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ABSTRACT: Coronavirus pandemic, is a progressing worldwide pandemic of coronavirus disease 2019 

(COVID-19), brought about by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The episode 

was first distinguished in Wuhan, China, in December 2019. The World Health Organization announced  

a Public Health Emergency of International Concern on 30 January 2020, and a pandemic on 11 March. 

Scientists around the world are working to establish an effective treatment against SARS-CoV-2 to control the 

spread of this pandemic. In this review, we summarized the potential therapeutic strategies for treatment  

of COVID-19 and dividing the treatments to several categories including antiviral drugs which act on 

decreasing the viral load inside the body of patients, immunotherapy and immunomodulatory which relive the 

inflammatory process of viral infection. 
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1. INTRODUCTION 

Coronaviruses (CoVs) appeared in East Asia and the Middle East in three significant outbreaks during 

2002 and 2019. The severe acute respiratory syndrome (SARS), the Middle East respiratory syndromes 

(MERS) and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the Coronavirus 

Disease 2019 (COVID-19) and the last emerge globally with pandemic characterizations [1]. The most 

common symptoms associated with COVID-19 including fever, cough, expectoration, dyspnea, headache, and 

myalgia or fatigue. Interestingly, loose bowels, hemoptysis, and windiness were the less common symptoms 

at the time of clinical affirmation [2]. As of late, individuals with asymptomatic contamination were also 

concerned with conceivably transmitting contamination, which further contributing to the multifaceted nature 

of disease transmission elements in COVID-19 [1]. COVID-19 is a complex disease and need extraordinary 

measures for controlling spreading of the virus and providing special cure procedures. Reduce the 

inflammatory condition that caused by SARS-CoV-2 inside the body is one of the methods to control the 

pandemic of the disease and using different types of antiviral drugs and immunotherapy for rapid cure  

of patients and decrease the fatality rate of the disease [3]. Such proficient reactions need inside and out 

information on an infection, that is currently a novel operator; thereafter, more examinations are required. 
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2.STRUCTURE AND MECHANISM OF ACTION FOR SARS-CoV-2 

Understanding the fundamental structural binding mechanism of the virus to the host suggests that the 

virus will bind to a wide range of hosts (virus reservoirs), which will further lead us to establish 

countermeasures against the virus [4]. The name of Coronaviruses is derived from the crown shape of spikes 

[5]. Viral structure of coronavirus consists four proteins, including glycoprotein (S protein), small envelope 

(E) glycoprotein, membrane (M) glycoprotein and nucleocapsid (N) protein, as well as many accessory 

proteins and all these are enveloped by lipid bilayer derived from host cell membrane [6]. S glycoprotein is  

a transmembrane protein that forms homotrimers that protrude from the viral surface. Host proteases cleave 

this S glycoprotein into 2 subunits, namely S1 and S2. S1 is responsible for binding to the host cell receptor 

while S2 functions to mediate the fusion of the viral and cellular membranes [7]. The capsid is the protein 

shell, inside the capsid, there is nuclear or N-protein that bind to the viral RNA [8]. Another important part  

of this virus is the membrane or M protein, which is a transmembrane protein located in the viral membrane 

and is the most abundant structural protein in a virion. The last component is the envelope or E protein, which 

is the smallest of all structural proteins found in the viral membrane and localizes to the endoplasmic 

reticulum and the Golgi complex in the host cells [9].  

As SARS-CoV-2 belong to the order of the Nidovirus family, coronavirus infection can be contracted 

from animals such as bats and fellow humans. This virus can enter the human body in two ways, either 

through endosomes or through plasma membrane fusion. In both ways, the coronavirus S protein binds to 

angiotensin converting enzyme 2 (ACE2) receptors, which found on the surface of many human cells, such as 

heart, lungs, kidneys, and gastrointestinal tract, thus enabling the viral entry into target cells [10]. SARS-CoV 

S1 contains a receptor-binding domain (RBD) that specifically recognizes ACE2 as its receptor. The RBD 

constantly switches between a standing-up position for receptor binding and a lying-down position for 

immune evasion [11,12]. After attachment, host proteases, such as type II transmembrane serine protease 

(TMPRSS2), which is present on the surface of the host cell, must activate the SARS-CoV spike 

proteolytically at the S1/S2 boundary. So, S1 dissociates and S2 undergoes a drastic change in structure.  

S protein activation results in conformational changes that allow the viral membrane and host cell to fuse and 

the virus to enter the cells [13,14]. Entered-SARS-CoV-2 is then released its genomic material into the 

cytoplasm and translated in the nuclei [15].  

The genome organization of SARS-CoV-2 is a positive-sense single-stranded genomic RNA comprises 

14 open reading frames (ORFs) with transcriptional regulatory sequences (TRSs) [16]. Two major 

transcriptional units, ORF1a and ORF1ab, are encoded for replicase polyprotein 1a (PP1a) and polyprotein 

1ab (PP1ab), respectively. The largest polyprotein PP1ab embeds non-structural proteins (Nsp1-16), including 

RNA Dependent RNA Polymerase (RdRp) and Helicase that form the Replicase-Transcriptase Complex [17]. 

RdRp and Helicase localize to double‐membrane vesicles and produce sub-genomic RNA (sgRNA), from 

which other proteins such as Structural Proteins are produced by translation. At the same time, the full-length 

positive-strand RNA is synthesized as genomic RNA. The structural viral proteins M, S and E are synthesized 

in the cytoplasm and then transferred to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) 

[18]. Nucleocapsids are formed in the cytoplasm by N protein, accompanied by budding into the lumen  

of ERGIC. Finally, in smooth walled vesicles, novel virions are exported from infected cells by transport to 

the cell membrane and then secreted through a process called exocytosis, so that other cells can be infected. 

However, the mechanism of action for the new COVID-19 is still unclear [19].  
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3.THERAPEUTIC STRATEGIES FOR COVID-19 

Presently, there are no specific antiviral drugs or vaccines for SARS-CoV-2 control. However, 

according to the different genomic organizational studies and molecular mechanisms of SARS-CoV-2 

pathogenesis, there are numerous targets that can be used in various ways as therapeutic agents to inhibit the 

replication of the virus or to create an intervention that may be successful against SARS-CoV-2 [20]. Here, 

the possible therapeutics available for the treatment of SARS-CoV-2 are summarized. 

3.1. Antiviral therapy 

Different antiviral treatments with variable mechanism of actions have been experimented by WHO, 

including Remdesivir; Chloroquine /Hydroxychloroquine; a combination of Human Immunodeficiency Viruses 

(HIV) drugs such as Lopinavir and Ritonavir; and a combination of HIV drugs linked to Interferon-beta [21].  

3.1.1. Lopinavir / ritonavir 

Lopinavir / ritonavir is a combination of drugs used primarily in the treatment of HIV infection, which 

serve as protease inhibitors. In 2000, this mixture was first marketed by Abbott under the Kaletra brand name. 

Lopinavir inhibits viral protease that results in immature/non-infectious virus particles; ritonavir inhibits liver 

degradation of lopinavir and thus prolongs the half-life of lopinavir [22]. More recently, a randomized clinical 

trial of lopinavir/ritonavir (400 mg/100 mg, twice daily for 14 days) in in the treatment of COVID-19  

by Cao et al. [11] found that treatment with lopinavir/ritonavir did not significantly accelerate clinical progress, 

decrease mortality and decrease the identification of viral RNA in the throat in patients with extreme COVID-19. 

In case of the serious COVID-19 adult patients, [23] there was no benefit from treatment with lopinavir-

ritonavir relative to the standard group. This study found that lopinavir-ritonavir does not seem to be 

successful in patients with COVID-19 and that these combinations caused more side effects. Results from  

in vitro studies showed some evidence of effectiveness against SARS and MERS, but their effectiveness 

against COVID-19 is unknown [23]. 

3.1.2. Remdesivir 

Remdesivir, a novel nucleotide simple prodrug, was produced for the treatment of Ebola infection 

illness (EVD). In the essential human aviation route epithelial cell culture framework, it was found to tie to 

the viral RdRpt and repress the replication of SARS-CoV and MERS-CoV. In vitro explores have as of late 

demonstrated that remdesivir has better antiviral movement analyzed than lopinavir and ritonavir [24]. 

Furthermore, in vivo concentrates in mice have indicated that remdesivir treatment has upgraded pneumonic 

capacity and diminished viral burdens and pathology of the lungs in both prophylactic and restorative 

regimens contrasted and lopinavir/ritonavir-IFN-γ in MERS-CoV contamination [24]. Various COVIDs, 

including coursing human CoV, zoonotic bat CoV and pre-pandemic zoonotic CoV, are likewise restrained by 

remdesivir. Remdesivir is likewise accepted to be the main restorative item that significantly diminishes 

aspiratory pathology [24].  

3.1.3. Arbidol 

Arbidol is a small indole-derivative molecule. It is a broad-spectrum antiviral drug with demonstrated 

efficacy against a variety of enveloped and non-enveloped viruses such as hepatitis B and C, SARS and MERS. 

Arbidol has also been approved for the prophylaxis and treatment of influenza and other viral respiratory 

infections by binding to haemagglutinin (HA) protein [25, 26]. Any sequence or structural similarities between 
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SARS-CoV-2 spike glycoprotein and influenza virus (H3N2) HA may have a positive drug effect. The most 

recent study stated that the sequence and structural similarities between the SARS-CoV-2 spike glycoprotein and 

H3N2 HA binding sites of Arbidol seem promising and indicated that Arbidol may be useful in treating COVID-

19. Arbidol can effectively block or inhibit SARS-CoV-2 spike glycoprotein trimerization, which is crucial to 

cell adherence and entry. The blockage of SARS-CoV-2 spike glycoprotein trimerization often contributes to the 

development of naked or immature virus, which is less infectious. This study has important implications, but 

clinical investigation is still necessary for the efficacy and safety of Arbidol against SARS-CoV-2 [27, 28]. 

3.1.4. Chloroquine and hydroxychloroquine 

Chloroquine and hydroxychloroquine are old medicines that have been used for more than sixty years 

in the treatment of malaria, rheumatoid arthritis, lupus and sun allergies. As the mechanism of action of these 

two molecules is similar, the activity of hydroxychloroquine on viruses is possibly the same as that of 

chloroquine [29]. Chloroquine and hydroxychloroquine have received intense attention worldwide due to the 

positive results obtained from preliminary studies of their use in the treatment of SARS-CoV-2 patients [30]. 

Chloroquine and hydroxychloroquine can reduce endosome and lysosome acidity, which is necessary for 

membrane fusion between the virus and the host cell. This suggests that the endosome maturation mechanism 

has been changed, preventing endocytosis, leading to the failure of further transport of virions to the site of 

replication [31]. Moreover, the terminal glycosylation of the ACE2 receptor can also be impaired by 

chloroquine and hydroxy-chloroquine, thereby inhibiting viral cell penetration [30]. They can also inhibit the 

proper maturation and recognition by antigen-presenting cells (APCs) of viral antigens that require endosomal 

acidification for the processing of antigens. This could explain why they also have an immunomodulatory 

effect by attenuating cytokine production and inhibiting autophagy and lysosomal activity in host cells [31]. 

Currently, a clinical trial has shown that chloroquine and remdesivir are highly successful in the control of 

COVID-2019 infection in vitro. Since these compounds have been used in human patients with a safety track 

record and shown to be effective against different ailments [32]. Therefore, chloroquine and 

hydroxychloroquine have been proposed as available weapons for combating COVID-19 [33]. 

3.2. Immunotherapy 

The immune status of patients with COVID-19 have two sides of view, the first view is that the viral 

infection activates immune cells, contributing to a cytokine storm that is associated with the severity of the 

disease. The second view that the COVID-19 primarily affects elders or people with chronic diseases, some of 

whom have very low numbers of lymphocytes, especially CD4+ T cells, suggesting immune system 

deficiency [34]. Therefore, immunomodulation or anti-cytokine antibody may also be considered an effective 

technique for minimizing COVID-19 symptomes, given the state of the patient's immune system at various stages 

of the disease. Such immunomodulatory interventions can be achieved using vaccines, interferons, convalescent 

plasma, anti-inflammatory agents, interleukin blockers, and other classes of immunomodulators [3]. 

3.2.1. Convalescent plasma therapy (CPT) 

Convalescent plasma from patients who have recuperated from SARS-CoV-2 infection has likewise 

been proposed as a potential treatment for COVID-19. Gaining strength plasma has been utilized in numerous 

extreme infections, for example, SARS, MERS, and Ebola, as one of only a handful few remedial 

methodologies without antibodies or other explicit medicines [35]. The explanation for the effectiveness of 

convalescent plasma therapy is that viremia can be suppressed by antibodies from convalescent plasma 
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through free viral clearance, blockade of new infection, and acceleration of infected cell clearance. The use of 

CPT should be with considerations, including patients with moderate or end-stage disease are not benefit from 

CPT. Also, mild patients can be self-recovered, and CPT would not be needed [36]. The SARS-CoV-2 

neutralizing antibodies titer in the CP may also be another important factor to increase the efficacy of the 

treatment. While there is no determination of amount of antibodies in the donor plasma prior to transfusion, 

some studies have shown that specific IgG increases approximately three weeks after symptom onset and 

peaks at week 12. Therefore, the CP from donors who are at week 12 after the onset of the symptoms is 

estimated to be more efficient [36].  

3.2.2. Monoclonal antibodies 

SARS-CoV-2 monoclonal antibodies have the potential for both therapeutic and prophylactic 

applications and can help direct the design and production of vaccines. Several research groups have isolated 

monoclonal antibodies (most commonly from the B cells of patients who have recently recovered from 

SARS-CoV-2 and, in some cases, from those who were infected with SARS-CoV in 2003) [37]. Monoclonal 

antibodies designed against SARS-CoV-2 can be classified into three major categories based on their targets: 

1) antibodies that inhibit the attachment and entry of the virus by either targeting the structure of the virus or 

host receptors; 2) antibodies that interfere with the replication and transcription of the virus; 3) antibodies that 

inhibit different stages of immune system response [30].  

S proteins found on the surface of the virus are the main target of neutralizing SARS-CoV-2 

monoclonal antibodies and can therefore prevent the virus from entering the host epithelial cells and 

consequently prevent the amplification of the virus [38]. MAbs often alter the host organism's immune system 

response, i.e. a decrease in IL-6 plasma level, which is frequently elevated by mechanical ventilation in 

COVID-19 patients [39].  

3.2.3. Immunomodulators 

3.2.3.1. Interferons 

There are two types of interferons (IFNs), type I IFNs and type II IFNs, type I IFNs designate  

a group of cytokines consisting of the ubiquitous subtypes α and β (themselves subdivided into many 

isoforms). It has been shown that type I IFNs can inhibit both SARS and MERS-CoV replication [40]. 

Suppression of interferon I-mediated immune responses by SARS-CoV-2 is already verified. Although 

interferon has been shown to combat the virus and is suggested for the treatment of the disease, some 

conflicting data have demonstrated that interferon can increase the expression of ACE2 and thus the viral 

entry. In addation good findings were found by using type I IFN, including INF-β-1a, in several clinical 

trials [41]. A recent study detected that IFNβ1 can be used to treat COVID-19 safely and effectively in the 

early stages of infection. Similar therapies had a mixed efficacy against MERS-CoV and SARS-CoV 

viruses, but in vitro studies indicate that SARS-CoV-2 may be significantly more sensitive to IFN-I than 

other coronaviruses [32]. IFN-β is already being tested in a combination protocol in the international 

clinical trial initiated by WHO, called the “Solidarity” trial, in the partner countries [42].  

Moreover, due to the structural similarities between SARS-CoV-1 and SARS-CoV-2, INF-α can 

improve the innate immunity of SARS-CoV-2 patients. The sensitivity of SARS-CoV-2 to IFN-α is far 

higher than that of previously emergent SARS-CoVs [39]. In the beginning phase of disease, IFN-α would 

preferably control countless infection replication, decrease the manifestations of the intense stage, permit 

patients to endure the intense stage, and forestall the rate of decay. An investigation has demonstrated that 
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IFN-α2b splashes can limit the pace of SARS-CoV-2 disease, so they can be utilized as prophylaxis against 

SARS-CoV-2 [43].  

3.2.3.2. IL-6 Inhibitors 

IL-6 is a pleiotropic, pro-inflammatory cytokine formed from a number of types of cells, including 

lymphocytes, fibroblasts, and monocytes. When extreme systemic inflammatory responses in patients with 

SARS-CoV-2 infection occur, the elevations in IL-6 levels may be considered a significant indicator [44, 45]. 

Cytokine blockers (tocilizumab, sarilumab, and siltuximab) are being investigated as a disease prevention 

technique [46]. 

Tocilizumab a humanized anti-IL-6 receptor antibody, has been produced for the treatment of different 

autoimmune diseases like rheumatoid arthritis and juvenile idiopathic arthritis. Moreover, tocilizumab has 

been shown to be effective against cytokine release syndrome triggered from CART cell infusion against  

B cell acute lymphoblastic leukemia. Blocking of anti-human IL-6R by tocilizumab administration has been 

approved by China for the treatment of COVID-19 [3, 47, 48].  

Sarilumab is a completely-humanized monoclonal antibody that inhibits the IL-6 signaling pathway by 

binding to and blocking IL-6R [49]. Sarilumab can potentially prevent SARS-CoV-2 infection-driven or 

accelerated cytokine-mediated pulmonary injury, thereby alleviating the severity and/or decreasing the 

mortality of patients with COVID-19 pneumonia when given in combination with antiviral therapy. Sarilumab 

an inhibitor of soluble and membrane IL-6Rα that can help to reduce the severity of respiratory difficulty  

of SARS-CoV-2 infection, but there is no evidence that it has anti-viral potential [50]. 

Siltuximab can be considered as a therapeutic strategy for the treatment of severe cases of SARS-CoV-2 

infection with elevated levels of IL-6. Siltuximab is a humanized recombinant chimeric monoclonal antibody 

distinctive and specific for the IL-6 R and may potentially hammer symptoms of cytokine release syndromes 

(CRSs) such as fever, trouble breathing, weakness, fatigue, organ failure, and death in patients severely 

infected with COVID-19 [51]. Where it prevents the binding of IL-6 to both soluble and membrane-bound  

IL-6R and thereby inhibits IL-6 signaling [30].  

3.2.3.3. IL-1 Inhibitors 

In COVID-19 conditions, the IL-1 family of receptors activates an innate immune response and is 

associated with harmful inflammation, and IL-1 is elevated. Anakinra is an IL-1 receptor antagonist that 

inhibits the action of proinflammatory cytokines IL-1α and IL-1β and is used to treat autoinflammatory 

disorders such as adult-onset Still’s disease, systemic-onset juvenile idiopathic arthritis, and familial 

Mediterranean fever [52]. A recently retrospective cohort study showed that patients with COVID-19 and 

ARDS managed with non-invasive ventilation outside of the ICU, high-dose anakinra therapy was safe and 

associated with clinical improvement in 72% of patients [53]. 

Canakinumab is a human monoclonal antibody that specifically targets and neutralizes IL-1β, thus 

preventing its interaction with IL-1 receptors [54]. A review investigation of 10 patients with affirmed  

SARS-CoV-2 infection found that canakinumab treatment was related with a quick and generous reduction in 

serum C-responsive protein on day 1 and day 3 and improved oxygenation, with an expansion in the PaO2: 

FiO2 proportion among benchmark and day 3 and day 7 after treatment [55].  

3.2.3.4. Janus-associated kinase (JAK) inhibitors 

Since that SARS-CoV-2 can likewise enter the cell by means of endocytosis, it tends to be vanquished 

through hindering endocytosis. Numb-related kinase (NAK) relatives, including AP2-related protein kinase  
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1 (AAK1) and Janus-related kinase (JAK), are two of the key endocytosis controllers that can be hindered and 

proposed as a possible objective for controlling different viral diseases, for example, SARS-CoV-2 infection [56].  

In COVID-19, JAK inhibitors have an alleged benefit over other immunomodulatory strategies 

because they can exert dual anti-inflammatory (simultaneously blocking several pro-inflammatory cytokines) 

and anti-viral (impairing cellular viral endocytosis) effects and have convenient oral administration, with  

a relatively short half-life. The signalling of many pro-inflammatory cytokines involved in the pathogenesis  

of hyperinflammation, including IL-6, which has been the subject of several COVID-19 clinical trials, may be 

interrupted by JAK inhibitors [57,58]. Because of the great immunosuppressive effect of JAK inhibitors. The 

National Institute of Health (NIH) has suggested that it be used to treat patients with COVID-19. The JAK 

inhibitors recommended are baricitinib, tofacitinib, upadacinib, ruxocitinib and fedracitinb [59]. 

3.2.3.5. Corticosteroids 

Corticosteroids, have anti-inflammatory, antipyretic and vasoconstrictive effects, which intensivists 

have been trying to leverage for decades to improve outcomes in patients with acute respiratory distress 

syndrome (ARDS) and septic shock [60]. Based on results from a study data analysis, the WHO has updated its 

guidance on the use of corticosteroid drugs in COVID-19 patients. An analysis of seven international clinical 

trials found that in critically ill COVID-19 patients, corticosteroids mitigated the risk of death by 20%. Data on 

hydrocortisone, dexamethasone and methylprednisolone were included in the study. Steroids were found to 

increase survival rates in patients with COVID-19 who needed hospital intensive care admission. Moreover,  

a recent meta analysis study indicated that COVID-19 patients with severe conditions are more likely to 

require corticosteroids. Corticosteroid use is associated with increased mortality in patients with coronavirus 

pneumonia [61,62].  

4. CONCLUSION 

Until now, no approved drug has been available against SARS-CoV-2 and hundreds of the vaccines 

and antiviral drugs are still under clinical trials that will take several months or longer to become available in 

the market. Furthermore, all of the drug choices are focused on the experience in the treatment of SARS, 

MERS or some other previous influenza viruses. However, remdesivir appears to be the most promising drug 

for the treatment and control of COVID-19 infection. 
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