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ABSTRACT 
 
The population has been rising in a rapid state and 
so is the demand of basic necessities like food 
requirements. Today agriculture demands increase 
in yield with a substantial decrease in chemical 
fertilizer and pesticides that are responsible for huge 
environmental degradation. Today a huge part of 
yield has been lost due to various stresses plant are 
subjected too. It could be broadly divided into biotic 
and abiotic stress. Meanwhile, plant growth 
promoting rhizobacteria has promised us a 
substantial agriculture development platform. These 
are generally a group of microorganism that is found 
either in the plane of the rhizosphere or above root 
impacting some positive benefits to plants. These 
stresses include but in no sense limited to ion 
toxicity, pathogen susceptibility, physiological 
disorder, salinity, temperature, flooding, pH etc. In 
response to the above-mentioned stresses plant with 
PGPR exhibits various sorts of response to handle 
these unfavorable conditions. They could be further 
divided into direct and indirect mechanics. PGPR 
has shown both synergistic as well as antagonist 
interaction with microorganism inhabiting in near 
surrounding to boost plant favorably. This review 
has tried to undertake all possible mechanism of 

PGPR along with reported studies for various 
possibilities through which sustainable agriculture 
development could take place. This review has tried 
to understand the mechanism to take PGPR at a 
commercial level under bio-fertilizer. 
 
Keywords: Microbes; Antibiotic production; Plant 
growth promoting rhizobacteria; Siderophore 
production; Phosphate solubilization; IAA. 
 
1. INTRODUCTION 
 
 There has been the significant increase in the 
population of humans on Earth, particularly in the 
post-industrial era. With increased population, there 
has been the surge in basic necessity and demands. 
Resources are depleting at a very rapid state. It’s 
expected to reach the mark of 10 billion in the next 5 
decades. Degrading environment, rising population, 
increasing demand, exhausting resources, demands 
some significant change and contribution in the field 
of agriculture to feed people. A technology that 
could lead towards sustainable development at the 
same time increasing the yield [1, 2]. The situation 
turned to worse in certain circumstances with a fatal 
blow to the amount of crop production, due to the 
presence of various stresses that could be either 
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biotic or abiotic. Abiotic stresses that are affecting 
crop are more likely to be drought, soil pH, soil 
salinization, temperature, soil sodification etc., are 
known for their soil degrading capability. Drought 
in most of the cases likely to end up as the cause 
behind degradation and desertification of soil. Soil 
salinization in itself is estimated to degrade around 
millions of hectares of land in Europe. Over around 
13% that makes up to 850 million hectare of land is 
degraded itself in Asia and Pacific region due to 
drought, soil salinization etc. While near about 104 
million has been degraded in pacific sub-region due 
to clearance of massive amount of land for further 
development processes [1, 3]. 
 While various living organism including but 
not limited to fungi, viruses, bacteria, and the 
parasite are known to cause havoc and lead to 
various plant diseases and growth compromised 
state. Fungi in particular compromises about two by 
third of total disease that affects plant globally. It 
ultimately is responsible for the reduction in the 
yield of a plant, which has been estimated around to 
be 30% globally [2]. While few of probable solution 
to tackle these problems include but not limited to it 
are an efficient way of land management, increase in 
use of chemicals in terms of fertilizer, use of 
herbicides or pesticides, increase in the transgenic 
crop, or alternatives like PGPR plant growth 
promoting rhizobacteria. Many of the above-
mentioned solutions are not so beneficial in long-
term, because it ultimately leads to various kind of 
pollution. Fertiliser and pesticides are the common 
examples of it. 
 One such case is of nitrogen, around 74% of 
nitrogen emission in the form of N2O in the U.S. has 
been due to nitrogenous fertilizer. It ultimately leads 
to global warming and the rise in greenhouse gases. 
Further, it leads to the reduction in nitrogen fixation 
carried out by microbes, since nitrogen is easily 
available leading to a reduction in the number of 
symbiotic association. Moreover, it also results in 
theses free existing microbes to utilize the provided 
ammonium and to convert it into nitrate and finally 
into N2O which leaches out to carry water pollution 
[4-6]. Sustainable development in agriculture inclu-
des but not limited to disease-resistant plant, drought 
tolerance, salt tolerance, better quality of yield, 
tolerance to heavy metal pollution. Along with 
developing the procedure has to be equally eco-

friendly, cheaper and could be carried out in long 
run. One such method involves the utilization of 
microorganism like fungi, bacteria, algae etc. They 
help in increasing water efficiency, suppress 
pathogenic activities and also lead to uptake of 
nutrition [7-9]. 
 The nutrient-rich area in soil that is in direct 
influence of root secretion system is called as 
rhizosphere. This primarily consists of amino acids, 
carbohydrates etc. and serves as the source of energy 
for all the microbes in symbiotic association. The 
bacteria species present in this zone are known as 
rhizobacteria. On the basis of their result of the 
interaction, microorganism has been divided into 
beneficial, neutral, and deleterious [10-13]. 
 PGPR is one such promising microorganism 
in this case that’s come under beneficial section. 
While PGPR includes various species like Arthro-
bacter, Variovorax, Azosprillum, Alcaligenes, Ente-
robacter, Bradyrhizobium, Burkholderia, Serratia, 
Azobacter, Klebsiella, Mesorhizobium, Rhodo-
coccus, Streptomyces, Flavobacterium, Bacillus, 
and Pseudomonas etc. [14-17]. However, PGPR has 
been highly constrained to the certain area for their 
application. It is due to inconsistent attributes of 
PGPR, while its effects depend over various factors 
like its survival in soil system, ability to interact 
with already present microflora of that place, the 
factor associated with the environment, and its 
compatibility with the crop that has been under 
consideration with its varied number of mechanism 
to act. [18-21]. PGPR is the term coined by 
Kloepper around 1970s and in due duration, it is 
also come to know as (NPR) nodule promoting 
rhizobacteria and (PHPR) plant health promoting 
rhizobacteria found in the rhizosphere [22, 23]. 
 PGPR regulate growth through various 
indirect and direct mechanism. It may include the 
addition of compounds related to microbe meta-
bolism [24, 25]. They could also act and proved to 
be beneficial by the production of various inhibitor 
compounds, bacteriocins, lytic enzymes, sidero-
phores, phosphate solubilization, and could also play 
a role in the synthesis of phytohormones [26-28]. 
This review will explore the various beneficial and 
harmful aspect of PGPR. It will also dwell with the 
various way a PGPR could roll on its beneficial 
aspect on the plant. 
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2. PLANT GROWTH UNDER STRESS 
CONDITION 
 
 Growth and sustainable development and 
production of the plant is sum total of various rate 
limiting stresses that are part of the soil 
environment. The number of biotic and abiotic 
stresses acts during growth and development. The 
former include stresses in forms of pathogens and 
different types of the pest like nematodes, fungi, 
viruses, bacteria, insects etc. While later includes 
drought, salinity, heavy metals, flooding, nutrient 
deficiency, gases etc. As an effect of these yield 
reduction, hormonal imbalance, nutritional imba-
lance, and disorders like epinasty, senescence, 
abscission and disease susceptibility [29-31]. On the 
basis of different scenarios there has been the 
particular negative effect which has been observed. 
For example, stress condition like waterlogging, 
drought and salinity have led to the elevation in            
the level of ethylene [32]. It is thought to cause 
inhibition of various plant processes by reducing 
root growth [33]. While in other stress conditions 
ion toxicity could be observed on the plant with 
injurious effect over its growth and development. It 
occurs due to excessive accumulation of Na and Cl 
ions [34]. The drought-like condition is known for 
their ability to inhibit photosynthesis and change             

in the amount of chlorophyll and distortion in 
photosynthetic apparatus [35]. At the same time 
other scenarios like heavy metal accumulation in 
soil, lack of nutrient, attack of various pathogens etc. 
could make the plant more susceptible towards 
disease, metal toxicity, hormonal imbalance etc.   
[33, 36].  
 Saline conditions have been further found to 
be an inhibitor of nodulation production or early 
senescence of it and reduction in fixation of nitrogen 
[37]. 26 mM concentration of NaCl has found to 
reduce nodulation by 50% and its weight [38]. 
While the lower level of salinity has to seen to lead 
to a situation of reduction in nodule formation in 
Vigna radiate [39, 40]. In yet another work it has 
been reported that salinity could result into reduction 
in the active nodule, water content, nitrogen content 
and chlorophyll content of Medicago sativa [41]. 
Rhizobium is known for their tolerance towards 
salinity, yet a high degree of variability could be 
seen. Salinity is thought to induce effects over 
rhizobia activity further on to the nodules growth 
and development and ultimately to the nitrogen 
fixation by nodules [42]. It too reduces the nitro-
genase enzyme activity in microbes. Around 90 mM 
of NaCl carries complete inhibition of nitrogen 
fixation [43]. 
   

 
 

 

 
Figure 1. Forms of stresses in plants. 
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 Many people have worked on the variety of 
stresses plant could be subjected to and its probable 
effect on growth and development. Over the period 
of time plant has developed various defense 
mechanism to fight these stresses [44]. There had 
been various human-made development in order to 
counter the stresses like in case of excess ethylene 
which could be dealt with the application of various 
inhibitor as cobalt ion (Co2+), amino ethoxy vinyl 
glycine or it could be the silver ion. But they too 
have a detrimental effect on soil health, net cash 
return, environmental and human health. Moreover, 
they seemed to be helpless in case of ion toxicity or 
root desiccation [45, 46].  
 A plant has adopted the variety of mechanism 
to deal with stresses like the production of various 
reactive oxygen species that includes the formation 
of either hydrogen peroxide, hydroxyl radical or 
superoxide that ultimately enhances plant growth. 
ROS is supposed to act by cellular damage or lipid 
and proteins oxidation, bleaching of chlorophyll, 
and could be a distortion of nucleic acid could be the 
reason for cell death [47-49]. Further production of 
various enzymes by the plant in order to survive in 
stress condition has to been reported. Antioxidant 
enzymes such as ascorbate peroxidase, catalase, 
superoxide dismutase, and glutathione reductase are 
few to be named. When sensitive and susceptible 
species are compared to tolerant plant species it has 
been often found that the later possess larger 
proportion of antioxidant enzyme [50-52].  
 There are various non-enzymatic anti-oxidant 
that has been reported to mitigate the stress like 
condition in plants. It could constitute of various 
cellular redox buffer, secondary metabolite inclu-
ding but not limited to flavonoids, carotenoids, 
ascorbate, tocopherols, glutathione, etc. [53-55]. In 
the saline condition it has been observed that along 
with various other imbalances in normal processes 
there has been a reduction in the amount of water 
uptake. In such a scenario, the plant is found to 
accommodate various compatible salts like glycine 
betaine, proline, polyols, trehalose, and many other 
solutes that are organic in nature. This accumulation 
helps in managing the lethality like condition that 
could emerge as a result of osmotic regulation in 
case of the stress-induced condition. It acts by 
limiting the amount of water that leaves plant and 
dilution of further accumulated salts in roots take 

place [56-58]. They further have a role in the 
stability of various functional unit and maintaining 
osmotic potential. 
 Production of phytoalexins that are antimi-
crobial in nature, hypersensitive reaction, generation 
of defense barrier in the form of material like 
suberin, lignin etc. as well as hydrolytic enzymes  
are few other plants methodology to mitigate 
drought like scenario [59]. Accumulation of various 
metabolite of secondary nature and defense protein 
synthesis are few of other known defense 
mechanism of plants [60, 61]. 
 
3. PLANT GROWTH PROMOTING RHIZO-
BACTERIA 
 
 These are the group of bacteria that could be 
seen in the rhizosphere and are known as the 
promoter of plant growth. It colonizes the part of 
root and soil environment called rhizosphere. 
Rhizosphere shows the maximal activity of 
microbes with the confined environment consisting 
of many essential micro and macronutrient.  Root 
exudates act as the nutrient source and are 
responsible for the difference in microbial 
population between surrounding and rhizosphere. 
Weller and Thomashow in their work have reported 
that there is approx. 10 to 100 times increase in 
microbial population owing to the rich nutrient 
region of the rhizosphere [62-64]. Algae, fungi, 
protozoa, and bacteria are found to be part of 
rhizosphere with the predominant allocation of 
bacteria in it. Their role has been proven and 
introduced by Kloepper and Scroth. PGPR is not 
only associated with roots but also counter the effect 
of phytopathogenic microorganism. Its potential has 
been explored in case of an active constituent of 
biofertilizer [65-70]. 
 On the basis of interaction, these PGPR could 
be separated out in two type’s namely symbiotic and 
free living. The fact behind former one is that they 
live inside plant parts and has a direct source of 
interaction regarding exchange of metabolites while 
later lives outside. Some symbiotic bacteria usually 
resides in the intercellular spaces present in the plant 
while others could get themselves into mutualistic 
interaction as a way to penetrate inside the plant 
cell. Yet few members could direct plant into the 
formation of some specialized structure. Rhizobia, 
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one of the best sort, an example of the mutualistic 
association of bacteria and plant. It fixes the 
atmospheric nitrogen into a specialized structure 
called as root nodule [71-72]. PGPR acts through 
various indirect, direct and synergistic approach. It 
has been successfully reported in case of radish, 
sugar beet, potato and sweet potato [73] but yet the 
commercial applications require the better under-
standing of its mechanism and action [74]. The 
isolates have shown the mixed trait of PGPR as a 
result [75]. PGPR has shown the magnificent result 
on plant growth in nutrient deficient as compared to 
the nutrient-rich region [76].  
 In the case of Arabidopsis thaliana when 
grown along with some inoculated PGPR, the soil 
was found to be rich in some volatile compound like 
acetoin and 2, 3-butanediol [77]. Cotton plant height 
and seed yield have been increased along with the 
microbial population in surrounding as a result of 
the addition of some diazotroph bacterial strain [78]. 
Apple rooting has been further increased by the 
addition of double to the triple composition of 
indole-3-butyric acid along with carbohydrates and 
bacterial strains [79]. PGPR has been further found 
to improve the various prospect of chickpea like 
modulation along with yield and growth when 
inoculated with compost rich in phosphorous [80]. 
 
4. PGPR OVER THE PERIOD OF TIME 
 
 Since its introduction, a lot has been done in 
case of PGPR. A large number of possibilities has 
been verified and explored with alter parameters 
responsible for PGPR mechanics. In this due course 
of time, the number of PGPR has been identified as 
well as isolated from the various sample and studied. 
Azarcus has been seen along with crop named rice 
and has been known for nitrogen fixation [81]. In 
similar fashion, Azobacter has been reported in the 
case of cucumber for cytokinin synthesis [82].  
Azorhizobium [83] and Azospirillum [84] has been 
isolated from fields of wheat and sugarcane 
respectively and have been helpful in nitrogen 
fixation. Azotobacter isolated from a number of 
crops like maize, barley, wheat, oats etc. has 
undergone nitrogen fixation [85]. Bacillus has been 
obtained from various crops fields like potato, 
cucumber, pepper, peanuts maize etc. with wide 
array of its mechanism like auxin synthesis [86], 

cytokinin synthesis [87], gibberellin synthesis [88], 
potassium solubilization [89, 90], induction of plant 
stress resistance [91, 92], antibiotic production [93] 
and siderophore production [94]. Beijerinckia and 
Burkholderia isolated in associated form from 
sugarcane [95] and rice [96] crops respectively have 
been reported to perform nitrogen synthesis. 
 Chryseobacterium [97] has been associated 
with tomato crop and act through siderophore 
production. Frankia [98], Gluconacteobacter [99], 
Herbaspirillum [100] isolated from Alnus, sugar-
cane, and rice has been helpful in nitrogen fixation. 
Paenibacillus isolated from lodgepole pine and 
black pepper has been reported for indole acetic acid 
production [101] and potassium solubilization [102] 
respectively as a mechanism for enhanced growth 
and stress management. Phyllobacterium has been 
reported for phosphate solubilization and sidero-
phore production [103]. Pseudomonas also has been 
associated with large varieties of crop and has been 
proved to beneficial in stress management through 
the number of mechanism and production it could 
associate to or could lead to. Some of the reported 
mechanism are chitinase and glucanase production 
[104], ACC deaminase synthesis [105], induction of 
resistance to stress [106], antibiotic production [107, 
108]. 
 Rhizobia isolated from legumes and peanuts 
crop has been reported for nitrogen fixation [109], 
induction of resistance to various stresses and hydro-
gen cyanide formation [110]. Rhizobium isolated 
from pepper, tomato, lettuce, carrot, tomato mung 
beans etc. has been too reported for some common 
mechanism like nitrogen fixation [111], indole 
acetic acid synthesis [112], ACC deaminase 
production [112] and siderophore production [113]. 
 
5. DIRECT AND INDIRECT MECHANISM   
OF ACTION IN PGPR 
 
 A deep understanding of plant growth 
promoting rhizobacteria is essential for taking PGPR 
to commercial level and for enhancement of plant 
productivity and its optimization. PGPR modes of 
action have been grouped into two subtype’s 
basically direct and indirect mechanism. Indirect is 
consider to be those that are outside while direct 
lives in the plant to render their effect on plants 
metabolism [114]. Indirect mechanics, we usually 
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either sees the integration of various growth factor 
released by microorganism or microorganism could 
potentially act as the sink of produced hormone and 
enhances its adaptive capacity. While indirect 
mechanism relay over the secondary metabolites and 
its sensitivity towards signal released from the 
microorganism. It includes, for example, the 
induction of resistance to the varied number of 
pathogen attack or resistance as well as tolerance to 
varied stress conditions [115-117]. 
 
6. DIRECT MECHANISM OF PGPR  
 
6.1. Biological nitrogen fixation 
 
 A number of species of bacteria have been 
found associated with rhizosphere of the plant that 
adds to the enhancement of plant growth. It includes 
but not in any way limited to Erwinia, Azospirillum, 
Flavobacterium, Bacillus, Alcaligenes, Arthro-
bacter, Rhizobium, Acinetobacter, Burkholderia, 
Pseudomonas, Enterobacter, and Serratia [118, 
119]. Selection and proliferation of bacteria as a  
part of root exudates are done by the plant. The 
enrichment of bacteria is a function of the 
availability of different types of organic matter and 
their specific concentration. The selection also 
depends on the microorganism ability to utilize 
organic matter as the source of nutrition. They have 
an efficient, effective and specific mechanism for 

uptake of nutrient along with its break down in the 
form that could probably lead to it as the source of 
nutrition [119-122]. Bacteria at the very root surface 
commonly termed as rhizoplane tend to be more 
efficient than the others. This mutualistic interaction 
is a result of co-evolution, the inoculated material  
of microorganism should be verified for their 
preadaptation. They are further looked up as a 
substitute for chemical fertilizer, supplements and 
pesticides at the same time it could prove to be 
effective for reduction in cost as well [123, 124]. 
 Bacteria along with Archaea are the only 
group of organism in which the ability to fix 
nitrogen from the atmosphere has been confined to. 
They have been well known for their effect over rice 
and chickpea yield. 180 x 106 metric tons of crop 
are benefitted with the help of biological nitrogen 
fixation in a year. Among the total crop benefitted 
around 80% of it has been accounted to the 
symbiotic association. Symbiotic nitrogen fixation 
could be achieved through Rhizobium the known 
obligate symbiotic associated with the leguminous 
plant, Frankia in case of non-leguminous plant and 
in case of microorganism living freely shows the 
non-symbiotic nitrogen fixation with associative or 
the endophytic nature. The microorganisms falling 
in the later stage are cyanobacteria, Azotobacter, 
Azospirillum, Azoarcus, Acetobacter diazotrophicus 
etc. [125-127]. 
 

 
 

 
Figure 2. Direct mechanism of plant growth promoting rhizobacteria. 
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6.2. Symbiotic nitrogen fixation 
 
 Rhizobia and Frankia have dominant say into 
symbiotic nitrogen fixation as well as they are 
highly researched. Frankia has been found to be 
effective in almost eight different families with 
expansion to about 280 different species [128]. 
Alnus and Casuarina species of plant are found to  
be most benefitted from this association [129-132]. 
Crop rotation with a leguminous and non-
leguminous plant on alternate has led to the con-
clusion of overproduced rhizosphere after every 
non-leguminous cycle, with additional benefits for 
upcoming crop. On the onset of polyphasic taxo-
nomical approach there comes the considerable shift 
in classification. A total of 36 species has been 
divided over seven genera consisting of Rhizobium 
spp. [133-135]. In addition to increasing in growth, 
yield, fixation of nitrogen, they are further reported 
to regulate deposit of organic and inorganic 
phosphate in soil and further proved so instrumental 
in the determination of soil nutrition [136]. Owing to 
the above-mentioned fact symbiotic nitrogen-fixing 
bacteria have been further utilized along with 
phosphate solubilizing bacteria (PSB) that has 
proved to be beneficial in case of mungbean due to 
the synergistic effect. The duo has shown around  
the significant increase of 30-40% on different 
parameter like shoot weight, yield, plant height, seed 
content etc. when compared to be inoculated with 
the individuals one [137]. Bradyrhizobium another 
common organism generally found in symbiotic 
relationship. It grows well when pentose is being 
taken as the carbon source [138]. It has been 
reported that co-inoculation of this bacteria has been 
proved to be very useful in nitrogen fixation, 
number of nodulation, dry weight, grain yield, 
nitrogenase activity, soil nutrient [139-141].  
 
6.3. Non-symbiotic nitrogen fixation 
 
 It has an indispensable role to play in 
agriculture and in nitrogen fixation. The major 
limitation clouding its effect has been an energy-
oriented fixation of nitrogen in a form that plant 
could easily utilize it. The limitation could be easily 
dealt with bringing them in closer proximity to 
roots. Non- symbiotic nitrogen fixation is associated 
with numbers of bacteria including but not, in any 

case, limited to Azoarcus sp., Herbaspirillium sp., 
Azotobacter sp. [142, 143], Achromobacter, Alca-
ligenes, Azospirillum, Arthrobacter, Azomonas, 
Bacillus, Gluconacetobacter diazotrophicus, Beije-
rinckia, Clostridium, Derxia, Corynebacterium, 
Enterobacter, Pseudomonas, Klebsiella, Rhodo-
spirillum, Acetobacter, Rhodopseudomonas and 
Xanthobacter [144]. Azotobacter paspali reported 
by Dobereiner and Pedrosa in the nodule of 
Paspalum notatum is found to be influencing growth 
and yield [145]. The yield of wheat has been 
observed to increase by 30% on application of 
Azotobacter [146]. Azotobacter and Azospirillum  
are reported to influence crop by increase seedling 
growth [147-149] along with the seed germination 
rate [150]. 
 Azospirillum has been on discovery since the 
1970s, there had been much of findings in both 
cereals and non-cereals crop. They are usually 
considered to be helpful in nitrogen fixation but not 
always and the reason of the increase in yield is 
related to fact that it leads to the production of 
various growth promoter that increases root length 
subsequently into larger nutrient uptake [151-154]. 
They are not hosting specific and till now there have 
been 10 species which has been identified and 
classified on basis of their molecular and bioche-
mical features: A. amazonense [155], A. lipoferum 
and A. brasilense [156], A. halopraeferens [157],            
A. largimobile [158], A. irakense [159], A. doebe-
reinerae [160], A. melinis [161], A. oryzae [162], 
and lastly A. canadensis [163]. 
 
6.4. Phosphate solubilizing bacteria 
 
 Phosphorous is the next nutrient on the list 
which has a great say in plant growth. It acts as 
limiting nutrient in many of cases studied. Despite 
its abundance in the soil, it is still one of the major 
cause in the reduction of plant growth. It has been 
due to form in which phosphorous is present. About 
50% of phosphate present in soil is in insoluble 
form. They are present in calcareous soil as calcium 
phosphate. Inorganic phosphate is present in 
association with different elements like compounds 
of aluminum or irons. An only soluble form of 
phosphorous i.e. monobasic and the dibasic form are 
of any use to plants [164]. Microorganism generally 
aids the plant by utilizing and converting the 
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different form of the organic phosphorous present in 
the soil like aluminum phosphate, rock phosphate 
etc. into the inorganic form that could be easily 
uptaken by plants and further could be utilized in a 
way it could be led to development. One of the 
common mechanism of phosphate solubilization 
involves secretion of organic acids which is formed 
as a result of utilization of sugar present in root 
exudates. These acids that are secreted out acts as a 
good chelating agent and removes Ca2+ cations 
followed by a release of phosphate from the 
different compound of phosphate present in soil 
[165]. In addition to it, they are also well known for 
their lowered pH medium which is one of its 
characteristic owned by its various secretion [166, 
167].  
 Phosphate solubilizing microorganism (PSM) 
has emerged out to be a new alternative in the         
field of agriculture for sustainable development.                
It converts the phosphate and leads to easy uptake,          
is one of its many ways through which it aids a  
plant [168, 169]. Further study of its ability to 
colonies rhizosphere, diverse methods of its action, 
and its utilization as the application could probably 
lead to a scenario where we can optimize its 
functioning and could use it for further enhancement 
of crop [170]. Economically suitable PSM are 
generally compromised of fungi like Penicillium   
and Aspergillus and bacteria like Pseudomonas, 
Rhizobium, and Bacillus. Phosphate solubilizing 
microorganism along with various PGPR has 
resulted in the lesser requirement of Phosphate along 
with the enhanced quality of yield, efficient use of 
fertilizer, lesser pollution and more eco-friendly 
[171, 172]. 
 PSM constitute about 20-40% of microorga-
nism that could be cultured with a big amount of 
these are found to be colonized in rhizosphere [173]. 
Many of them are able to interact with various metal 
leading to precipitation and hence unable to be 
available for uptake by the plant. Phytate the so-
called hexaphosphate constitute around 80% of the 
total organic phosphorous present in the soil. The 
ectorhizospheric stain that usually found on 
rhizospheric soil or on roots and endosymbiotic  
strain that colonizes inside the root of Bacilli and 
Pseudomonas are counted amongst the most effec-
tive microorganism for phosphate solubilization 
[174]. While in other work gluconic acid produced 

by Burkholderia cepacia, Pseudomonas cepacia, 
Erwinia herbicola, and Pseudomonas fluorescens 
has reported being another efficient agent for 
solubilization of mineral phosphate. Rhizobium 
leguminosarum further lead to solubilization with 
help of 2-ketogluconic acid. While a mixture of 
lactic, isobutyric, isovaleric and acetic acid have 
been too reported to help insolubilization of 
phosphate [175-178]. 
 
6.5. Plant growth regulator and its production 
 
 These plant growth associated regulator like 
GA, auxins, abscisic acid, IAA, ethylene, and 
cytokines are also known by name of plant 
exogenous hormones which could be synthetic or 
natural in nature and similar to hormones produced 
naturally by the plant. They have an essential role in 
terms of boosting agriculture production. A 
microorganism that has the inherent capability to 
regulate the production of various growth regulator 
enzyme is known as a plant growth regulator or 
phytostimulator. These phytohormones are present 
in the very lesser amount, but influences varieties of 
dimensions in plant growth like morphological, 
physiological and biochemical processes of the plant 
[179, 180]. 
 IAA stands for indole-3-acetic acid is one             
of the essential auxins which falls under phyto-
hormones. It has an indispensable role in the 
development of the organ, cellular responses like 
differentiation, expansion, division, and regulation 
of genes [181]. A wide number of bacteria has the 
ability to produce phytohormones like IAA which 
could be signaling molecule leading to the photo-
stimulating effect on plant along with pathogenesis 
and induction of colonization [182]. It could further 
help us to isolate the PGPR strain on the basis of 
IAA secreting bacteria [183]. Auxin has proved                  
to be a concentration sensitive issue for seed 
germination. Low concentration has stimulated 
growth while higher concentration has resulted in  
its inhibition [184]. The maximum proliferation of 
crop and surge in yield has been found when stains 
producing the highest amount of indole acetamide or 
IAA has been employed along with the crop. The 
adequate amount of success even in stressed 
condition has been achieved, when stains with lesser 
but continuous production of auxin have been 



199 | Singh   Plant Growth Promoting Rhizobacteria and their mechanisms for plant growth enhancement 

European Journal of Biological Research 2018; 8 (4): 191-213 

 

inoculated with the crop like wheat, tomato etc. 
[185-188].  
 Strains of Microbacterium, Mycobacterium, 
Sphingomonas, Rhizobium, Dendrobium mosch-
atum, Kocuria varians, P. fluorescens are few of  
the many that are known for actively producing 
phytohormones [186, 187]. Bacillus and Pseudo-
monas are others who have been in possession with 
the phytohormones producing abilities but has not 
been studied well. The reported studies suggest that 
bio stimulant species of these genera have been 
associated with the increase in root length that 
ultimately leads to increase in the surface area 
further leading to increase in the uptake of nutrition 
through the rise in the absorptive area [189]. 
Rhizobium spp. has been first to be identified for 
phytohormones production and subsequent effect of 
it has been studied. It has been present in close 
association with legume hosts or root nodules of 
Sesbania sesban (L) Merr., Vigna mungo (L), 
Crotalaria sp., C. retusa [189-195]. Along with 
IAA, there has been the isolation of various other 
phytohormones like indole lactic acid, indole-3- 
pyruvic acid, indole-3-butyric acid [196-197], 
gibberellins [198], and cytokinins [199-200]. Micro-
organism associated with plants are reportedly 
responsible for the production of IAA through                  
L-tryptophan dependent as well as independent 
pathways with three pathways that are L-tryptophan 
dependent are known. L-tryptophan that is secreted 
as part of root exudates is utilized for production. 
Almost 90% of total production has been estimated 
to be produced as a result of independent pathway 
while only 10% has been produced by the known 
mechanism of tryptophan utilization [201-202].     
 Ethylene is another in the list which has 
proven to be potentially active for fruits and leaves 
maturation, seed germination, leaf senescence, 
flower wilting, initiation, elongation, and branching 
of the root, nodule formation and abscission of 
leaves all at the low concentration. While at higher 
concentration it has been the cause of defoliation, 
inhibition of growth in root and stems with 
senescence at the premature stage. Actually, the 
plant has been known for producing the precursor  
of ethylene i.e. 1-aminocyclopropane-1-carboxylate 
(ACC) in the result of a various form of stresses  
that it has been subjected to like cold, infection, 
flooding, drought and even the heavy metal presence 

[203-206]. 
 
7. INDIRECT MECHANICS OF PLANT 
GROWTH PROMOTING RHIZOBACTERIA 
 
7.1. Production of siderophore 
 
 Iron is one of the important element for 
growth and development of a plant with particularly 
towards respiration, nitrogen fixation, and photo-
synthesis. Despite the enormous amount in which it 
is present at the surface of the earth, yet it is very 
rarely available for the plant. It is present in the form 
Fe3+ that is insoluble and hence unavailable for  
plant uptake. The mechanism to get away with this 
situation includes the release of organic compounds 
that could simply act as a chelating agent which 
forms a plant end in a friendly way product which 
could be easily be uptaken by enzymatic assisted 
transport system available in plants cell membrane. 
The second method involves absorbing the organic 
and Fe3+ complex further involving in vivo reduction 
and absorption [207, 223-227]. 
 In order to deal with this problem, PGPR has 
up taken the production of siderophore as a 
remediation technique. Siderophore is basically the 
protein with lower molecular weight usually below      
1 kDa with a functional group like catechols, 
hydroximates, carboxylates etc. that has an affinity 
to bind an iron molecule, they act as chelating agent 
for ferric ion in the surrounding. So in Fe deficient 
moments, they act as a way through which plant 
meets their demands for iron. Besides ion deficient 
condition, pH of the surrounding, the presence of 
trace elements, the supply of another basic thing like 
carbon, nitrogen too could induce production of 
siderophore. It has been established in a research 
that a siderophore producing strains of Phyllo-
bacterium have been responsible for growth and 
development in case of the strawberry crop [208-
210]. 
 Bacteria usually belonging to Pseudomonas, 
Enterobacter, Bacillus, Rhodococcus genus are 
known for the production of siderophore. The 
concentration of siderophore is basically as low as 
10-30 M. The most researched microorganism for 
the production of siderophore has been Pseudo-
monas aeruginosa and P. fluorescens that produces 
pyroverdine and pyochelin kinds of sideophores. 
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They have been known for their influencial role in 
improving irons uptake, inhibiting the growth of 

pathogens by antibiotic production, and inhibit 
fungal growth in locality [211-213]. 

 
 

 
Figure 3. Indirect mechanics of Plant Growth Promoting Rhizobacteria. 

 
 
Table 1. Types of siderophores and organism responsible for its production [214-219]. 

Types of siderophores 
Organism producing 

siderophore 
Types of siderophores 

Organism producing 
siderophore 

Hydroxamate-type of siderophores Catecholate type of siderophore 

Ferrichrome Ustilago sphaerogena Enterobactin Escherichia coli 

Desferrioxamine B 
Streptomyces pilosus 

Streptomyces coelicolor 
Bacillibactin 

Bacillus subtilis  
Bacillus anthracis 

Desferrioxamine E Streptomyces coelicolor Vibriobactin Vibrio cholerae 

Fusarinine C Fusarium roseum   

Ornibactin Burkholderia cepacia   

Mixed ligand and other types of siderophore 

Azotobactin 
Azotobacter 
vinelandii 

Phytosiderophores  
or mugineic acids 

Poaceae (grasses),  
wheat and barley 

Pyoverdine Pseudomonas aeruginosa Antibiotic siderophores Endophytic Actinomycetes 

Yersiniabactin Yersinia pestis   

 
 
Table 2. Siderophore producing microorganism and there reported effect on crops. 

Siderophore producing organism Application on plants References 
Azotobacter vinelandii MAC 259  

Bacillus cereus UW 85 
Increases the yield of plant [220] 

Bacillus megaterium 
Reduces the intensity of disease  

with growth promotion 
[221] 

Escherichia coli 
Growth of plant with maximum  

siderophore production 
[222] 

Pseudomonas putida 
Pseudomonas fluorescens 

It helps in increament of yield  
and production of plant 

[219] 



201 | Singh   Plant Growth Promoting Rhizobacteria and their mechanisms for plant growth enhancement 

European Journal of Biological Research 2018; 8 (4): 191-213 

 

7.2. Cell wall degrading enzyme production by 
PGPR 
 
 Production of chitinase as well as glucanase 
has been long being seen as one of the methods to 
control the pathogens that have the potential to 
infect plants. The mechanism undertaken by theses 
PGPR is the degradation of cell wall affecting the 
integrity of the structure and hence inflicting 
inhibiting growth on pathogens. Some of the 
common enzymes that have been used to degrade 
cell wall or secreted by PGPR strains to stop the 
growth of pathogens are cellulose, chitinase, prote-
ases, and β-1,3-glucanase [228, 229]. Streptomyces 
and Paenibacillus strains that produce β-1,3-gluca-
nase has shown to have the inhibitory effect on             
F. oxysporum, while the same enzyme produced by 
Bacillus cepacia was reported to show inhibitory 
effect on the number of soil-borne pathogens like           
R. solani, Sclerotium rolfsii, and P. ultimum [230]. 
While in case of chitinase it has been chitin that is    
β-1,4-N-acetyl-glucosamine, and the linear polymer 
which is being targeted, since it’s an important part 
of fungal cell wall it helps to effectively control 
pathogens [231, 232]. Organism reported to show 
above mentioned chitinolytic activities are B. thurin-
giensis, B. licheniformis, B. circulans, B. cereus and 
B. subtilis, while in case of gram negative following 
organism has been reported P. fluorescens, Entero-
bacter agglomerans, Serratia marcescens, and 
Pseudomonas aeruginosa. When some soil born 
pathogen like Fusarium oxysporum and Rhizoctonia 
solani has been inoculated with the strain of Serratia 
marcescens B2 exhibiting antifungal and chitinolytic 
activities lead to several irregularities in pathogen 
like partial swelling of hyphae, bursting of hyphae   
at tip and curling of hyphae etc. It has been 
successfully employed in case of controlling patho-
gen like F. oxysporum and Sclerotium rolfsii on 
beans [233-235]. 
 
7.3. Modulation of the stress marker 
 
 Plant over the period of time is subjected to 
the variety of stresses that could be biotic and 
abiotic. The extensive assortment of environmental 
stress exposed to plants include but not, in any            
case, is limited to cold, pH, temperature, drought, 
alkalinity, pathogen exposure, and salinity. In a 

report, it has been debated that abiotic stress could 
lead to the total of 30% of loss in agriculture crop 
worldwide. In all the kinds of abiotic stresses, 
salinity holds a particular position in terms of loss of 
agriculture productivity which is owned to the            
fact that it leads to a reduction in photosynthesis, 
nutritional imbalance, reduction in protein synthesis, 
respiration and oxidative stress with the hypertonic 
condition. Oxidative stress further results in the 
formation of various reactive oxygen species like 
superoxide ions, hydroxyl radicle, singlet oxygen 
and hydrogen peroxide act as toxic molecules to 
plant metabolism [236-239]. 
 These reactive oxygen species are reactive in 
nature with the potential of inflicting damage over 
nucleic acids, proteins, and lipids. In order to 
counter the effect, the plant has evolved an effective 
antioxidant system. Plants store various isoenzymes 
in its compartment like mitochondria or chloro- 
plast. These isoenzymes have scavenging activity 
for ROS. It includes ascorbate peroxidase (APX),   
L-proline, peroxidase (POX), catalase (CAT), super-
oxide dismutase (SOD), and glutathione reductase 
(GR). They act as a regulator and keep in check over 
ROS species. In a report considering Lycopersicon 
esculentum and B. cereus AR156 effect over it             
has resulted into positive conclusion. It is reported 
that it has an active role in the protection of protein 
from denaturation by forming folded structures, or 
in stabilizing cell membrane, could act as the 
scavenger of radicle ion and also has the potential  
to act as the energy source as in case of L-proline 
[240-243]. 
 PGPR strains have further resulted in plants to 
have induced systemic resistance (ISR) which is the 
result of various stimulation that happens because of 
the addition of PGPR secretion. It has resulted into 
increase in mechanical and physical strength of a 
plant with some slight modification possible in day 
to day biochemical and physiochemical reactions of 
the plant. The result has been obtained in form of 
peroxidase, chitinase, and lytic enzyme production 
[242-243]. 
 
7.4. Antibiotic production 
 
 It has been a while since we are using 
chemical pesticides in order to boost the produc-
tivity of the crop. Despite chemical fertilizer being 



202 | Singh   Plant Growth Promoting Rhizobacteria and their mechanisms for plant growth enhancement 

European Journal of Biological Research 2018; 8 (4): 191-213 

 

advantageous to our crop, it has brought substantial 
distress in long run. Their ability to remain intact for 
a longer period of time has added to water pollution 
and soil pollution. Along with that, it has a broad 
spectrum of action that makes it disastrous even for 
beneficial microbes. This entire dimension has led to 
the acceptance of biopesticides that is safe, easy to 
degrade as well as selective in nature. After the 
discovery of PGPR strains acting as an inhibitory 
factor for various pathogenic microorganisms 

through the production of some metabolites which 
could lead to suspension of pathogen growth at the 
minute, the level has open door to new possibilities. 
Today, microbes antagonistic feature is being looked 
up as a substitute for the chemical pesticides that 
have shown the disastrous effect over our envi-
ronment. This microorganism inhibits phytopatho-
gens through numerous ways like competing for the 
available nutrient and space, producing bacteriocins, 
lytic enzymes, and antibiotics [244-247]. 

 
 

 
Figure 4. Mechanics of protection through abiotic stresses.  

 
 
Table 3. Species responsible for antibiotic production and its probable effect [248-252]. 

Genus with reported 
strains 

Antibiotic produced Antibiotic probable effect 

Pseudomonas 
P. fluorescens 
P. aeruginosa 

2,4-Diacetyl phloroglucinol (DAPG), 
Phenazine-1-carboxylic acid (PCA), Phenazine-1-
carboxamide (PCN), Pyoluteorin (Plt), Pyrrolnitrin 
(Prn), OomycinA, Viscosinamide, Butyrolactones, 
Kanosamine, Zwittermycin-A, Aerugine, 
Rhamnolipids, Cepaciamide A, Ecomycins, 
Pseudomonic acid, Azomycin, Antitumor 
antibiotics FR901463, Cepafungins, Karalicin 

Antiviral, Antimicrobial, 
Insect antifeedant, Mammalian 
antifeedant, Antihelminthic, 
Phytotoxic, Antioxidant, 
Cytotoxic, Antitumor, PGP 
activities 

Bacillus 
B. subtilis 168 
B. amyloliquefaciens FZB42 

Subtilin, Subtilosin A, Tasa, Sublancin Bacilysin, 
Chlorotetain, Mycobacillin, Rhizocticins, 
Bacillaene, Difficidin, Lipopeptides, Fengycin, 
Ituurins 

Antibacterial, Antifungal, Growth 
inhibition of fungi, Growth 
inhibition in both Gram positive 
and Gram negative 
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8. CONCLUSION 
 
 PGPR since its discovery has been promising 
a huge part of sustainable agriculture development. 
But still much has to be done on both explorations 
as well as the implementation of PGPR. Exploration, 
where involves the understanding of mechanism at 
same time implementation, need to take care a great 
deal of optimization on field application. PGPR as a 
tool for bioremediation and biocontrol should be 
encouraged and preferred. PGPR has all the very 
potential to act as bio-fertilizer which could work           
in better of an ecosystem with enhancement in 
productivity. Looking forward to awareness, rapid 
research development one could soon see PGPR as a 
reality on large scale. Nanotechnology has been on 
great run seeing last few years of time. Its inclusion 
in the field of agriculture especially as the carrier 
agent, plant transformation, delivery of genetic 
material has long been discovered. Its application 
should be intensified seeing the prospect that it 
could lead to the reduction in damage to the 
ecosystem.  
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