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ABSTRACT: Peanut, also known as groundnut (Arachis hypogaea L.), is an annual leguminous oil crop 

cultivated worldwide for food and fodder. Several stress factors critically diminish the productivity and 

nutritional quality of this protein-rich plant. In vitro cell and tissue culture systems have been used in many 

plant species to rapidly propagate large numbers of plants, create somaclonal variation, produce bioactive 

compounds, and enable genetic engineering. Tissue culture based mutagenesis and genetic engineering are 

particularly attractive for crop improvement. Tissue culture techniques have been implicated over the years to 

improve peanut, despite the general recalcitrant nature of this species to in vitro culture. In this manuscript, 

we review the progress that has been made on in vitro culture of peanut, and its application to improve 

nutritional quality and resistance to major biotic and abiotic stresses in peanut. 

Keywords: Peanut; In vitro; Genetic transformation; Biotic and abiotic stresses; Nutritional quality. 

Abbreviations: INDELS – insertions and deletions; MS – Murashige and Skoog; B5 – Gamborg medium; 

BAP – benzyl amino purine; Kn – kinetin, TDZ – thidiazuron; 2,4-D – 2,4-dichlorodiphenoxyacetic acid, 

NAA – naphthalene acetic acid, IBA – indole butyric acid, IAA – indole acetic acid; FAD – fatty acid 

desaturase; TALENs – transcription activator like effector nucleases; ELISA – enzyme-linked immunosorbent 

assay; ACC – 1-aminocyclopropane-1-carboxylic acid. 

1. INTRODUCTION 

Peanut (Arachis hypogaea L.; family Fabaceae and subfamily Faboideae) is an important leguminous 

food and cash crop originally from South America. Peanut is cultivated throughout Asia, Europe, Africa, 

Oceania, North and South America in tropical, sub-tropical and warm temperature areas [1]. It is the fourth most 

important oil crop in the world after soybean, oilseed rape, and cotton [2, 3]. 

Globally 27.7 million hectares (ha) area is under peanut cultivation with a total annual production of 44.0 

million tons; led by China (37.9%), India (15.6%), Nigeria (6.9%) and the United States (5.9%) [4]. In 

Bangladesh, peanut is the third most important oilseed crop after mustard and sesame in terms of production [5]. 

Usually, 41% of globally produced peanut is used as food and 49% is processed for the extraction of edible oil. 
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The oil cake meal, which remains after oil extraction is widely used for industrial purposes and livestock feed, 

contains up to 50% protein [6]. Besides edible oil production, peanut contains proteins, fibre, vitamins, minerals 

and essential amino acids, which can be added as functional ingredients into many processed foods [7-9]. Peanut 

is a substantial source of bioactive compounds like polyphenols, resveratrol, phenolic acids, flavonoids and 

phytosterols that block the absorption of cholesterol from the diet as well as possess disease prevention 

properties [8, 9]. 

Peanut is sensitive to numerous biotic and abiotic stresses, including insect pest infestation, salinity, 

drought, and high temperatures, leading to major yield and quality losses [2, 10, 11]. In Bangladesh, salinity and 

drought are the major abiotic factors drastically affecting peanut yield and seed quality [12, 13]. Aflatoxigenic 

fungi produce aflatoxins in peanut. Aflatoxin contamination can be enhanced under drought conditions, 

consequently making the peanut unfit for human consumption [12, 14, 15]. Diseases, such as stem rot, collar rot, 

seedling blight, peanut tikka late leaf spot disease, dry wilt, afla root, leaf spots, rust and bud necrosis cause 

economic losses in peanut production due to crop failure or deterioration of pod quality [10]. Besides diseases, 

different insects also incur major economic loss in peanut. Aphids are the most disparaging insect vectors of 

peanut rosette disease, a major viral disease that causes severe reductions in yield and quality [1, 16]. 

Cell and tissue culture techniques are widely used in peanut to improve nutritional quality including 

higher yield and tolerance to biotic and abiotic stresses [15, 17]. Explant culture in an appropriate medium often 

results in an unorganized and dividing mass of cells named callus [18, 19]. Differentiation of the callus, results in 

the production of bioactive compounds such as polyamines and osmolytes, glycine, proline, betaine, which 

mainly serve in defense against biotic and abiotic stresses [19-22]. Callus induction followed by plant 

regeneration can induce genetic and epigenetic changes causing somaclonal variation [18, 23, 24]. The 

application of in vitro cell or tissue culture and development of somaclonal variations is reported in groundnut 

crop improvement worldwide [15, 17, 25-28]. Conversely, the commercial applications of somaclonal variations 

are still far from complete. However, knowledge on the developmental and molecular basis of this variation 

could be a prerequisite to develop groundnut genotypes with high yield, biotic and abiotic stress tolerance, active 

metabolite production, nutritional improvement, and crop quality. 

This review represents an overview of in vitro practices and obstacles for peanut regeneration, and the 

application of tissue culture approaches to improve the nutritional quality and stress tolerance ability of peanut.  

2. NUTRITIONAL VALUE OF PEANUT 

A healthy population is an indispensable requirement to promote development in any country, and 

better nutrition is a fundamental human right. Therefore, the relation between food, nutrition and health 

should be reinforced. The consumption of either raw or processed peanuts is beneficial to human health 

because of their high nutrient content, including protein, fat, fibre, minerals and vitamins [7, 9] (Table 1). 

The peanut contains plant-based protein, including all essential amino acids. It comprises of 

unsaturated fatty acids like monounsaturated and paraformaldehyde fatty acids which are heart friendly [9, 29, 

30]. Furthermore, peanut is considered as a functional food due to the presence of Coenzyme Q10, which is 

mandatory to cure cardiovascular diseases [7, 9]. Peanut is an abundant source of vitamins like niacin, folate, 

thiamin, riboflavin, pantothenic acid, pyridoxine and vitamin E [9]. Additionally, it is a good source of 

minerals such as iron, zinc, potassium and magnesium, including antioxidant minerals like selenium, 

manganese and copper [9]. These vitamins and minerals play important functioning roles in the digestive 

systems, skin, nerves, and also reduce inflammation and risk of metabolic syndrome [31-35]. It also contains 



Das et al.   Tissue culture approaches to improve nutritional quality and stress response in peanut 334 

 

European Journal of Biological Research 2021; 11(3): 332-347 

antioxidants and bioactive compounds such as flavonoids, resveratrol, chlorogenic acid, caffeic acid, coumaric 

acid, ferulic acid and stilbene that are well-known for their disease preventative properties [9, 36-38]. 

Phytosterols and resveratrol in peanut have been reported to reduce the growth of prostate, colon and rectal 

cancer cells [39-41]. Peanut consumption also protects against type II diabetes [42, 43] and obesity [7, 35]. 

Vitamins in peanut like niacin and vitamin E have a protective effect against early to mid-stage Alzheimer’s 

disease [31]. Iron and zinc are widely reported to combat malnutrition and anemia, especially in women and 

children in Asia and Africa, which could be supplemented through peanut consumption [8]. Besides raw and 

roasted peanuts, products such as peanut butter and oil are also beneficial to heart health through reducing 

cholesterol levels [9]. Fresh peanuts and fermented peanut meal exhibited antioxidant properties through 

scavenging free radicals generated in the human body [36, 44, 45]. 

 

Table 1. Nutritional value of peanut (Arachis hypogaea L.) per 100 gram. 

Component Nutrient value References 

Free energy 567 Kcal [8, 9, 30] 

Carbohydrates 16-20 g [7, 8, 9, 30] 

Protein 25-28 g [7, 8, 9, 30, 114] 

Total Fat 49.2 g [7, 8, 30] 

Dietary Fiber 8.5 g [7, 8, 30] 

Tannin 38.0 g [114] 

Edible oil 48-60 g [8, 115] 

Minerals Nutrient value (mg) References 

Sodium 18 [9, 30] 

Potassium 705 [9, 30] 

Magnesium 168 [9, 30] 

Calcium 92 [9, 30] 

Iron 4.6-6.8 [8, 9, 30] 

Zinc 3.3-9.5 [8, 9, 30] 

Phosphorus 76 [9, 30] 

Copper 1.2 [9, 30] 

Manganese 1.9 [9, 30] 

Selenium 3.3 µg [9, 30] 

Vitamins Nutrient value (mg) References 

Folates 0.2 [9, 30] 

Niacin 12.1-16.0 [7, 9, 30] 

Pantothenic acid 1.8 [9, 30] 

Pyridoxine 0.4 [9, 30] 

Riboflavin 0.1 [9, 30] 

Thiamin 0.7-1.0 [7] 

Tocopherol 18.6-21.1 [7] 

β-carotene 63.3-65.4 [7] 
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3. INDUCED MOLECULAR CHANGES IN PLANT IN VITRO CULTURE 

Plant tissue culture enhances the inherent variability, which leads to mutations or variations in high 

frequency that could be the narrative source of genetic variability in plants [46]. These mutations often exhibit 

phenotypic variation named somaclonal variation, which induces stable genetic or epigenetic variations in the 

regenerated plants [47, 48]. Such variations are considered as a major drawback of tissue culture in 

commercial micropopagation to achieve true to type population. However, somaclonal variations could be 

exploited in peanut crop improvement [47, 49, 50]. 

In vitro culture is assumed to generate the changes in chromosomal and DNA sequence, protein 

expression, metabolite content, DNA methylation, and transposon activation, chromatin remodelling, small 

RNA mediated regulation leading to somaclonal variations [48, 51-53]. In vitro growth environment is 

accompanied by permanent genetic changes leading to significant genome alterations through changes in 

chromosomal level [51]. Chromosome structural changes, i.e., breakage and rearrangements, occur more than 

numerical changes in regenerated plants [23, 51]. DNA sequence variations such as single base pair changes, 

single nucleotide substitution mutation, deamination and small INDELS are major molecular changes often 

reported in cultured tissues [54, 55]. Ribosomal DNA repeats, DNA microsatellites and transposable elements 

are extremely sensitive to stress conditions, and the major sources of mutations or variations occur during cell 

culture [56]. Epigenetic gene expression includes heritable, reversible and enzyme arbitrated chemical 

modifications to the DNA and associated proteins, which is reflected as an alteration in DNA methylation, 

chromatin remodelling and small RNA mediated regulation [23, 57]. Therefore, in vitro tissue culture 

technique creates molecular changes, which regulate the physiological, biochemical and molecular aspects of 

plant development and stress response. 

4. PEANUT TISSUE CULTURE 

The biotechnological and molecular breeding techniques of crop improvement exclusively rely on the 

establishment of persistent, efficient and rapid in vitro regeneration systems for commercial applications [48, 58]. 

4.1. Major obstacles in peanut tissue culture 

Peanut tissue culture is extremely challenging due to its highly recalcitrant nature, and in vitro 

regeneration success is very low [59-61]. Peanut tissue culture has been reported as a suitable protocol for 

genetic transformation. However, low regeneration coupled with prevailing sterility associated with regenerated 

plants is a major constraint for genetic transformation [27, 62-64]. In vitro organogenesis through callus 

differentiation and morphogenesis is more suitable for the application of biotechnological and molecular 

strategies for crop improvement than direct somatic embryogenesis although the latter method has always been 

indispensable due to its shorter duration in plantlet development [46, 47, 63, 65]. 

The recalcitrant nature of peanut seed is a major problem for seed storage through drying or freezing. 

Therefore seed viability often challenges seed germination in vitro [66, 67]. Seed’s recalcitrant nature varies 

greatly among the peanut genotypes. The higher recalcitrant nature of seeds is associated with lower 

transformation efficacy and higher susceptibility to genetic transformation [68]. The embryonic axes and seeds 

without seed coat significantly exhibited a higher germination rate than the seeds with seed coat [69, 70]. The 

low germination rate in seeds with seed coat could be associated with the mechanical constraint by the seed coat 

and the impermeability of water and oxygen required for seed germination [71, 72]. Effective plant regeneration 

through tissue culture relies on several factors such as appropriate growth media, plant growth regulators, 
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explants, genotypes, growth environment, including photoperiod, temperature, and humidity [73]. Furthermore, 

the Agrobacterium and micro projectile bombardment mediated gene transfer have been equally exploited in 

peanut transformation, but the prior method is completely relying on Agrobacterium-host compatibility [68]. 

Therefore, the genetic transformation efficiency is closely linked to tissue culture protocols for transgenic 

development, selection of suitable explants, and age of cell lines, transgene expressions, and molecular 

confirmation of their expressions. Hence, the low transformation efficiency cannot be kept aside while choosing 

a genetic transformation protocol in peanut [68]. 

4.2. Selection of suitable explant  

Cotyledonary nodes, cotyledon, epicotyl, hypocotyl, leaf discs, shoot tips (Figure 1a) are widely used 

explants for peanut tissue culture that showed sufficient regeneration success in vitro [18, 26, 66, 74-76]. Among all 

these explants the epicotyl and hypocotyl showed better performances in callus induction (Figure 1b) and plant 

regeneration (Table 2) which could be associated with the presence of meristematic cells near the cut surface of 

those explants [46, 47, 76]. However, cotyledon explants are mostly preferred in genetic transformation but 

associated with longer duration and low regeneration frequencies compared to other explants [77]. 

 

 

     

Figure 1. Different stages of peanut plant regeneration under in vitro culture; a) small plantlet germinated from seed on MS 

media showing different explants; b) callus induction from epicotyl explants c) shoot initiation from callus and d) small plantlet 

with shoots and roots. Scale bars: 0.5 cm. Photographs are taken from the on-going peanut project funded by TWAS. 
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Table 2. Performance of explant and media composition in peanut (Arachis hypogaea L.) plant regeneration under in vitro 

growth condition. 

Explant 
Media composition (MS media supplemented with growth regulators) References 

Callus induction Shoot initiation Root formation  

Cotyledon (whole), 

Hypocotyl, Epicotyl, 

Leaflet 

2.0 mg/l 2,4-D 

2.0 mg/l NAA 
2.0-3.0 mg/l BAP 

½ MS +  

0.2 mg/l IBA 
[76, 116] 

Embryo 
1.5 mg/l NAA +  

5.5 mg/l BAP 

5.0 mg/l BAP + 1.5 mg/l TDZ 

4.0 mg/l BAP + 1.0 mg/l NAA 
1.5 mg/l IBA [18] 

Immature cotyledon 

1.5-2.0 mg/l 2, 4-D 

1.0-1.5 mg/l BAP 

1.5 mg/l 2,4-D +  

0.5 mg/l BAP 1.5 mg/l  

2, 4-D + 0.5 mg/l Kn 

1.0 mg/l BAP + 0.5 mg/l IAA 

1.0 mg/l BAP + 1.0 mg/l IAA 

0.5 mg/l BAP + 0.5 mg/l 2,4-D 

1.5 mg/l BAP + 1.0 mg/l NAA 

1.0 mg/l BAP +  

1.5 mg/l IAA + 

½ MS +  

0.5 mg/l IBA 

[46, 117, 

118] 

De-embryonated 

Cotyledon 

0.1 mg/l NAA 

1.0 mg/l NAA + 2.0 mg/l 

BAP 

0.1 mg/l NAA + 2.0 mg/l BAP 

0.1 mg/l NAA + 4.0 mg/l BAP 

B5 + 

 2.0 mg/l NAA 
[64] 

Epicotyl, Immature leaves, 

Hypocotyl, Cotyledon 

1.0-3.0 mg/l NAA +  

1.0-3.0 mg/l BAP 

0.1-0.5 mg/l NAA +  

1.0-4.0 mg/l BAP 
1.0 mg/l NAA [47] 

Cotyledonary nodes 
3.0 mg/l 2,4-D + B5 + 

4/5 mg/l NAA 

0.15 mg/L BAP +  

0.20 mg/L IAA + B5 
0.3 mg/l NAA [61, 77, 90] 

De-embryonated cotyledon 
3/5 mg/l BAP; 3/5 mg/l Kn 

2.0 mg/l BAP + 5.0 mg/l Kn 
2.0 mg/l BAP 0.5 mg/l IAA [24, 74] 

Mature and immature 

Cotyledon, Embryo axes, 

Epicotyl, Mature and 

immature embryo, Young 

leaflets, Leaflet segments 

Wide range of growth 

regulators i.e. 2, 4-D, TDZ, 

NAA, BAP, Picloram; 3-7 

mg/l 2, 4-D showed the best 

response 

4.0 mg/l BAP +  

2.0 mg/l NAA 
 [62] 

Leaf discs  
0.5 mg/l NAA + 0.5 mg/l TDZ 

8 mg/l BAP + 0.5 mg/l NAA 
0.5 mg/ NAA [63, 89] 

Cotyledon  
4.5 mg/L BAP +  

1.0-1.5 mg/L 2,4-D 
1.0 mg/l NAA [91, 119] 

Cotyledonary node  5.0 mg/l BAP 0.5 mg/l NAA [66] 

Embryonic leaflets 10 mg/l 2, 4-D 4 mg/l BAP MS basal media [96, 120] 

½ MS = half strength of MS basal media. 

4.3. Media selection 

The concentration of ammonia, nitrate, inorganic nutrient and vitamins are higher in MS medium than 

other growth media such as B5, Lloyd and McCown Woody Plant medium, Schenk and Hildebrandt basal salt 

medium, hence showed better performance in peanut [24, 78, 79]. Moreover, sugar source i.e. sucrose, 

glucose, fructose, maltose etc. in media plays a vital role in in vitro culture of peanut. Among the sugar 

sources, sucrose exhibited the best performance in terms of callus induction, shoot initiation and bud 

regeneration [24]. MS media supplemented with 3% sucrose is optimum for higher multiplication rate in 

peanut tissue culture, whereas the higher concentration causes tissue necrosis due to a sharp decline in 

osmotic potential leading to increased phenols. Furthermore, a lower concentration is accompanied with slow 

growth and multiplication rate [24, 80, 81].  

4.4. Selection of growth regulators 

Plant regeneration usually depends on the appropriate concentrations and combinations of plant growth 

regulators. Generally, cytokinins such as benzyl amino purine (BAP), kinetin (Kn), thidiazuron (TDZ) promote 
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shoot initiation, whereas the auxins such as 2,4-dichlorodiphenoxyacetic acid (2,4-D), naphthalene acetic acid 

(NAA), indole butyric acid (IBA), indole acetic acid (IAA), picloram induce callus and somatic embryos in 

peanut [46, 82] (Table 2). High cytokinin combined with low auxin often induces better shoot initiation (Figure 

1c). In peanut, maximum number of shoots per explant were observed in a media combination of 6 mg/l BAP + 

0.1 mg/l NAA [64] and 5.5 mg/l BAP +1.5 mg/l NAA [18]. BAP and TDZ are the best-studied cytokinins for 

effective shoot induction in numerous leguminous plants including peanut [83-85]. However, the excessively high 

concentrations of cytokinins such as 7-10 mg/l BAP or TDZ showed abnormal enlarged tissues during shoot 

organogenesis [63, 86]. The application of picloram showed better somatic embryogenesis in peanut in compared 

to 2,4-D [61, 87]. On the contrary, the supplementation of 1-3 mg/l 2,4-D in culture media showed the better 

callus induction in peanut than with NAA [46, 47, 61, 88]. The high concentrations of BAP and NAA often inhibit 

the callus induction and different concentrations of NAA showed slow callus growth in peanut [18, 76]. In most of 

the previous studies, it was observed that the NAA (0.1-2 mg/l) and IBA (0.5-2 mg/l) performed well in root 

initiation (Figure 1d) than other auxins [18, 46, 61, 63, 66, 89-91]. Yet, a higher concentration of NAA showed 

malformed callus at the vase of shoot rather than roots [61]. 

Therefore, it can be assumed that MS medium supplemented with low concentrations of 2,4-D could be 

used for callus induction. Whereas a higher concentration of BAP combined with low auxins would be more 

suitable for shoot initiation and organogenesis as compare to 2,4-D and NAA in peanut tissue culture. 

5. PEANUT IMPROVEMENT THROUGH TISSUE CULTURE APPROACHES 

5.1. Improvement of nutritional quality 

Peanut, a functional food, is cultivated over the world for its quality oil, energy, nutrition-rich food and fodder 

[6]. The quality parameters considered for peanut improvement are high protein, sugar, oil and oleic/linoleic fatty 

acid ratio, resistance to aflatoxin contamination and allergen [18, 92-94]. Furthermore, organic matter digestibility, 

metabolizable energy, nitrogen and protein content of haulms are the targeted quality traits for fodder [6]. 

Tissue culture derived somaclonal variations are important to create genetic variability and researchers have 

considered such approach for the selection of suitable somaclones regarding improved crop yield, oil content and 

stress resistant in peanut [26, 47, 50]. However, there is no reported commercial variety developed through 

somaclonal selection in peanut. Recently, Wang et al. have reported three peanut varieties with high yield and high oil 

content, namely Yuhua 4, Yuhua 9, and Yuhua 14 [95]. These varieties have been developed using embryonic leaflets 

of peanut variety Huayu 20 as explants through in vitro mutagenesis. The new peanut varieties contain an oil 

percentage ranging from 58 to 61%, which is significantly higher than Huayu 20 (49.5%) [95]. Embryonic leaflets 

culture of irradiated peanut seeds resulted in regenerated peanut plants in vitro. The seeds of regenerated plants 

represented an enhanced oleic acid, linoleic acid, palmitic acid and fat content by 5%, 7%, 3% and 2%; respectively 

than the mutagenic parent [96]. Mutations in two homoeologs gene sequences of FAD2A and FAD2B, originated 

from the genomes of peanut progenitor species Arachis duranensis and Arachis ipaensis, have been reported for 

enhanced oleic acid (>70%) content in peanut [97, 98]. Hence, further researches in FAD2A and FAD2B could be a 

future rational for high oleic acid peanut development through tissue culture approaches. AtLEC1 gene is believed to 

regulate the biosynthesis of lipids in legume seeds. Agrobacterium mediated genetic transformation of AtLEC1 

through tissue culture using epicotyl explants represented 4.5-16% increased oil content in seeds of regenerated 

transgenic peanut plants. Additionally, seeds of the transgenic plants showed high seed weight including enhanced 

oleic acid, linoleic acid and stearic acid content without causing major changes in agronomic traits [94]. The research 

attempted in vitro targeted mutation in peanut fatty acid desaturase 2 (AhFAD2) using Transcription Activator like 
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Effector Nucleases (TALENs). It was observed that the mutation frequencies among AhFAD2 mutant regenerated 

lines were significantly associated with oleic acid accretion [93]. The ELISA test also confirmed the enriched 

methionine content in in vitro developed transgenic peanut accompanied with high expression of 2S albumin gene 

[99]. The peanut allergy is one of the most health hazardous food allergies; extremely reduce the peanut seed quality. 

An in vitro Agrobacterium mediated transgenic approach using peanut hypocotyl explants was used to eliminate the 

immune dominant allergen Arah2 protein through RNA interference (RNAi) which is an established natural 

phenomenon of gene silencing or down regulating specific gene expression [92]. 

5.2. Improving biotic stress tolerance 

Major yield potential could be attained by the development of genotypes tolerant to biotic and abiotic 

stresses. Peanuts are sensitive to the fungal diseases such as peanut tikka disease (Cercosporidium personatum), 

collar rot (Aspergillus niger), rust (Puccinia arachidis), late leaf spot (Phaeoisariopsis personata), early leaf spot 

(Cercospora arachidicola), stem and pod rot (Sclerotium rolfsii), aflaroot or yellow mold (Aspergillus flavus) [10, 

100]. Tissue culture approaches in combination with the genetic transformation and mutagenesis could be the 

intriguing aspects for the development of peanut genotypes tolerance to those biotic stresses. The C. personatum 

resistant peanut genotypes were developed through the genetic transformation of β1–3 glucanase using embryonic 

leaflet culture [101]. The genetic transformation of β1–3 glucanase, chitinase, AdSGT1, CaMV 35 S, RsAFP1 and 

RsAFP2 using different explants such as cotyledon, cotyledonary node, embryo axes, shoot bud have been 

reported for transgenic peanut development in vitro that showed resistance against rust, early and late leaf spot 

diseases [102-104]. Gamma radiation was used for mutant development using different explants including leaf, 

shoot, cotyledon, and hypocotyl for successful regeneration of peanut. The regenerated mutants represented a high 

resistant to aflatoxigenic fungi (A. flavus and A. parasiticus) compared to the parents [15]. Mutant development 

using callus cultures from immature leaf explants of peanut showed resistance to C. personatum [105]. Several 

peanut genotypes have been reported as resistance to a number of viral diseases through genetic transformation 

using callus and embryonic culture [104, 106]. Peanut productivity and quality are also reduced by the insect 

infestation, and insects can play a major role as vectors of viral diseases [107]. However, cry genes from Bacillus 

thuringiensis have been reported for the development of insect resistance transgenes [107]. The peanut transgenic 

developed through tissue (cotyledon, shoot and embryo) culture including Cry1AcF, Cry8Ea, Cry1EC and 

CryIA(c) represented resistance against a wide range of Lepidoptera insects [27, 107]. 

5.3. Improving abiotic stress tolerance 

Plants response to abiotic stresses is dependent on the activation and synchronization of stress related genes, 

which are involved in the biosynthesis of polyamines, trehalose, galactinol and osmolytes such as proline, betaine 

and glycine which play vital role in plant defense system against abiotic stresses like drought, heat, cold, salinity 

etc. [20]. Scarcity of water leading to drought and salinity are the prominent abiotic stresses threatening peanut 

productivity and quality irrespective of peanut growing regions and seasons [28].  

Somaclonal selection of in vitro regenerated peanut using epicotyl, hypocotyl, and immature leaf culture 

showed moderate drought tolerant coupled with early maturity and increased shelling percentage in the selected 

somaclones of peanut variety Sinpadetha 1 mutant [47]. Another research reported repeated cycles of in vitro 

selection as an effective method to produce drought tolerant peanut genotypes with higher proline content [50]. 

Transgenic peanut developed using in vitro culture of a cotyledonary node for a stress-inducible expression of 

AtHDG11 ensued enhanced drought and salt tolerance. The regenerated transgenic plants displayed high yield 

under both salt and drought stresses. Moreover, the plants showed higher free proline content including better water 
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use efficiency through longer root system, reduced stomatal density, higher chlorophyll content and photosynthetic 

rates [108]. The Agrobacterium mediated genetic transformation of AtDREB1A in peanut transgenic plants also 

showed tolerance to severe soil-moisture deficit without any morphological abnormality [109]. Drought tolerant 

cell lines of peanut were developed using callus culture under different levels of polyethylene glycol (0, 0.4, 0.6, 0 8 

and 1.0 MPa). The selected cells showed higher proline content, soluble amino acids and reducing sugars and 

gained weight under higher stress levels [25]. The regulated expression of IPT in peanut transgenic lines 

significantly improved drought tolerance in both laboratory and field conditions [110]. 

The plants regenerated from leaf callus cultures in the MS medium supplemented with 1 mg/l BAP and 

NAA grew well on salt-amended media containing 0-150 mM NaCl. In vitro regenerated plants from salt media 

were effectively employed to select salt-tolerant somaclones of peanut, including 4-8 folds higher free proline 

content and significant growth enhancement [17, 49]. The salinity resistance in regenerated peanut transgenic 

plants was enhanced by the activity of Pseudomonas fluorescens strain TDK1 possessing  

1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which was accompanied by the higher yield in 

transgenic plants [111]. AtNHX1 transformed into peanut plants through shoot culture using cotyledon explants 

displayed increased tolerance to salinity. The transgenic plants exhibited more chlorophyll content, high 

photosynthetic rate, more biomass production, leading to improved yield and better quality [112]. Over 

expression of a stress-responsive helicase, PDH45, in transgenic peanut using embryonic axes culture showed a 

superior water retention capacity and fundamental cellular tolerance to drought [113]. 

In view of the increasing importance of the peanut as a nutrient rich crop, as well as due to emerging 

climate change, newer challenges are encountered for sustainable peanut cultivation. The in vitro success of 

genetic transformation or mutagenesis in peanut is still inadequate due to appropriate tissue culture protocol, 

genotypes, explants, and growth environment. Optimization of these factors influencing the in vitro regeneration 

protocols in peanut would feasibly progress the efficiency of transgenic or mutant development related to stress 

resistance and seed quality over a brief span of time. 

6. CONCLUSIONS 

Several abiotic stress factors such as salinity, drought, extensively impede peanut production and nutrient 

content. Moreover, peanut plants can be severely infected by different insects or pathogens in field conditions, 

which may lead to the use of insecticides or pesticides, reducing the nutritional quality. Moreover, it is challenging 

and costly to isolate or extract the nutritional or bioactive compounds from the field samples due to their complex 

physiological and biological reactions. In vitro tissue culture allows the plant to grow under a specific 

environment free from all natural environmental factors or contaminants. The plants regenerated in vitro are 

predicted to be homogenous, however, due to the involvement of intrinsic and extrinsic factors in development 

under artificial conditions lead to the high probability of genetic and epigenetic changes showing somaclonal 

variation. Therefore, tissue culture based genetic transformation; mutagenesis and selection of superior 

somaclones could be the remarkable tools for the dissection of the physiological, biochemical and molecular 

regulation of peanut plant biology related to development, nutrient content, and stress response phenomena. Thus, 

future research could focus on enhancing the conversion frequency of somatic embryos after transformation or 

mutagenic treatment into normal plantlet regeneration with superior stress response or seed quality. 
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