

This work is licensed under a Creative Commons Attribution 3.0 License.

## Corrigendum

The following corrections have been made to paper no. 310 (https://doi.org/10.5852/ejt.2017.310)

## Morphometry and DNA barcoding reveal cryptic diversity in the genus *Enteromius* (Cypriniformes: Cyprinidae) from the Congo basin, Africa – Corrigendum

Marjolein VAN GINNEKEN<sup>1,†</sup>, Eva DECRU<sup>2,\*,†</sup>, Erik VERHEYEN<sup>3</sup> & Jos SNOEKS<sup>4</sup>

 <sup>1</sup>Department of Biology, Systemic Physiological and Ecotoxicological Research, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
<sup>2,4</sup>Royal Museum for Central Africa, Section Vertebrates, Ichthyology, Leuvensesteenweg 13, 3080 Tervuren, Belgium.
<sup>2,4</sup>Department of Biology, Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium.
<sup>3</sup>Royal Belgian Institute of Natural Sciences, OD Taxonomy and Phylogeny, Vautierstraat 29, 1000 Brussels, Belgium; Department of Biology, Evolutionary Ecology Group, University of Antwerpen, Campus Drie Eiken, building D, room D.150 Universiteitsplein 1, 2610 Antwerpen, Belgium.

> \*Corresponding author: <u>eva.decru@africamuseum.be</u> <sup>1</sup>Email: <u>marjolein.vanginneken@uantwerpen.be</u> <sup>3</sup>Email: <u>everheyen@naturalsciences.be</u> <sup>4</sup>Email: jos.snoeks@africamuseum.be

Van Ginneken M., Decru E., Verheyen E. & Snoeks J. 2017. Morphometry and DNA barcoding reveal cryptic diversity in the genus *Enteromius* (Cypriniformes: Cyprinidae) from the Congo basin, Africa – Corrigendum. *European Journal of Taxonomy* 314: 1–8. <u>https://doi.org/10.5852/ejt.2017.314</u>

In the original publication, Figs 3–9 were accidentally published in low resolution. The high resolution figures with their captions are published below. Figs 8–9 showed a white rectangle for 'Ituri 8', which should have been a black rectangle, herewith updated. The captions have not changed.



**Fig. 3.** Scatterplot of PC2 against PC1 for a PCA on 17 log-transformed measurements (n = 177) of *Enteromius* Cope, 1867: *E.* cf. *miolepis* (Boulenger, 1902) ( $\diamond$ ), *E.* cf. *brazzai* (Pellegrin, 1901) ( $\blacklozenge$ ), *E.* cf. *pellegrini* (Poll, 1939) ( $\Delta$ ), and *E.* cf. *atromaculatus* (Nichols & Griscom, 1917) ( $\blacktriangle$ ). Also shown are the type specimens examined of: *E. miolepis* (Boulenger, 1902) ( $\circ$ ), *E. holotaenia* (Boulenger, 1904) ( $\Box$ ), *E. kerstenii* (Peters, 1868) ( $\blacksquare$ ), *E. brazzai* (Pellegrin, 1901) ( $\bigtriangledown$ ), *E. tshopoensis* (De Vos, 1991) ( $\blacktriangledown$ ), *E. pellegrini* (Poll, 1939) (+), and *E. atromaculatus* (Nichols & Griscom, 1917) ( $\divideontimes$ ).



**Fig. 4.** Scatterplot of PC2 against PC1 for a PCA on 10 meristics (n = 177) of *Enteromius: E.* cf. *miolepis* (Boulenger, 1902) ( $\diamond$ ), *E.* cf. *brazzai* (Pellegrin, 1901) ( $\diamond$ ), *E.* cf. *pellegrini* (Poll, 1939) ( $\Delta$ ), and *E.* cf. *atromaculatus* (Nichols & Griscom, 1917) ( $\blacktriangle$ ). Also shown are the type specimens examined of: *E. miolepis* (Boulenger, 1902) ( $\circ$ ), *E. holotaenia* (Boulenger, 1904) ( $\bullet$ ), *E. eutaenia* (Boulenger, 1904) ( $\Box$ ), *E. kerstenii* (Peters, 1868) ( $\blacksquare$ ), *E. brazzai* (Pellegrin, 1901) ( $\nabla$ ), *E. tshopoensis* (De Vos, 1991) ( $\nabla$ ), *E. pellegrini* (Poll, 1939) (+), and *E. atromaculatus* (Nichols & Griscom, 1917) (\*).



**Fig. 5.** Scatterplot of PC2 against PC1 for a PCA on 10 meristics (n = 36) of *E*. cf. *miolepis* specimens from the Lower Congo: Inkisi ( $\diamond$ ), Luki 1 ( $\blacklozenge$ ) and Luki 2 ( $\Delta$ ). Also shown are the type specimens examined of: *E. miolepis* (Boulenger, 1902) ( $\circ$ ), *E. holotaenia* (Boulenger, 1904) ( $\bullet$ ), *E. eutaenia* (Boulenger, 1904) ( $\Box$ ) and *E. kerstenii* (Peters, 1868) ( $\blacksquare$ ).



**Fig. 6.** Scatterplot of PC2 against PC1 for a PCA on 8 meristics (n = 60) of *E*. cf. *miolepis* (Boulenger, 1902) specimens from the Congo basin (excluding types): 'Kisangani region' 1 ( $\diamond$ ), Ituri 1 ( $\diamond$ ), Itimbiri ( $\Delta$ ), Léfini ( $\Delta$ ), Epulu 1 ( $\circ$ ), Inkisi ( $\bullet$ ), Luapula 1 ( $\Box$ ), Luki 1 ( $\blacksquare$ ), Luapula 2 ( $\nabla$ ), Luapula 3 ( $\nabla$ ), Ituri 2 (+), and Luki 2 (\*). Specimens from Luapula 1 and Luapula 2 can be separated from each other based on a PCA on the log-transformed measurements; specimens of Luki 2 fall separated when barbel lengths are included; specimens from 'Kisangani region' 1 and Itimbiri can be distinguished based on colour pattern.



**Fig. 7.** Scatterplot of PC2 against PC1 for a PCA on 10 meristics (n = 22) of *E*. cf. *brazzai* (Pellegrin, 1901): 'Kisangani region' 2 ( $\diamond$ ), Ituri 3 ( $\blacklozenge$ ) and 'Kisangani region' 3 ( $\Delta$ ). Also shown are the type specimens examined of *E*. *brazzai* (Pellegrin, 1901) ( $\circ$ ) and *E*. *tshopoensis* (De Vos, 1991) ( $\bullet$ ).



**Fig. 8.** Scatterplot of PC2 against PC1 for a PCA on 10 meristics (n = 42) of *E*. cf. *atromaculatus* (Nichols & Griscom, 1917): Ituri 5 ( $\diamond$ ), Ituri 6 ( $\blacklozenge$ ), Ituri/<sup>c</sup>Kisangani region' ( $\Delta$ ), Epulu 2 ( $\blacktriangle$ ), and Ituri 8 ( $\blacksquare$ ). Also shown are the type specimens of *E. atromaculatus* (Nichols & Griscom, 1917) ( $\circ$ ).



**Fig. 9.** Scatterplot of PC2 against PC1 for a PCA on 10 meristics (n = 36) of *E*. cf. *atromaculatus* (Nichols & Griscom, 1917): Epulu 2 ( $\blacktriangle$ ), and Ituri 8 ( $\blacksquare$ ). Also shown are the type specimens of *E. atromaculatus* (Nichols & Griscom, 1917) ( $\circ$ ).

Published on: 28 April 2017

Printed versions of all papers are also deposited in the libraries of the institutes that are members of the EJT consortium: Muséum national d'Histoire naturelle, Paris, France; Botanic Garden Meise, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Natural History Museum, London, United Kingdom; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands; Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain; Real Jardín Botánico de Madrid CSIC, Spain.