivamente.

Durante a precipitação da HAp deve-se controlar parâmetros como velocidade de agitação e gotejamento das soluções, temperatura de síntese, volume das soluções e alcalinidade. De acordo com GARCIA *et al* (2005), esses parâmetros modificam as

propriedades finais dos materiais obtidos [18,20]. Os parâmetros de síntese utilizados nesse trabalho foram velocidade de agitação do precipitado em 80 RPM, velocidade de gotejamento em 2mL/mim, temperatura 60°C, volume das soluções (250mL) e pH entre 9 e 11.

Os precipitados obtidos foram lavados até a remoção de todo o subproduto formado após a reação de precipitação que, de acordo com CUNHA *et al* (2004) ocorre como demonstrado pela equação 1. A remoção total do subproduto foi confirmada por meio de teste negativo com solução de AgNO₃.

$$6(NH_4)_2HPO_{4(aq)} + 10CaCl_{2(aq)} + 8NH_4OH_{(aq)} \rightarrow Ca_{10}(PO_4)_6(OH)_{2(s)} + 20NH_4Cl_{(aq)} + 6H_2O_{(1)} \qquad \text{Eq. 1}$$

Os precipitados lavados foram filtrados e secos em estufa a 105°C por 24 horas. Posteriormente foram desaglomerados e peneirados em peneira de 100 mesh. Os pós foram sinterizados por 2 horas em um forno da marca MTI-GSL1700X sob atmosfera oxidante e uma taxa de aquecimento e resfriamento de 10°C/mim. As temperaturas de sinterização estudadas foram 900, 1000 e 1100 °C.

As fases cristalinas presentes nas amostras foram caracterizadas por meio de um difratômetro da marca Shimadzu modelo XRD 6000, ao passo de $0,02^{\circ}$ e velocidade de varredura de 2°/mim entre 10 e 80 2 θ . A identificação das fases cristalinas foi feita utilizando os cartões ICPDS n° 00-055-0592 e 00-050-0008. A análise elementar das amostras de HAp utilizadas nesse trabalho foi obtida utilizando um equipamento ICP (Plasma), modelo ICAP 6500, da marca Thermo.

Os tamanhos dos cristalitos e o percentual de cristalinidade das amostras foram obtidos pela equação de Debye-Scherrer (Eq.2) e pelo método proposto por LANDI et al., (2000) (Eq.3) respectivamente.

$$L = \frac{\kappa\lambda}{\beta Cos\theta}$$
 Eq. 2

Em que L é o tamanho médio dos cristalitos, K é uma constante que depende da forma dos cristais, que, no nosso caso, corresponde a 0,89. β é o valor da largura do pico de difração e θ é o ângulo de Bragg do pico difratado.

$$Xc \approx 1 - ((V_{\frac{112}{300}})/I_{300}) \ge 100$$
 Eq. 3

Em que *Xc* é a porcentagem de cristalinidade da amostra, $V_{112/300}$ é o vale existente entre os picos do difratograma referentes aos planos (112) e (300) e I_{300} é a intensidade do pico referente ao plano (300).

RESULTADOS E DISCUSSÃO

A tabela 1 apresenta os resultados das análises por ICP dos pós de HAp obtidos. Os resultados demonstram que as amostras obtidas possuem razão Ca/P próxima das estequiometrias desejadas, sendo a HAp A deficiente em cálcio e HAp B com cálcio em excesso.

Tabela 1 Resultado das análises por ICP das amostras de HAp obtidas por precipitação

Amostra	Ca/P
HAp A	1,48
HAp B	1,73

As figuras 1, 2, 3 e 4 apresentam os difratogramas obtidos para amostras HAp A e HAp B respectivamente e a identificação das fases cristalinas presentes nas amostras. As fases formadas durante a síntese e após os processos de sinterização foram identificadas por meio dos cartões ICDD 9-432, como realizado no trabalho de RAYNAUD *et al* (2002). É possível observar pelos difratogramas que as fases cristalinas presentes nos materiais sintetizados sofrem variações com a modificação dos valores da razão Ca/P.

Os difratogramas obtidos das amostras de HAp A apresentam fases do mineral hidroxiapatita (Ca₁₀(PO₄)₆(OH)₂), do composto tricálcio fosfato- β -TCP (Ca₃(PO₄)₂) e, em menor concentração, um pico em 2θ =26,52 pertencente a fase CaHPO₄ [18]. A amostra HAp A que é deficiente em cálcio, tem uma diminuição da sua estabilidade térmica, iniciando a decomposição do material em temperaturas próximas de 700°C [18]. RAYNAUD *et al* (2002) estudou a estabilidade térmica de amostras de HAp deficientes em cálcio e encontrou resultados similares aos encontrados nesse trabalho. Os autores não identificaram picos de difração referentes ao β -TCP em amostras não calcinadas (verde). Isso pode estar associado ao diferença no valor da razão Ca/P utilizadas nesse trabalho e aquela avaliada pelos autores, sendo 1,48 e 1,535 respectivamente.

Figura 1 DRX das amostras de HAp A Ca/P= 1,48 sinterizadas em diferentes temperaturas

Figura 2 Fases cristalinas identificadas nas amostras de HAp A Ca/P = 1,48. (*) HAp, (δ) β -TCP, (\bullet) CaHPO₄

Figura 3 DRX das amostras de HAp B Ca/P= 1,73 sinterizadas em diferentes temperaturas

As amostras de HAp B que possuem cálcio em excesso (Ca/P=1,73) apresentam em seus difratogramas a presença de picos de difração mais bem definidos e sem a presença da fase β -TCP. O material com excesso de cálcio favorece a formação de compostos como Ca(OH)₂ e, quando submetidos ao aquecimento, ocorre a desidroxilação irreversível do hidróxido de cálcio e sua posterior decomposição em CaO. De acordo com RAYNAUD *et al* (2002) os picos de Ca(OH)₂ não são muito bem observados devido, principalmente, a sua baixa concentração no corpo do material e em virtude do encobrimento dos picos que ocorre. Em 2θ =34,08 o pico da fase Ca(OH)₂ é mascarado pelo pico intenso da hidroxiapatita em 2θ =34,05. O mesmo ocorre com o pico de CaO que é encoberto pelo pico intenso de HAp em 2θ =32,3, impedindo a sua visualização.

A figura 5 apresenta os resultados dos cálculos dos tamanhos dos cristalitos utilizando a equação de Debye-Scherrer. Observa-se que o crescimento das partículas ocorreu de forma diferenciada nos materiais, demonstrando a influencia da razão Ca/P nos processos de sinterização da HAp. As amostras de HAp A sem tratamento térmico possuem um tamanho médio dos cristais maior do que as amostras de HAp B. Com o aumento da temperatura e o consequente início da sinterização dos pós, as partículas de HAp A tem seu tamanho diminuído e observa-se um aumento das partículas de HAp B. A diminuição do tamanho médio dos cristalitos pode estar associado à decomposição dos cristais de hidroxiapatita deficiente em cálcio em TCP. Tal fato pode ser correlacionado ao aumento da intensidade dos picos de difração referentes ao TCP com a diminuição do tamanho dos cristais de HAp das amostras com razão Ca/P= 1,47, comprovando a de composição do material.

Figura 4 Fases cristalinas identificadas nas amostras de HAp B Ca/P = 1,73. (*) HAp, (Φ) CaO, (σ) Ca(OH)₂

Figura 5 Cálculo do tamanho médio dos cristais

As amostras de HAp B apresentam um crescimento dos cristalitos com o aumento da temperatura de sinterização do material. Processos de difusão atômica promovem o crescimento dos grãos e um aumento da porcentagem na cristalinidade do material como observado na figura 6.

O material com cálcio em excesso atingiu valores iniciais de cristalinidade próximos de 32%, aumentando para 76% de cristalinidade quando sinterizados a 1100°C por 2 horas. Esse resultado pode ser associado ao crescimento dos grãos que, promovem uma maior difração dos planos existentes aumentando consequentemente os valores da sua cristalinidade. As amostras de HAp A também tiveram um aumento da cristalinidade com o aumento da temperatura de sinterização, porém, atingindo valores muito menores quando comparadas às amostras de HAp B sinterizadas na mesma temperatura. Esse achado foi atribuído à maior decomposição da hidroxiapatita, apresentando um maior número de picos de difração correspondentes à fase de tricálcio fosfato. O aumento da decomposição dos cristais de HAp A promove uma diminuição nos valores de cristalinidade das amostras.

Figura 6 Porcentagem da cristalinidade das amostras com o aumento da temperatura de sinterização

CONCLUSÃO

A síntese por meio da precipitação de soluções aquosas proporcionou a obtenção de pós de hidroxiapatita com diferentes estequiometrias. Após a calcinação dos pós, observou-se que as amostras responderam de formas diferentes ao aumento da temperatura. Os difratogramas apresentaram uma mistura bifásica de HAp e TCP para as amostras com a razão Ca/P=1,47. A razão Ca/P=1,73 nas amostras ocasionou no aparecimento de fases de Ca(OH)₂ e CaO nos difratogramas, porém, em um número muito menor e com menores intensidades, sendo os picos mascarados pelos picos da hidroxiapatita. O crescimento dos cristalitos e o aumento da cristalinidade também foram afetados com o aumento da temperatura de sinterização. As

amostras deficientes em cálcio se apresentaram menos cristalinas e, com o aumento da temperatura, seus tamanhos diminuíram devido o início da decomposição do material em TCP. As amostras com cálcio em excesso se apresentou com um grau de cristalinidade elevado e, por meio do processo de sinterização, promoveu o crescimento dos cristalitos com o aumento da temperatura.

AGRADECIMENTOS

Programa de pós-graduação em Física e Química de Materiais (FQMat), Universidade Federal de São João del-Rei (UFSJ) e Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG).

REFERÊNCIAS BIBLIOGRÁFICAS

 Song, J.; Liu, Y.; et al. Mechanical properties of hydroxyapatite ceramics sintered from powders with different morphologies. Materials Science and Engineering: A, v. 528, n. 16-17, p. 5421–5427, 2011.

2 Sung, Y. Crystallization and sintering characteristics of chemically precipitated

hydroxyapatite nanopowder. Journal of Crystal Growth, v. 262, n. 1-4, p. 467-472, 2004.

3 Duarte, T.S.; Borges, A.P.B.; et al. Osteointegração da hidroxiapatita sintética no processo alveolar da mandíbula de cães: aspectos histológicos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, p. 849–853, 2006.

4 Takeshita, F.; Iyama, S.; et al. Study of bone formation around dense hydroxyapatite implants using light microscopy, image processing and confocal laser scanning microscopy. Biomaterials, v. 18, n. 4, p. 317–22, 1997.

5 Li, B.; Chen, X.; et al. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta biomaterialia, v. 5, n. 1, p. 134–43, 2009.

6 Mobasherpour, I.; Salahi, E.; et al. Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite. Journal of Saudi Chemical Society, v. 15, n. 2, p. 105–112, 2011.

7 Feng, Y.; Gong, J.-L.; et al. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, v. 162, n. 2, p. 487–494, 2010.

8 Bailliez, S.; Nzihou, A.; et al. Removal of lead (Pb) by hydroxyapatite sorbent. Process Safety and, v. 82, n. March, p. 175–180, 2004.

9 Pham Minh, D.; Sebei, H.; et al. Apatitic calcium phosphates: Synthesis, characterization and reactivity in the removal of lead(II) from aqueous solution. Chemical Engineering Journal, v. 198-199, p. 180–190, 2012.

10 Islam, M.; Mishra, P.C.; et al. Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water. Journal of environmental management, v. 91, n. 9, p. 1883–91, 2010.

11 Mourabet, M.; Rhilassi, a. El; et al. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. Journal of Saudi Chemical Society, v. 1, 2012.

12 Aminzare, M.; Eskandari, a.; et al. Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. Ceramics International, v. 39, n. 3, p. 2197–2206, 2013.

13 Nayak, A.K. Hydroxyapatite Synthesis Methodologies : An Overview. v. 2, n. 2, p. 903– 907, 2010.

14 Mavis, B.; Cu, A. Dip Coating of Calcium Hydroxyapatite on Ti-6Al-4V Substrates. v. 91, p. 989–991, 2000.

15 L.A., T.M.V.; Santos, D. Influência do Tempo de Indução nas Propriedades de

Hidroxiapatita Porosa Obtida por Gelcasting de Espumas. v. 53, p. 429-435, 2007.

16 Ramesh, S.; Aw, K.L.; et al. Sintering properties of hydroxyapatite powders prepared using different methods. Ceramics International, v. 39, n. 1, p. 111–119, 2013.

17 Azevedo, A.G. de S. Avaliação das mudanças cristalográficas e morfológicas com o aumento da temperatura de sinterização de pós de hidroxiapatita. Revista da Universidade Vale do Rio Verde, p. 297–307, 2012.

18 Raynaud, S.; Champion, E.; et al. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials, v. 23, n. 4, p. 1065–72, 2002.

19 Landi, E.; Tampieri, A.; et al. Densication behaviour and mechanisms of synthetic hydroxyapatites. Jornal of The European Ceramic Society, v. 20, p. 2377–2387, 2000.
20 Garcia, C., Carlos, P., & Gaviria, J. (2005). ESTUDIO DE ALGUNOS PARÁMETROS QUE DETERMINAN LA SÍNTESIS DE HIDROXIAPATITA POR LA RUTA DE PRECIPITACIÓN.

21 Cunha, S.M., Lazar, D.R.R., Ussui, V., Lima, N.B., & Bressiani, A.H.A. (2004). SÍNTESE DE HIDROXIAPATITA POR PRECIPITAÇÃO HOMOGÊNEA.