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ABSTRACT: Selection of a suitable carrier material for rhizobial inoculants is essential for biofertilizers 

production. Locally available wastes or by-products as carrier material will increase the cost effectiveness 

of the inoculants preparation. Here, were evaluated four such waste materials from local ground viz. 

charcoal, saw dust, garden soil and sugarcane bagasse with carrier based inoculums (108 viable cells/ml) 

and kept at room temperature (30 ± 20C). The colony forming unit (CFU) count of each strain in different 

carriers was monitored every month. The charcoal, garden soil and saw dust resulted to allow a better 

survival of the inoculums. The viable counts in charcoal, soil, saw dust and sugarcane bagasse after 240 

days of storage was recorded as 107, 106, 105 and 103 for MPR8 and 107, 105, 105 and 103 for TFR3 strains 

respectively. The effects of storage of carrier on plant productivity showed better plant biomass 

accumulation and nodulation in cases of charcoal, sawdust and garden soil. However it was insignificant 

with the sugarcane bagasse based inoculants. 
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1. INTRODUCTION 

Rhizobia form symbiotic root nodules with various legume plants and have ability to fix 

atmospheric nitrogen. These bacteria, although present in most soil types, vary in number and beneficial 

effectiveness of a subsequent crop, which is one of the scientific basis in the agricultural practice of crop 

rotation. Rhizobia are cultured in the laboratory and mixed with a suitable carrier material, such as peat, 

charcoal or other locally available materials to formulate an inoculant [1]. A high quality formulation of 

the inoculum before its application must be maintained and should allow its delivery in a convenient and 

economy way for obtaining high population of effective rhizobia [2]. Cost effective biofertilizers using 

optimised media for Rhizobium and formulated with coal powder was found highly effective in improving 

nitrogen content in the soil along with other potential parameters for plant growth in a NPK deficient soil 

that supports the growth and development of new legume plants [3]. Improving crop productivity through 
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the practice of transferring productive soil from one field to other dates back to ancient times [4]. After 

the famous Hellriegel et al. [5] concerning the nitrogen nutrition of leguminous plants, the practice of 

‘soil transfer’ became a recommended method of legume inoculation. Rhizobium inoculants for legumes 

consist of root nodule forming bacteria usually mixed with solid based carrier materials.  

In Nepal, the production of bio-fertilizers, started on a very small scale at the National Agricultural 

Research Council (NARC, Khumaltar, Kathmandu) in 1960. Since then not much has been further 

achieved if one considers the significance of the technology. Though, peat is universally considered a 

good inoculant carrier material, it is also not available in Nepal. Kalimati soil (locally available alluvial 

soil) mixed with charcoal at 3:1 ratio and other soils rich in organic matters are used as carriers. Among 

the different inputs, chemical fertilizers play an important role in supplying crop nitrogen needs. 

However, leguminous plants by virtue of their nitrogen fixing ability, when growing in association with 

proper rhizobia, need very little nitrogen for growth. In the hills or at high altitudes where small farmers 

can hardly afford to buy chemical fertilizers, legume cultivation is practiced to supply part of the nitrogen 

needs for the crop. 

The excessive use of nitrogenous fertilizer in developing countries created hazards to such an 

extent that the ground water at several places has been reported unfit for drinking purpose [6]. Increasing 

population compelled many nations to take necessary steps to increase organic food production by using 

alternate means. Bio-fertilizers not only augment and increase the nutrient availability but also make the 

soil vital [7]. Such fertilizers’ effect can provide permanent benefits to the soil without any associated 

problems and can increase soil fertility. The cost involved is quite low and imparts better crop 

management and provision of additional major nutrients for the plants and inoculum. It has been proved 

that the bio-fertilizers are cost effective, cheap and renewable source of supplements than chemical 

fertilizers [8].  

Several attempts have been made to improve the quality of soil based inoculants. Sterilisation of 

the carrier material is important to eliminate competition from fungi and other bacteria, and hence to 

obtain high numbers of rhizobia. This may be achieved through autoclaving, γ-irradiation, chemical 

sterilisation or flash drying [9]. The most effective method for sterilisation, through γ-irradiation, is 

limited due to unavailability of a radiation source in many countries [10]. Autoclaving is perhaps the most 

effective common method of sterilisation, but requires a packaging material capable of withstanding high 

temperature conditions while allowing subsequent conservation of moisture and passage of gases [11]. 

Moisture content affects the ability of a carrier to maintain rhizobial numbers. Rhizobial populations 

decline more rapidly during storage with decreasing moisture content [12, 13].  

The objective when considering inoculation with beneficial bacteria is to find the most potent 

bacteria available [14, 15] and then a study of the specific inoculant formulation is generally undertaken. In 

practical terms, the formulation chosen determines the potential success of the inoculant [16]. Many 

potentially useful bacteria reported in the scientific literatures never appear on the commercial market, 

perhaps due to inappropriate formulation. During the present study, attempts were made for the formulation 

of the inoculant with carrier materials available locally. Four different carrier materials available locally. 

Four different carrier materials were tested charcoal, sawdust,garden soil and sugarcane bagasse during the 

present investigation. The survival percentage of two rhizobia strains, MPR8 and TFR3 was evaluated in the 

aforementioned four carrier materials during their storage at room temperature for 8 months. 
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2. MATERIALS AND METHODS 

2.1. Rhizobial strains 

Strains MPR8 and TFR3 were maintained at 40C and used for inoculum preparations. 

2.1.1. Carrier materials and preparation of inoculants and storage 

Late log phase broth cultures of both MPR8 and TFR3 strains were prepared (contained 108 viable cells 

ml-1 of liquid medium) and injected aseptically into sterilised carriers with the help of a syringe. The colony 

forming units (CFU) were counted by serial dilution technique on YEMA plates. Charcoal was inoculated 

with 60 ml/bag; sawdust 120 ml/bag; garden soil 24 ml/bag; and sugarcane bagasse 180 ml/bag. The amounts 

of the liquid cultures were added on the basis of the water holding capacities of the individual carriers (about 

½ of the WHC). The bags were thoroughly kneaded to ensure absorption of the liquid culture into the carrier. 

The inoculants so prepared were stored at room temperature (30 ± 20C) up to 240 days. 

2.1.2. Enumeration of rhizobia 

Rhizobia in each of the inoculant containing bags were enumerated by plating serially diluted samples of the 

inoculants on congo red YMA (0.0025% congo red) using spread plate method in triplicate with proper control. The 

CFU count was done on inoculums stored at room temperature, 30 days after inoculation and then every 30 days up 

to 8 months. Finally, the identities of the isolates were confirmed by plant infection test on the respective hosts [17]. 

The rhizobial counts were then transformed (log10) for statistical analysis. 

2.2. Effect of inoculant carriers on plant productivity 

The impacts on productivity of the carrier-based inoculants were determined in earthenware pots of 

approximately 1kg soil capacity. The pots were filled with sterilized garden soil. Surface sterilized seeds of Mucuna 

pruriens and Trigonella foenumgraecum were sown in the earthenware pots. The 8 month stored inoculants were 

used to inoculate the plants. The inoculated plants were grown for 45 d and then were uprooted very carefully to 

measure plant biomass, nodule number and nodule fresh weight. The experiments were carried out in three replicates 

for each treatment. The results obtained were analysed statistically according to Gomez et al. [18]. 

3. RESULTS 

Four locally available carrier materials (charcoal, sawdust, garden soil and sugarcane bagasse) were tested for 

their ability to sustain survivability up to 240 days at room temperature (Table 1, Fig. 1). The strains MPR8 and TFR3 

contained 108 viable cells/ml of the broth culture was used as inoculum with each carrier materials. The viable counts 

in different carrier materials at room temperature increased initially up to 30 days, but on further storage it decreased. 

In case of sugarcane baggase the reduction was faster than any other carrier. The via after 24 days with respect to the 

initial microorganisms load. In charcoal, sawdust and garden soil the reduction was by 22%, 44% and 45.0% for TFR3 

and 24%, 38.5% and 35% ble count of MPR8 was decreased by 66% in sugarcane baggase and 61% in case of TFR3 

and 24%, 38.5% and 35% for MPR8 strains, respectively. Charcoal resulted to have the highest survival rate at the end 

of the storage period. In comparison to charcoal, it was lowered by 48% in sugarcane baggase, 29% in garden soil and 

26.5% in sawdust in case of the strain TFR3. The strain MPR8 showed a decrease of viable counts compared to 

charcoal by 55% with sugarcane baggase, 16% with the garden soil and 19% with sawdust. The final concentration of 

viable counts/g of the carrier materials recorded were 107 cells/g in charcoal, 105 cells/g in sawdust and in garden soil 

(106 cells/g in the strain MPR8) and 103cells/g in sugarcane bagasse in both the strains MPR8 and TFR3. 
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There was a gradual decline in the number of viable counts during increasing length of storage 

period at room temperature A cfu count of 108 viable cells/g was obtained in charcoal up to 180 d in both the 

strains MPR8 and TFR3. Garden soil (MPR8) and sawdust (TFR3) also supported similar viable counts per 

gram but with one order of magnitude less, to about 107 cells/g in garden soil (TFR3) and sawdust (MPR8) 

after 180 d of storage. Instead, a sharp decline of the viable counts was observed with sugarcane bagasse, to 

106 cells/g, for both strains after 180 d (Fig. 1). 

 

 
Figure 1. Survival of Rhizobium in different carriers MPR8 and TFR3. 

 

Table 1. Physical properties of the carrier’s materials. 

Name of the carrier pH Moisture content (%) Water holding capacity (%) 

Charcoal 7.2 5.0 180 

Saw dust 6.8 5.15 375 

Soil 7.0 0.53 60 

Sugarcane baggase 6.9 0.7 625 

 

The application of bio- inoculants induced an increase in plant biomass, nodule number and nodule 

fresh weight (Table 2 and 3). The increase using MPR8 on Mucuna was 69%, 45% and 47% for charcoal, 

sawdust and garden soil, respectively, in comparison to that of control. However, the sugarcane bagasse 

inoculant showed a 23% decreased biomass accumulation with respect to control (Table 2). Similarly, the 

nodule number per plant in Mucuna showed no significant differences in case of charcoal, sawdust and soil 

based inoculants. R. meliloti TFR3 inoculated to T. foenumgraecum induced an increase in biomass by 54%, 

29%, and 21% for charcoal, sawdust and garden soil, respectively, compared to control. However, 37% 

reduction of biomass accumulation was observed in case of sugarcane bagasse based inoculant as compared to 

control. The nodulation by charcoal, sawdust and soil based inoculants were found to be almost similar which 

was better than the control. 
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Table 2. Effect of application of 240-old bio inoculant of MPR8 on plant biomass, nodule number and nodule fresh weight 

after 45 d of plant growth. 

Inoculant 
Plant biomass 

(g)* 

Average nodule  

No./Pl* 

Avarage fresh wt.  

of nodule/pl (g)* 

Control 2.34±0.256 0 0 

Charcoal 3.95±0.207 32 1.17 

Saw Dust 3.38±0.177 27 0.994 

Soil 3.42±0.269 29 0.899 

Sugarcane baggase 1.73±0.094 13 0.312 

Each value is mean of 3 replicates ±SD. *Results are significant at p≤0.01 level of probability. 

 

Table 3. Effect of application of 240 d stored bioinoculant of TFR3 on plant biomass, nodule number and nodule fresh 

weight after 45 d of plant growth. 

Inoculant Plant biomass (g)* Average nodule No./pl* 
Avarage fresh wt.  

of nodule/pl (g)* 

Control 0.45±0.131 0 0 

Charcoal 0.695±0.012 19±1.41 0.589±0.036 

Saw Dust 0.586±0.012 16±2.16 0.468±0.066 

Soil 0.541±0.017 16±1.63 0.465±0.051 

Sugarcane baggase 0.28±0.041 7±2.16 0.196±0.044 

Each value is a mean of 3 replicates ±SD. *Results are significant at p≤0.01 level of probability.  

4. DISCUSSION 

The viable cell counts of both the strains MPR8 and TFR3 remained more than 108 cells/g of the carrier up 

to 180 d but there was a dramatic reduction after 210 d. Among all materials tested, charcoal proved to be the 

most suitable carrier, holding the maximum number of viable counts up to 240 d. Similar results were obtained 

for Rhizobium phaseoli [19]. To obtain the maximum benefits from legume inoculation technology, the inoculum 

must contain high populations of viable rhizobia [20]. Nair, et al. [21] explained that as regards the influence of 

different carriers on the survival of rhizobia [22]. 

It has been reported that rhizobia survive better under refrigeration than at room temperatures [23, 24]. But 

the facility of refrigeration is not easily available in the developing countries including Nepal, therefore, good 

survival of the inoculant strain at room temperature constitute a desirable property. The carrier material should 

have a rhizobial cells number of at least 5×108/g [25], but minimum standards for viable rhizobia vary in different 

countries. During the present investigation the viable cell count was higher than 108 viable cells/g for up to 150 

days in all four carriers taken. A similar result was observed by Muniruzzaman and Khan [26]. However, in many 

countries like Thailand or Russia [27], 107 viable cells/g or more is taken as a standard. In the western countries, 

peat was commonly used as a carrier of Rhizobium sp. for commercial legume inoculants production. However, its 

unavailability has prompted the use of alternate materials [27-30]. Wastewater sludge, a worldwide recyclable 

waste, has shown good potential for inoculant production as a growth medium and as a carrier (dehydrated sludge) 

which usually contains nutrient elements at concentrations sufficient to sustain rhizobial growth and heavy metals 

are usually below the recommended level [31]. The capacity of soil to support the survival rhizobia implies that 

mineral soils, could substitute for peat if amended with organic carbon [32]. The fact that charcoal supported 

acceptable numbers of viable cells of R. phaseoli CIAT 75 and 650 R at 250C but not at 40C contradicted previous 

reports where in the survival of rhizobia under refrigeration was better than at or near room temperature. In the 
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present study two indigenous rhizobial strains R. meliloti MPR8 and R. meliloti TFR3 isolated from Mucuna 

pruriens and Trigonella foenumgraecum respectively survived at room temperatures up to 240 d in charcoal which 

proved the best among the four carriers tested on the basis of periodical viable counts. The sequence of treatment 

success with different carrier on both the strains tested was found to be charcoal > sawdust = mgarden soil > 

sugarcane bagasse (LSD = 1.59; P = 0.01 for MPR8 and LSD = 2.10; P = 0.01 for TFR3). 

During the present study, it was observed that charcoal supported better survival of both the strains MPR8 

and TFR3 throughout the storage period. In case of MPR8 the viable count was 10% more in charcoal than that of 

sawdust after 180 d but it was 8% less for the strain in garden soil. When charcoal, garden soil and sawdust 

carriers were compared with each other it was observed that all the three carriers showed almost similar viable 

counts throughout the experimental period. It was revealed that there was only 11% less viable counts in sawdust 

compared to charcoal for the strain MPR8 and 10% less in case of the strain TFR3. Similarly, in garden soil and 

sugarcane bagasse the reduction was 8% and 27% for the strain MPR8 and 22% and 11% for the strain TFR3 

respectively. The genetic superiority and better adaptability of rhizobial strains to a particular soil type are also 

considered as significant parameters that influences inoculant performance. 

The major challenge in the inoculant industries at present is to develop the improved carrier materials that 

can sustain a high shelf life for comparatively longer duration of time, protection against hostile soil 

environments, easy to use and cost effectiveness [33]. Since a century, the bio-inoculants have been in the market 

but their present availability with respect to chemical fertilizer is still very low [34]. 

Long-term rhizobial survival in the carrier inoculant preparations includes lignite that promoted rhizobial 

population [33]. Sugarcane bagasse could not hold the good survival of rhizobial cells probably due to high 

contamination with fungi and their competition with the rhizobial cells. The inoculants should contain  

a minimum of 108 viable cells/ml within 15 days of manufacture and 107 viable cells/ml within 15 days before 

expiry i.e. after 6 months. 

Various workers [35-37] found high count of rhizobial cells in inoculants at temperature range between 

28-320C. The carriers with inoculum in the present study were stored at room temperature (30 ± 20C). In the 

present study, the effect of carrier based inoculants after storage on the productivity of Mucuna pruriens and 

Trigonella foenumgraecum was determined in vivo. Plant biomass, nodule number and nodule fresh weight were 

reported to be maximum with inoculants formulated with charcoal, sawdust and garden soil. Several workers 

have reported an increase in yield of the legumes when inoculated with carrier-based inoculants  

[38, 39]. Very recently, biochar, a charcoal produced from plant matter, positively affected plant growth metrics, 

root characteristics, and the chemical composition of plants supplied with N-free nutrient solution [40]. Similar 

increase in soybean yield when inoculated with peat-based inoculants was observed by [41, 42]. Arora et al. [43] 

emphasized the importance of specific rhizobia bioinculants for the legume crops. 

5. CONCLUSION 

The selection of suitable strains of Rhizobium is the basis to the process of inoculant production and 

commonly demands specific cultures for species, groups of species or even varieties in the one-inoculum 

group. However, there is very little information explaining their superiority at the genomic level. Presently, 

some works in this line explaining how their genomes may influence t Increasing rhizobia cells concentration 

per unit seed up to ×3 (cowpea) and ×4 (bean) improves response to inoculation and grain productivity 

suggesting a need to change product formulation or increase inoculation rate inoculant performance are 

ongoing. Legume inoculants should contain sufficient viable rhizobia so that the intended host is satisfactorily 
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nodulated in a Rhizobium-free soil, or the inoculant rhizobia can effectively compete with indigenous rhizobia 

in soils where the crop has previously been grown. 

Insufficient knowledge and understandings exist concerning the responses of the micro-symbiont and 

host to select an inoculant standard that would achieve successful nodulation by the inoculum strain under all 

conditions. The development of more effective and specific inoculant with specific strain of Rhizobium targeting 

on specific soil type, environment and host plant are the new lines of research needed for this technology. 

The present study reports the development of bio-inoculants that can be used in increasing the legume 

productivity, restoration of soil fertility, reclamation of the barren lands as well as the use of the inoculants for 

the high altitude legumes where the soil nitrogen content in low due to leaching by surface runoff water 

resources. 
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