Hom-Jordan and Hom-alternative bimodules

S. Attan, H. Hounnon, B. Kpamegan

Département de Mathématiques, Université d'Abomey-Calavi 01 BP 4521, Cotonou 01, Bénin

syltane 2010@yahoo.fr, hi.hounnon@fast.uac.bj, $kpamegan_bernadin@yahoo.fr$

Received March 21, 2019 and, in revised form, April 8, 2020 Presented by Consuelo Martínez Accepted April 15, 2020

Abstract: In this paper, Hom-Jordan and Hom-alternative bimodules are introduced. It is shown that Jordan and alternative bimodules are twisted via endomorphisms into Hom-Jordan and Hom-alternative bimodules respectively. Some relations between Hom-associative bimodules, Hom-Jordan and Hom-alternative bimodules are given.

Key words: Bimodules, alternative algebras, Jordan algebras, Hom-alternative algebras, Hom-Jordan algebras, Hom-associative algebras.

AMS Subject Class. (2010): 17A30, 17B10, 17C50, 17D05.

1. Introduction

Algebras where the identities defining the structure are twisted by a homomorphism are called Hom-algebras. They have been intensively investigated in the literature recently. Hom-algebra started from Hom-Lie algebras introduced and discussed in [6, 10, 11, 12], motivated by quasi-deformations of Lie algebras of vector fields, in particular q-deformations of Witt and Virasoro algebras. Hom-associative algebras were introduced in [15] while Hom-alternative and Hom-Jordan algebras are introduced in [14], [23] as twisted generalizations of alternative and Jordan algebra respectively. The reader is referred to [20] for applications of alternative algebras to projective geometry, buildings, and algebraic groups and to [4, 9, 16, 19] for discussions about the important roles of Jordan algebras in physics, especially quantum mechanics.

The anti-commutator of a Hom-alternative algebra gives rise to a Hom-Jordan algebra [23]. Starting with a Hom-alternative algebra (A, \cdot, α) , it is known that the Jordan product

$$x * y = \frac{1}{2} (x \cdot y + y \cdot x)$$

gives a Hom-Jordan algebra $A^+=(A,*,\alpha)$. In other words, Hom-alternative algebras are Hom-Jordan-admissible [23].

The notion of bimodule for a class of algebras defined by multilinear identities has been introduced by Eilenberg [3]. If \mathcal{H} is in the class of associative algebras or in the one of Lie algebras then this notion is the familiar one for which we are in possession of well-worked theories. The study of bimodule (or representation) of Jordan algebras was initiated by N. Jacobson [7]. Subsequently the alternative case was considered by Schafer [17].

Modules over an ordinary algebra has been extended to the ones of Homalgebras in many works [2, 18, 21, 22].

The aim of this paper is to introduce Hom-alternative bimodules and Hom-Jordan bimodules and to discuss about some findings. The paper is organized as follows. In section two, we recall basic notions related to Hom-algebras and modules over Hom-associative algebras. Section three is devoted to the introduction of Hom-alternative bimodules. Proposition 3.7 shows that from a given Hom-alternative bimodule, a sequence of this kind of bimodules can be obtained. Theorem 3.8 establishes that, an alternative bimodule gives rise to a bimodule over the corresponding twisted algebra. It is also proved that a direct sum of a Hom-alternative algebra and a module over this Homalgebra is again a Hom-alternative algebra (Theorem 3.11). In section four, we introduce Hom-Jordan modules and attest similar results as in the previous section. Furthermore, it is proved that a Hom-Jordan special left and right module, with an additional condition, has a bimodule structure over this Homalgebra (Theorem 4.10). Finally, Proposition 4.12 shows that a bimodule over a Hom-associative algebra has a bimodule structure over its plus Homalgebra. All vector spaces are assumed to be over a fixed ground field \mathbb{K} of characteristic 0.

2. Preliminaries

We recall some basic notions introduced in [6, 15, 21] related to Homalgebras and while dealing of any binary operation we will use juxtaposition in order to reduce the number of braces, i.e., e.g., for "·", $xy \cdot \alpha(z)$ means $(x \cdot y) \cdot \alpha(z)$. Also, for the map $\mu : A^{\otimes 2} \to A$, we will write sometimes $\mu(a \otimes b)$ as $\mu(a,b)$ or ab for $a,b \in A$ and if V is another vector space, $\tau_1 : A \otimes V \to V \otimes A$ (resp. $\tau_2 : V \otimes A \to A \otimes V$) denote the twist isomorphism $\tau_1(a \otimes v) = v \otimes a$ (resp. $\tau_2(v \otimes a) = a \otimes v$).

DEFINITION 2.1. A Hom-module is a pair (M, α_M) consisting of a \mathbb{K} -module M and a linear self-map $\alpha_M: M \to M$. A morphism $f: (M, \alpha_M) \to (N, \alpha_N)$ of Hom-modules is a linear map $f: M \to N$ such that $f \circ \alpha_M = \alpha_N \circ f$.

DEFINITION 2.2. ([15, 21]) A Hom-algebra is a triple (A, μ_A, α_A) in which (A, α_A) is a Hom-module, $\mu : A^{\otimes 2} \to A$ is a linear map. The Homalgebra (A, μ, α) is said to be multiplicative if $\alpha \circ \mu = \mu \circ \alpha^{\otimes 2}$ (multiplicativity). A morphism $f : (A, \mu_A, \alpha_A) \to (B, \mu_B, \alpha_B)$ of Hom-algebras is a morphism of the underlying Hom-modules such that $f \circ \mu_A = \mu_B \circ f^{\otimes 2}$.

An important class of Hom-algebras that is considered here is the one of Hom-alternative algebras. These algebras have been introduced in [14] and more studied in [23].

DEFINITION 2.3. Let (A, μ, α) be a Hom-algebra.

- (i) The Hom-associator of A is the linear map $as_A: A^{\otimes 3} \to A$ defined as $as_A = \mu \circ (\mu \otimes \alpha \alpha \otimes \mu)$. A multiplicative Hom-algebra (A, μ, α) is said to be Hom-associative algebra if $as_A = 0$.
- (ii) A Hom-alternative algebra [14] is a multiplicative Hom-algebra (A, μ, α) that satisfies

$$as_A(x, x, y) = 0$$
 (left Hom-alternativity), (1)

$$as_A(x, y, y) = 0$$
 (right Hom-alternativity) (2)

for all $x, y \in A$.

(iii) Let (A, μ, α) be a Hom-alternative algebra. A Hom-subalgebra of (A, μ, α) is a linear subspace H of A, which is closed for the multiplication μ and invariant by α , that is, $\mu(x,y) \in H$ and $\alpha(x) \in H$ for all $x, y \in H$. If furthermore $\mu(a, b) \in H$ and $\mu(b, a) \in H$ for all $(a, b) \in A \times H$, then H is called a two-sided Hom-ideal of A.

Now, we prove:

PROPOSITION 2.4. Let (A, μ, α) be a Hom-alternative algebra and I be a two-sided Hom-ideal of (A, μ, α) . Then $(A/I, \bar{\mu}, \bar{\alpha})$ is a Hom-alternative algebra where $\bar{\mu}(\bar{x}, \bar{y}) = \overline{\mu(x, y)}$ and $\bar{\alpha}(\bar{x}) = \alpha(\bar{x})$ for all $\bar{x}, \bar{y} \in A/I$.

Proof. First, note that the multiplicativity of $\bar{\mu}$ with respect to $\bar{\alpha}$ follows from the one of μ with respect to α . Next, pick $\bar{x}, \bar{y} \in A/I$. Then the left Hom-alternativity (1) in $(A/I, \bar{\mu}, \bar{\alpha})$ is proved as follows

$$as_{A/I}(\bar{x}, \bar{x}, \bar{y}) = \bar{\mu}(\bar{\mu}(\bar{x}, \bar{x}), \bar{\alpha}(\bar{y})) - \bar{\mu}(\bar{\alpha}(\bar{x}), \bar{\mu}(\bar{x}, \bar{y}))$$
$$= \overline{\mu(\mu(x, x)\alpha(y)) - \mu(\alpha(x), \mu(x, y))} = \overline{as_A(x, x, y)} = \bar{0}.$$

Similarly, we get (2) and therefore $(A/I, \bar{\mu}, \bar{\alpha})$ is a Hom-alternative algebra.

As Hom-alternative algebras, Hom-Jordan algebras are fundamental objects of this paper. They appear as cousins of Hom-alternative algebras and these two Hom-algebras are related as Jordan and alternative algebras.

DEFINITION 2.5. ([23]) (i) A Hom-Jordan algebra is a multiplicative Hom-algebra (A, μ, α) such that $\mu \circ \tau = \mu$ (commutativity of μ) and the so-called Hom-Jordan identity holds

$$as_A(\mu(x,x,),\alpha(y),\alpha(x)) = 0, \forall (x,y) \in A^2$$
(3)

where, $\tau: A^{\otimes 2} \to A^{\otimes 2}$, $\tau(a \otimes b) = b \otimes a$, is the twist isomorphism.

(ii) Let (A, μ, α) be a Hom-Jordan algebra. A Hom-subalgebra of (A, μ, α) is a linear subspace H of A, which is closed for the multiplication μ and invariant by α , that is, $\mu(x,y) \in H$ and $\alpha(x) \in H$ for all $x,y \in H$. If furthermore $\mu(a,b) \in H$ for all $(a,b) \in A \times H$, then H is called a two-sided Hom-ideal (or simply Hom-ideal) of A [5].

Similarly as a Hom-alternative algebra case, if H is a Hom-ideal of a Hom-Jordan algebra (A, μ, α) , then $(A/H, \bar{\mu}, \bar{\alpha})$ is a Hom-Jordan algebra where $\bar{\mu}(\bar{x}, \bar{y}) = \mu(x, y)$ for all $\bar{x}, \bar{y} \in A/H$ and $\bar{\alpha} : A/H \to A/H$ is naturally induced by α , inherits a Hom-Jordan algebra structure, which is named quotient Hom-Jordan algebra.

Remark 2.6. In [14] Makhlouf defined a Hom-Jordan algebra as a commutative multiplicative Hom-algebra satisfying $as_A(x^2, y, \alpha(x)) = 0$, which becomes the identity (3) if y is replaced by $\alpha(y)$.

The proof of the following result can be found in [23] where the product *, differs from the one given here by a factor of $\frac{1}{2}$.

PROPOSITION 2.7. Let (A, μ, α) be a Hom-alternative algebra. Then A^+ = $(A, *, \alpha)$ is a Hom-Jordan algebra where x * y = xy + yx for all $x, y \in A$.

EXAMPLE 2.8. From the eight-dimensional Hom-alternative algebra $O_{\alpha} = (O, \mu_{\alpha}, \alpha)$ with basis $\{e_0, e_{1,2}, e_3, e_4, e_5, e_6, e_7\}$ [23, Example 3.19], constructed from the octonion algebra which is an eight-dimensional alternative algebra, we obtain, the Hom-Jordan algebra $O_{\alpha}^{+} = (O, * = \mu_{\alpha} + \mu_{\alpha} \circ \tau, \alpha)$ where the non zero products are: $e_0 * e_0 = 2e_0$, $e_0 * e_1 = e_1 * e_0 = 2e_5$, $e_0 * e_2 = e_2 * e_0 = 2e_6$, $e_0 * e_3 = e_3 * e_0 = 2e_7$, $e_0 * e_4 = e_4 * e_0 = 2e_1$, $e_0 * e_5 = e_5 * e_0 = 2e_2$, $e_0 * e_6 = e_6 * e_0 = 2e_3$, $e_0 * e_7 = e_7 * e_0 = 2e_4$, $e_1 * e_1 = e_2 * e_2 = e_3 * e_3 =$

 $e_4 * e_4 = e_5 * e_5 = e_6 * e_6 = e_7 * e_7 = -2e_0$ and the twisting map α is given by $\alpha(e_0) = e_0$, $\alpha(e_1) = e_5$, $\alpha(e_2) = e_6$, $\alpha(e_3) = e_7$, $\alpha(e_4) = e_1$, $\alpha(e_5) = e_2$, $\alpha(e_6) = e_3$, $\alpha(e_7) = e_4$.

A. Makhlouf proved that the plus algebra of any Hom-associative algebra is a Hom-Jordan algebra as defined in [14]. Here, we prove the same result for the Hom-Jordan algebra as defined in [23] (see also Definition 2.5 above).

PROPOSITION 2.9. Let (A, \cdot, α) be a Hom-associative algebra. Then $A^+ = (A, *, \alpha)$ is a Hom-Jordan algebra where x * y = xy + yx for all $x, y \in A$.

Proof. The commutativity of * is obvious. We compute the Hom-Jordan identity as follows:

$$\begin{split} as_{A^+} & \left(x^2, \alpha(x), \alpha(y) \right) \\ &= \left(x^2 * \alpha(y) \right) * \alpha^2(x) - \alpha(x^2) * \left(\alpha(y) * \alpha(x) \right) \\ &= \left(x^2 \cdot \alpha(y) \right) \cdot \alpha^2(x) + \left(\alpha(y) \cdot x^2 \right) \cdot \alpha^2(x) + \alpha^2(x) \cdot \left(x^2 \cdot \alpha(y) \right) \\ &+ \alpha^2(x) \cdot \left(\alpha(y) \cdot x^2 \right) - \alpha(x^2) \cdot \left(\alpha(y) \cdot \alpha(x) \right) - \alpha(x^2) \cdot \left(\alpha(x) \cdot \alpha(y) \right) \\ &- \left(\alpha(y) \cdot \alpha(x) \right) \cdot \alpha(x^2) - \left(\alpha(x) \cdot \alpha(y) \right) \cdot \alpha(x^2) \text{ (by a direct computation)} \\ &= \left(\alpha(y) \cdot x^2 \right) \cdot \alpha^2(x) + \alpha^2(x) \cdot \left(x^2 \cdot \alpha(y) \right) - \alpha(x^2) \cdot \left(\alpha(x) \cdot \alpha(y) \right) \\ &- \left(\alpha(y) \cdot \alpha(x) \right) \cdot \alpha(x^2) \text{ (by the Hom-associativity)} \\ &= \left(\alpha(y) \cdot x^2 \right) \cdot \alpha^2(x) + \alpha^2(x) \cdot \left(x^2 \cdot \alpha(y) \right) - \left(\alpha(x) \cdot \alpha(x) \right) \cdot \alpha(x \cdot y) \\ &- \alpha(yx) \cdot \left(\alpha(x) \cdot \alpha(x) \right) \text{ (by the multiplicativity)} \\ &= \left(\alpha(y) \cdot x^2 \right) \cdot \alpha^2(x) + \alpha^2(x) \cdot \left(x^2 \cdot \alpha(y) \right) - \alpha^2(x) \cdot \left(\alpha(x) \cdot \left(x \cdot y \right) \right) \\ &- \left((yx) \cdot \alpha(x) \right) \cdot \alpha^2(x) \text{ (by the Hom-associativity)} \\ &= 0 \text{ (by the Hom-associativity)} \,. \end{split}$$

Then $A^+ = (A, *, \alpha)$ is a Hom-Jordan algebra.

EXAMPLES 2.10. (i) Consider the three-dimensional Hom-associative algebra $\mathcal{A}=(A,\mu_A,\alpha_A)$ over \mathbb{K} with basis (e_1,e_2,e_3) defined by $\mu_A(e_1,e_1)=e_1$, $\mu_A(e_2,e_2)=e_2$, $\mu_A(e_3,e_3)=e_1$, $\mu_A(e_1,e_3)=\mu_A(e_3,e_1)=-e_3$ and $\alpha_A(e_1)=e_1$, $\alpha_A(e_3)=-e_3$ (see [24, Theorem 3.12], Hom-algebra A'_3). Using the product * in Proposition 2.9, the triple $\mathcal{A}^+=(A,*,\alpha_A)$ is Hom-Jordan algebra where, $e_1*e_1=2e_1$, $e_2*e_2=2e_2$, $e_3*e_3=2e_1$, $e_1*e_3=e_3*e_1=-2e_3$.

(ii) From the three-dimensional Hom-associative algebra $\mathcal{B} = (B, \mu_B, \alpha_B)$ over \mathbb{K} with basis (e_1, e_2, e_3) defined by $\mu_B(e_1, e_1) = e_1$, $\mu_B(e_2, e_2) = e_1$, $\mu_B(e_3, e_3) = e_3$, $\mu_B(e_1, e_2) = \mu_B(e_2, e_1) = -e_2$ and $\alpha_B(e_1) = e_1$, $\alpha_B(e_2) = -e_2$ (see [24, Theorem 3.12], Hom-algebra A_5). Then the triple $\mathcal{B}^+ = (B, *, \alpha_B)$ is a Hom-Jordan algebra, where "*" is the product in Proposition 2.9 and $e_1 * e_1 = 2e_1$, $e_2 * e_2 = 2e_1$, $e_3 * e_3 = 2e_3$, $e_1 * e_2 = e_2 * e_1 = -2e_2$.

Let us consider the following definitions which will be used in next sections.

Definition 2.11. Let (A, μ, α_A) be any Hom-algebra.

- (i) A Hom-module (V, α_V) is called an A-bimodule if it comes equipped with a left and a right structure maps on V that is morphisms $\rho_l: A \otimes V \to V$, $a \otimes v \mapsto a \cdot v$ and $\rho_r: V \otimes A \to V$, $v \otimes a \mapsto v \cdot a$ of Hom-modules respectively.
- (ii) A morphism $f:(V,\alpha_V,\rho_l,\rho_r)\to (W,\alpha_W,\rho_l',\rho_r')$ of A-bimodules is a morphism of the underlying Hom-modules such that

$$f \circ \rho_l = \rho'_l \circ (Id_A \otimes f)$$
 and $f \circ \rho_r = \rho'_r \circ (f \otimes Id_A)$.

(iii) Let (V, α_V) be an A-bimodule with structure maps ρ_l and ρ_r . Then the module Hom-associator of V is a trilinear map $as_{A,V}$ defined as:

$$as_{A,V} \circ Id_{V \otimes A \otimes A} = \rho_r \circ (\rho_r \otimes \alpha_A) - \rho_l \circ (\alpha_V \otimes \mu),$$

$$as_{A,V} \circ Id_{A \otimes V \otimes A} = \rho_r \circ (\rho_l \otimes \alpha_A) - \rho_l \circ (\alpha_A \otimes \rho_r),$$

$$as_{A,V} \circ Id_{A \otimes A \otimes V} = \rho_l \circ (\mu \otimes \alpha_V) - \rho_l \circ (\alpha_A \otimes \rho_l).$$

 $Remark\ 2.12.$ The module Hom-associator given above is a generalization of the one given in [2].

Now, let consider the following notion for Hom-associative algebras.

DEFINITION 2.13. Let (A, μ, α_A) be a Hom-associative algebra and (M, α_M) be a Hom-module.

(i) A left Hom-associative A-module structure on M consists of a morphism $\rho: A \otimes M \to M$ of Hom-modules, such that

$$\rho \circ (\alpha_A \otimes \rho) = \rho \circ (\mu \otimes \alpha_M) \tag{4}$$

(ii) A right Hom-associative A-module structure on M consists of a morphism $\rho: M \otimes A \to M$ of Hom-modules, such that

$$\rho \circ (\alpha_M \otimes \mu) = \rho \circ (\rho \otimes \alpha_A) \tag{5}$$

(iii) A Hom-associative A-bimodule structure on M consists of two structure maps $\rho_l: A \otimes M \to M$ and $\rho_r: M \otimes A \to M$ such that (M, α_M, ρ_l) is a left A-module, (M, α_M, ρ_r) is a right A-module and that the following Hom-associativity (or operator commutativity) condition holds:

$$\rho_l \circ (\alpha_A \otimes \rho_r) = \rho_r \circ (\rho_l \otimes \alpha_A) \tag{6}$$

Remark 2.14. Actually, left Hom-associative A-module, right Hom-associative A-module and Hom-associative A-bimodule have been already introduced in [21, 22] where they are called left A-module, right A-module and A-bimodule respectively. The expressions, used in Definition 2.13 for these notions, are motivated by the unification of our terminologies.

3. Hom-alternative bimodules

In this section, we give the definition of Hom-alternative (bi)modules. We prove that from a given Hom-alternative bimodule, a sequence of this kind of bimodules can be constructed. It is also proved that a direct sum of a Hom-alternative algebra and a bimodule over this Hom-algebra is a Hom-alternative algebra called a split null extension of the considered Hom-algebra.

First, we start by the following notion, due to [2], where it is called a module over a left (resp. right) Hom-alternative algebra. However, we call it a Hom-alternative left (resp. right) module in this paper.

DEFINITION 3.1. Let (A, μ, α_A) be a Hom-alternative algebra.

(i) A left Hom-alternative A-module is a Hom-module (V, α_V) with a left structure map $\rho_l : A \otimes V \to V$, $a \otimes v \mapsto a \cdot v$ such that

$$as_{A,V}(x, y, v) = -as_{A,V}(y, x, v)$$
 for all $x, y \in A$ and $v \in V$.

(ii) A right Hom-alternative A-module is a Hom-module (V, α_V) with a right structure map $\rho_r : V \otimes A \to V$, $v \otimes a \mapsto v \cdot a$ such that

$$as_{A,V}(v,x,y) = -as_{A,V}(v,y,x)$$
 for all $x,y \in A$ and $v \in V$.

Now, as a generalization of alternative bimodules [8, 17], one has:

DEFINITION 3.2. Let (A, μ, α_A) be a Hom-alternative algebra. A Homalternative A-bimodule is a Hom-module (V, α_V) with a (left) structure map $\rho_l: A \otimes V \to V, \ a \otimes v \mapsto a \cdot v$ and a (right) structure map $\rho_r: V \otimes A \to V,$ $v \otimes a \mapsto v \cdot a$ such that the following equalities hold:

$$as_{A,V}(a, v, b) = -as_{A,V}(v, a, b) = as_{A,V}(b, a, v) = -as_{A,V}(a, b, v)$$
 (7)

for all $(a, b, v) \in A^{\times 2} \times V$.

Remarks 3.3. (i) The relation (7) is equivalent to

$$as_{A,V}(a, v, b) = -as_{A,V}(v, a, b) = as_{A,V}(b, a, v) = -as_{A,V}(b, v, a)$$

or since the field's characteristic is 0 to

$$as_{A,V}(a, v, b) = -as_{A,V}(v, a, b) = as_{V}(b, a, v)$$
 and $as_{A,V}(a, a, v) = 0$.

(ii) If $\alpha_A = Id_A$ and $\alpha_V = Id_V$ then V is the so-called alternative bimodule for the alternative algebra (A, μ) [8, 17].

Examples 3.4. Here are some examples of Hom-alternative A-bimodules.

- (i) Let (A, μ, α_A) be a Hom-alternative algebra. Then (A, α_A) is a Homalternative A-bimodule where the structure maps are $\rho_l(a, b) = \mu(a, b)$ and $\rho_r(a, b) = \mu(b, a)$. More generally, if B is a two-sided Hom-ideal of (A, μ, α_A) , then (B, α_A) is a Hom-alternative A-bimodule where the structure maps are $\rho_l(a, x) = \mu(a, x)$ and $\rho_r(x, b) = \mu(x, b)$ for all $x \in B$ and $(a, b) \in A^{\times 2}$.
- (ii) If (A, μ) is an alternative algebra and M is an alternative A-bimodule [8] in the usual sense, then (M, Id_M) is a Hom-alternative A-bimodule where $A = (A, \mu, Id_A)$ is a Hom-alternative algebra.
- (iii) If $f:(A, \mu_A, \alpha_A) \to (B, \mu_B, \alpha_B)$ is a surjective morphism of Homalternative algebras, then (B, α_B) becomes a Hom-alternative A-bimodule via f, i.e, the structure maps are defined as $\rho_l:(a,b)\mapsto \mu_B(f(a),b)$ and $\rho_r:(b,a)\mapsto \mu_B(b,f(a))$ for all $(a,b)\in A\times B$. Indeed one can remark that $as_{A,B}\circ (Id_A\otimes f\otimes Id_A)=f\circ as_A$.

In order to give another example of Hom-alternative bimodules , let us consider the following

DEFINITION 3.5. An abelian extension of Hom-alternative algebras is a short exact sequence of Hom-alternative algebras

$$0 \to (V, \alpha_V) \xrightarrow{i} (A, \mu_A, \alpha_A) \xrightarrow{\pi} (B, \mu_B, \alpha_B) \to 0$$

where (V, α_V) is a trivial Hom-alternative algebra, i and π are morphisms of Hom-algebras. Furthermore, if there exists a morphism $s:(B, \mu_B, \alpha_B) \to (A, \mu_A, \alpha_A)$ such that $\pi \circ s = id_B$ then the abelian extension is said to be split and s is called a section of π .

EXAMPLE 3.6. Given an abelian extension as in the previous definition, the Hom-module (V, α_V) inherits a structure of a Hom-alternative B-bimodule and the actions of the Hom-algebra (B, μ_B, α_B) on V are as follows. For any $x \in B$, there exist $\tilde{x} \in A$ such that $x = \pi(\tilde{x})$. Let x acts on $v \in V$ by $x \cdot v := \mu_A(\tilde{x}, i(v))$ and $v \cdot x := \mu_A(i(v), \tilde{x})$. These are well-defined, as another lift $\tilde{x'}$ of x is written $\tilde{x'} = \tilde{x} + v'$ for some $v' \in V$ and thus $x \cdot v = \mu_A(\tilde{x}, i(v)) = \mu_A(\tilde{x'}, i(v))$ and $v \cdot x = \mu_A(i(v), \tilde{x}) = \mu_A(i(v), \tilde{x'})$ because V is trivial. The actions property follow from the Hom-alternativity identity. In case these actions of B on V are trivial, one speaks of a central extension.

The following result describes a sequence of Hom-alternative bimodules by twisting the structure maps of a given bimodule over this Hom-algebra.

PROPOSITION 3.7. Let (A, μ, α_A) be a Hom-alternative algebra and (V, α_V) be a Hom-alternative A-bimodule with the structure maps ρ_l and ρ_r . Then the maps

$$\rho_l^{(n)} = \rho_l \circ (\alpha_A^n \otimes Id_V)$$
$$\rho_r^{(n)} = \rho_r \circ (Id_V \otimes \alpha_A^n)$$

give the Hom-module (V, α_V) the structure of a Hom-alternative A-bimodule that we denote by $V^{(n)}$

Proof. It is clear that $\rho_l^{(n)}$ and $\rho_r^{(n)}$ are structure maps on $V^{(n)}$. Next, observe that for all $x, y \in A$ and $v \in V$,

$$\begin{split} as_{A,V^{(n)}}(x,v,y) &= \rho_r^{(n)}(\rho_l^{(n)}(x,v),\alpha_A(y)) - \rho_l^{(n)}(\alpha_A(x),\rho_r^{(n)}(v,y)) \\ &= \rho_r(\rho_l(\alpha_A^n(x),v),\alpha_A^{n+1}(y)) - \rho_l(\alpha_A^{n+1}(x),\rho_r(v,\alpha_A^n(y)) \\ &= as_{A,V}(\alpha_A^n(x),v,\alpha_A^n(y)) \end{split}$$

and similarly

$$\begin{split} &as_{A,V^{(n)}}(v,x,y) = as_{A,V}(v,\alpha_A^n(x),\alpha_A^n(y))\,,\\ &as_{A,V^{(n)}}(y,x,v) = as_{A,V}(\alpha_A^n(y),\alpha_A^n(x),v)\,,\\ &as_{A,V^{(n)}}(x,y,v) = as_{A,V}(\alpha_A^n(x),\alpha_A^n(y),v)\,. \end{split}$$

Therefore, equalities of (7) in $V^{(n)}$ derive from the one in V.

We know that alternative algebras can be deformed into Hom-alternative algebras via an endomorphism. The following result shows that alternative bimodules can be deformed into Hom-alternative bimodules via an endomorphism. This provides a large class of examples of Hom-alternative bimodules.

THEOREM 3.8. Let (A, μ) be an alternative algebra, V be an alternative A-bimodule with the structure maps ρ_l and ρ_r , α_A be an endomorphism of the alternative algebra A and α_V be a linear self-map of V such that $\alpha_V \circ \rho_l = \rho_l \circ (\alpha_A \otimes \alpha_V)$ and $\alpha_V \circ \rho_r = \rho_r \circ (\alpha_V \otimes \alpha_A)$.

Write A_{α_A} for the Hom-alternative algebra $(A, \mu_{\alpha_A}, \alpha_A)$ and V_{α_V} for the Hom-module (V, α_V) . Then the maps

$$\tilde{\rho}_l = \alpha_V \circ \rho_l$$
 and $\tilde{\rho}_r = \alpha_V \circ \rho_r$

give the Hom-module V_{α_V} the structure of a Hom-alternative A_{α_A} -bimodule.

Proof. Trivially, $\tilde{\rho}_l$ and $\tilde{\rho}_r$ are structure maps on V_{α_V} . The proof of (7) for V_{α_V} follows directly by the fact that $as_{A,V_{\alpha_V}} = \alpha_V^2 \circ as_{A,V}$ and the relation (7) in V.

COROLLARY 3.9. Let (A, μ) be an alternative algebra, V be an alternative A-bimodule with the structure maps ρ_l and ρ_r , α_A an endomorphism of the alternative algebra A and α_V be a linear self-map of V such that $\alpha_V \circ \rho_l = \rho_l \circ (\alpha_A \otimes \alpha_V)$ and $\alpha_V \circ \rho_r = \rho_r \circ (\alpha_V \otimes \alpha_A)$.

Write A_{α_A} for the Hom-alternative algebra $(A, \mu_{\alpha_A}, \alpha_A)$ and V_{α_V} for the Hom-module (V, α_V) . Then the maps

$$\tilde{\rho_l}^{(n)} = \rho_l \circ (\alpha_A^{n+1} \otimes \alpha_V)$$
 and $\tilde{\rho_r}^{(n)} = \rho_r \circ (\alpha_V \otimes \alpha_A^{n+1})$

give the Hom-module V_{α} the structure of a Hom-alternative A_{α_A} -bimodule for each $n \in \mathbb{N}$.

LEMMA 3.10. Let (A, μ, α_A) be a Hom-alternative algebra and (V, α_V) be a Hom-alternative A-bimodule with the structure maps ρ_l and ρ_r . Then the following relation

$$as_{A,V}(v,a,a) = 0 (8)$$

holds for all $a \in A$ and $v \in V$.

Proof. Using (7), for all $(a,b) \in A^{\times 2}$ and $v \in V$ we have $-as_{A,V}(v,a,b) = as_{A,V}(a,v,b)$ and $as_{A,V}(v,b,a) = -as_{A,V}(a,b,v)$. Moreover again from (7), we get $as_{A,V}(a,v,b) = -as_{A,V}(a,b,v)$ and then $-as_{A,V}(v,a,b) = as_{A,V}(v,b,a)$. It follows that $as_{A,V}(v,a,a) = 0$ since the field \mathbb{K} is of characteristic 0.

The following result shows that a direct sum of a Hom-alternative algebra and a bimodule over this Hom-algebra, is still a Hom-alternative, called the split null extension determined by the given bimodule.

Theorem 3.11. Let (A, μ, α_A) be a Hom-alternative algebra and (V, α_V) be a Hom-alternative A-bimodule with the structure maps ρ_l and ρ_r . Defining on $A \oplus V$ the bilinear map $\tilde{\mu}: (A \oplus V)^{\otimes 2} \to A \oplus V$, $\tilde{\mu}(a+m,b+n) := ab+a \cdot n+m \cdot b$ and the linear map $\tilde{\alpha}: A \oplus V \to A \oplus V$, $\tilde{\alpha}(a+m) := \alpha_A(a) + \alpha_V(m)$, then $E = (A \oplus V, \tilde{\mu}, \tilde{\alpha})$ is a Hom-alternative algebra.

Proof. The multiplicativity of $\tilde{\alpha}$ with respect to $\tilde{\mu}$ follows from the one of α with respect to μ and the fact that ρ_l and ρ_r are morphisms of Hom-modules. Next

$$as_{E}(a+m,a+m,b+n)$$

$$= \tilde{\mu}(\tilde{\mu}(a+m,a+m),\tilde{\alpha}(b+n)) - \tilde{\mu}(\tilde{\alpha}(a+m),\tilde{\mu}(a+m,b+n))$$

$$= \tilde{\mu}(a^{2}+a\cdot m+m\cdot a,\alpha_{A}(b)+\alpha_{V}(n))$$

$$- \tilde{\mu}(\alpha_{A}(a)+\alpha_{V}(m),ab+a\cdot n+m\cdot b)$$

$$= a^{2}\alpha_{A}(b)+a^{2}\cdot\alpha_{V}(n)+(a\cdot m)\cdot\alpha_{A}(b)+(m\cdot a)\cdot\alpha_{A}(b)$$

$$-\alpha_{A}(a)(ab)-\alpha_{A}(a)\cdot(a\cdot n)-\alpha_{A}(a)\cdot(m\cdot b)-\alpha_{V}(m)\cdot(ab)$$

$$= \underbrace{as_{A}(a,a,b)}_{0}+\underbrace{as_{V}(a,a,n)}_{0}+\underbrace{as_{A,V}(a,m,b)+as_{A,V}(m,a,b)}_{0}$$
(by (1), Remarks 3.3 and (7))
$$= 0.$$

Similarly, we compute

$$as_{E}(a+m,b+n,b+n)$$

$$= \tilde{\mu}(\tilde{\mu}(a+m,b+n),\tilde{\alpha}(b+n)) - \tilde{\mu}(\tilde{\alpha}(a+m),\tilde{\mu}(b+n,b+n))$$

$$= \tilde{\mu}(ab+a\cdot n+m\cdot b,\alpha_{A}(b)+\alpha_{V}(n))$$

$$- \tilde{\mu}(\alpha_{A}(a)+\alpha_{V}(m),b^{2}+b\cdot n+b\cdot b)$$

$$= (ab)\alpha_{A}(b)+(ab)\cdot\alpha_{V}(m)+(a\cdot n)\cdot\alpha_{A}(b)+(m\cdot b)\cdot\alpha_{A}(b)$$

$$-\alpha_{A}(a)(b^{2})-\alpha_{A}(a)\cdot(b\cdot n)-\alpha_{A}(a)\cdot(n\cdot b)-\alpha_{V}(m)\cdot b^{2}$$

$$= \underbrace{as_{A}(a,b,b)}_{0}+\underbrace{as_{A,V}(a,b,n)+as_{A,V}(a,n,b)}_{0}+\underbrace{as_{A,V}(m,b,b)}_{0}$$

$$\text{(by (2), (7) and (8))}$$

$$= 0.$$

We then conclude that $(A \oplus V, \tilde{\mu}, \tilde{\alpha})$ is a Hom-alternative algebra.

Remark 3.12. Consider the split null extension $A \oplus V$ determined by the Hom-alternative bimodule (V, α_V) of the Hom-alternative algebra (A, μ, α_A) in the previous theorem. Write elements a + v of $A \oplus V$ as (a, v). Then, there is an injective homomorphism of Hom-modules $i: V \to A \oplus V$ given by i(v) = (0, v) and a surjective homomorphism of Hom-modules $\pi: A \oplus V \to A$ given by $\pi(a, v) = a$. Moreover i(V) is a two-sided Hom-ideal of $A \oplus V$ such that $A \oplus V/i(V) \cong A$. On the other hand, there is a morphism of Hom-algebras $\sigma: A \to A \oplus V$ given by $\sigma(a) = (a, 0)$ which is clearly a section of π . Hence, we obtain the abelian split exact sequence of Hom-alternative algebras and (V, α_V) is a Hom-alternative A-bimodule via π .

4. Hom-Jordan bimodules

In this section, we study Hom-Jordan bimodules. It is observed that similar results for Hom-alternative bimodules hold for Hom-Jordan bimodules. Some of them require an additional condition. Furthermore, relations between Hom-associative bimodules and Hom-Jordan bimodules are given on the one hand, and on the other hand, relations between left (resp. right) Hom-alternative modules and left(resp. right) special Hom-Jordan modules are proved. First, we have:

DEFINITION 4.1. Let (A, μ, α_A) be a Hom-Jordan algebra.

(i) A right Hom-Jordan A-module is a Hom-module (V, α_V) with a right structure map $\rho_r: V \otimes A \to V, \ v \otimes a \mapsto v \cdot a$ such that the following conditions hold:

$$\alpha_{V}(v \cdot a) \cdot \alpha_{A}(bc) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(ca) + \alpha_{V}(v \cdot c) \cdot \alpha_{A}(ab)$$

$$= (\alpha_{V}(v) \cdot bc) \cdot \alpha_{A}^{2}(a) + (\alpha_{V}(v) \cdot ca) \cdot \alpha_{A}^{2}(b)$$

$$+ (\alpha_{V}(v) \cdot ab) \cdot \alpha_{A}^{2}(c),$$

$$(9)$$

$$\alpha_{V}(v \cdot a) \cdot \alpha_{A}(bc) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(ca) + \alpha_{V}(v \cdot c) \cdot \alpha_{A}(ab)$$

$$= ((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a) \qquad (10)$$

$$+ \alpha_{V}^{2}(v) \cdot ((ac)\alpha_{A}(b))$$

for all $a, b, c \in A$ and $v \in V$.

(ii) A left Hom-Jordan A-module is a Hom-module (V, α_V) with a left structure map $\rho_l: A \otimes V \to V$, $a \otimes v \mapsto a \cdot v$ such that the following conditions hold:

$$\alpha_{A}(bc) \cdot \alpha_{V}(a \cdot v) + \alpha_{A}(ca) \cdot \alpha_{V}(b \cdot v) + \alpha_{A}(ab) \cdot \alpha_{V}(c \cdot v)$$

$$= \alpha_{A}^{2}(a) \cdot (bc \cdot \alpha_{V}(v)) + \alpha_{A}^{2}(b) \cdot (ca \cdot \alpha_{V}(v))$$

$$+ \alpha_{A}^{2}(c) \cdot (ab \cdot \alpha_{V}(v)),$$
(11)

$$\alpha_A(bc) \cdot \alpha_V(a \cdot v) + \alpha_A(ca) \cdot \alpha_V(b \cdot v) + \alpha_A(ab) \cdot \alpha_V(c \cdot v)$$

$$= \alpha_A^2(c) \cdot (\alpha_A(b) \cdot (a \cdot v)) + \alpha_A^2(a) \cdot (\alpha_A(b) \cdot (c \cdot v))$$

$$+ ((ac)\alpha_A(b)) \cdot \alpha_V^2(v)$$
(12)

for all $a, b, c \in A$ and $v \in V$.

The following result allows to introduce the notion of right special Hom-Jordan modules.

THEOREM 4.2. Let (A, μ, α_A) be a Hom-Jordan algebra, (V, α_V) be a Hom-module and $\rho_r: V \otimes A \to V$, $a \otimes v \mapsto v \cdot a$, be a bilinear map satisfying

$$\alpha_V \circ \rho_r = \rho_r \circ (\alpha_V \otimes \alpha_A) \tag{13}$$

and

$$\alpha_V(v) \cdot (ab) = (v \cdot a) \cdot \alpha_A(b) + (v \cdot b) \cdot \alpha_A(a) \tag{14}$$

for all $(a,b) \in A^{\times 2}$ and $v \in V$. Then (V,α,ρ_r) is a right Hom-Jordan A-module called a right special Hom-Jordan A-module.

Proof. It suffices to prove (9) and (10). For all $(a,b) \in A^{\times 2}$ and $v \in V$, we have:

$$\begin{split} \alpha_{V}(v \cdot a) \cdot \alpha_{A}(bc) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(ca) + \alpha_{V}(v \cdot c) \cdot \alpha_{A}(ab) \\ &= \alpha_{V}(v \cdot a) \cdot \alpha_{A}(b)\alpha_{A}(c) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(c)\alpha_{A}(a) \\ &+ \alpha_{V}(v \cdot c) \cdot \alpha_{A}(a)\alpha_{A}(b) \quad \text{(multiplicativity)} \\ &= ((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha^{2}(c) + ((v \cdot a) \cdot \alpha_{A}(c)) \cdot \alpha^{2}(b) \\ &+ ((v \cdot b) \cdot \alpha_{A}(c)) \cdot \alpha^{2}(a) + ((v \cdot b) \cdot \alpha_{A}(a)) \cdot \alpha^{2}(c) \\ &+ ((v \cdot c) \cdot \alpha_{A}(a)) \cdot \alpha^{2}(b) + ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha^{2}(a) \quad \text{(by (14))} \\ &= [\alpha_{V}(v) \cdot ab - (v \cdot b)\alpha_{A}(a)] \cdot \alpha^{2}(c) + ((v \cdot a) \cdot \alpha_{A}(c)) \cdot \alpha^{2}(b) \\ &+ [\alpha_{V}(v) \cdot bc - (v \cdot c)\alpha_{A}(b)] \cdot \alpha^{2}(a) + ((v \cdot b) \cdot \alpha_{A}(a)) \cdot \alpha^{2}(c) \\ &+ [\alpha_{V}(v) \cdot ca - (v \cdot a) \cdot \alpha_{A}(c)] \cdot \alpha^{2}(b) \\ &+ ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha^{2}(a) \quad \text{(again by (14))} \\ &= (\alpha_{V}(v) \cdot bc) \cdot \alpha_{A}^{2}(a) + (\alpha_{V}(v) \cdot ca) \cdot \alpha_{A}^{2}(b) + (\alpha_{V}(v) \cdot ab) \cdot \alpha_{A}^{2}(c) \end{split}$$

and thus, we get (9). Finally, (10) is proved as follows:

$$\begin{split} \alpha_{V}(v \cdot a) \cdot \alpha_{A}(bc) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(ca) + \alpha_{V}(v \cdot c) \cdot \alpha_{A}(ab) \\ &= \alpha_{V}(v \cdot a) \cdot \alpha_{A}(b)\alpha_{A}(c) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(c)\alpha_{A}(a) \\ &+ \alpha_{V}(v \cdot c) \cdot \alpha_{A}(a)\alpha_{A}(b) \quad \text{(multiplicativity)} \\ &= ((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + ((v \cdot a) \cdot \alpha_{A}(c)) \cdot \alpha_{A}^{2}(b) \\ &+ ((v \cdot b) \cdot \alpha_{A}(c)) \cdot \alpha_{A}^{2}(a) + ((v \cdot b) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(c) \\ &+ ((v \cdot c) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(b) + ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a) \quad \text{(by ((14))} \\ &= ((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + [\alpha_{V}(v) \cdot ac - ((v \cdot c) \cdot \alpha_{A}(a)] \cdot \alpha_{A}^{2}(b) \\ &+ ((v \cdot b) \cdot \alpha_{A}(c)) \cdot \alpha_{A}^{2}(a) + ((v \cdot b) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(c) \\ &+ ((v \cdot c) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(b) + ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a) \quad \text{(again by (14))} \\ &= ((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + \alpha_{V}^{2}(v) \cdot ((ac)\alpha_{A}(b)) \\ &- (\alpha_{V}(v) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a) \quad \text{(again by (14))} \end{split}$$

$$= ((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + \alpha_{V}^{2}(v) \cdot ((ac)\alpha_{A}(b)) - (\alpha_{V}(v \cdot b) \cdot \alpha_{A}(ac))$$

$$+ ((v \cdot b) \cdot \alpha_{A}(c)) \cdot \alpha_{A}^{2}(a) + ((v \cdot b) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(c)$$

$$+ ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a) \quad \text{(by (13))}$$

$$= ((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + \alpha_{V}^{2}(v) \cdot ((ac)\alpha_{A}(b)) - ((v \cdot b) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(c)$$

$$- ((v \cdot b) \cdot \alpha_{A}(c)) \cdot \alpha_{A}^{2}(a) + ((v \cdot b) \cdot \alpha_{A}(c)) \cdot \alpha_{A}^{2}(a)$$

$$+ ((v \cdot b) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(c) + ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a) \quad \text{(by (14))}$$

$$= ((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a) + \alpha_{V}^{2}(v) \cdot ((ac)\alpha_{A}(b))$$

which is (10).

Similarly, the following result can be proved.

Theorem 4.3. Let (A, μ, α_A) be a Hom-Jordan algebra, (V, α_V) be a Hom-module and $\rho_l: A \otimes V \to V, \ v \otimes a \mapsto a \cdot v$, be a bilinear map satisfying

$$\alpha_V \circ \rho_l = \rho_l \circ (\alpha_A \otimes \alpha_V)$$

and

$$(ab) \cdot \alpha_V(v) = \alpha_A(a) \cdot (b \cdot v) + \alpha_A(b) \cdot (a \cdot v) \tag{15}$$

for all $(a,b) \in A^{\times 2}$ and $v \in V$. Then (V,α,ρ_l) is a left Hom-Jordan A-module called a left special Hom-Jordan A-module.

It is well known that the plus algebra of any Hom-alternative algebra is a Hom-Jordan algebra. The next result shows that any left (resp. right) Hom-alternative module a is also a left (resp. right) module over its plus Hom-algebra.

PROPOSITION 4.4. Let (A, μ, α_A) be a Hom-alternative algebra and (V, α_V) be a Hom-module.

- (i) If (V, α_V) is a right Hom-alternative A-module with the structure map ρ_r then (V, α_V) is a right special Hom-Jordan A^+ -module with the same structure map ρ_r .
- (ii) If (V, α_V) is a left Hom-alternative A-module with the structure map ρ_l then (V, α_V) is a left special Hom-Jordan A^+ -module with the same structure map ρ_l .

Proof. It suffices to prove (14) and (15).

- (i) If (V, α_V) is a right Hom-alternative A-module with the structure map ρ_r , then for all $(x, y, v) \in A \times A \times V$, $as_{A,V}(v, x, y) = -as_{A,V}(v, y, x)$ by (8), i.e., $\alpha_V(v) \cdot (xy) + \alpha_V(v) \cdot (yx) = (v \cdot x) \cdot \alpha_A(y) + (v \cdot y) \cdot \alpha_A(x)$. Thus $\alpha_V(v) \cdot (x * y) = \alpha_V(v) \cdot (xy) + \alpha_V(v) \cdot (yx) = (v \cdot x) \cdot \alpha_A(y) + (v \cdot y) \cdot \alpha_A(x)$. Therefore (V, α_V) is a right special Hom-Jordan A^+ -module by Theorem 4.2.
- (ii) If (V, α_V) is a left Hom-alternative A-module with the structure map ρ_l , then for all $(x, y, v) \in A \times A \times V$, $as_{A,V}(x, y, v) = -as_{A,V}(y, x, v)$ by Remarks 3.3 and then $(xy) \cdot \alpha_V(v) + (yx) \cdot \alpha_V(v) = \alpha_A(x) \cdot (y \cdot v) + \alpha_A(y) \cdot (x \cdot v)$. Thus $(x * y) \cdot \alpha_V(v) = (xy) \cdot \alpha_V(v) + (yx) \cdot \alpha_V(v) = \alpha_A(x) \cdot (y \cdot v) + \alpha_A(y) \cdot (x \cdot v)$. Therefore (V, α_V) is a left special Hom-Jordan A^+ -module by Theorem 4.3. \blacksquare

Now, we give the definition of a Hom-Jordan bimodule.

DEFINITION 4.5. Let (A, μ, α_A) be a Hom-Jordan algebra. A Hom-Jordan A-bimodule is a Hom-module (V, α_V) with a left structure map $\rho_l : A \otimes V \to V$, $a \otimes v \mapsto a \cdot v$ and a right structure map $\rho_r : V \otimes A \to V$, $v \otimes a \mapsto v \cdot a$, such that the following conditions hold:

$$\rho_r \circ \tau_1 = \rho_l ,$$

$$\alpha_V(v \cdot a) \cdot \alpha_A(bc) + \alpha_V(v \cdot b) \cdot \alpha_A(ca) + \alpha_V(v \cdot c) \cdot \alpha_A(ab)$$

$$= (\alpha_V(v) \cdot bc) \cdot \alpha_A^2(a) + (\alpha_V(v) \cdot ca) \cdot \alpha_A^2(b)$$

$$+ (\alpha_V(v) \cdot ab) \cdot \alpha_A^2(c) ,$$
(16)

$$\alpha_{V}(v \cdot a) \cdot \alpha_{A}(bc) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(ca) + \alpha_{V}(v \cdot c) \cdot \alpha_{A}(ab)$$

$$= ((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a)$$

$$+ ((ac)\alpha_{A}(b)) \cdot \alpha_{V}^{2}(v),$$

$$(18)$$

for all $a, b, c \in A$ and $v \in V$.

In term of the module Hom-associator, using the relation (16) and the fact that the structure maps are morphisms, the relations (17) and (18) are respectively

$$\circlearrowleft_{(a,b,c)} as_{A,V}(\alpha_A(a), \alpha_V(v), bc) = 0, \qquad (19)$$

$$as_{A,V}(v \cdot a, \alpha_A(b), \alpha_A(c)) + as_{A,V}(v \cdot c, \alpha_A(b), \alpha_A(a)) + as_{A,V}(ac, \alpha_A(b), \alpha_V(v)) = 0.$$
(20)

Remarks 4.6. (i) One can note that (17) and (18) are the same identities as (9) and (10) respectively.

- (ii) Since $\rho_r \circ \tau_1 = \rho_l$, nothing is lost in dropping one of the compositions. Thus the term Hom-Jordan module can be used for Hom-Jordan bimodule.
 - (iii) Since the field is of characteristic 0, the identity (19) implies

$$as_{A,V}(\alpha_A(a), \alpha_V(v), a^2) = 0.$$

(iv) If $\alpha_A = Id_A$ and $\alpha_V = Id_V$ then V is reduced to the so-called Jordan module of the Jordan algebra (A, μ) [7, 8].

Examples 4.7. Here are some examples of Hom-Jordan bimodules.

- (i) Let (A, μ, α_A) be a Hom-Jordan algebra. Then (A, α_A) is a Hom-Jordan A-bimodule where the structure maps are $\rho_l = \rho_r = \mu$. More generally, if B is a Hom-ideal of (A, μ, α_A) , then (B, α_A) is a Hom-Jordan A-bimodule where the structure maps are $\rho_l(a, x) = \mu(a, x) = \mu(x, a) = \rho_r(x, a)$ for all $(a, x) \in A \times B$.
- (ii) If (A, μ) is a Jordan algebra and M is a Jordan A-bimodule [8] in the usual sense then (M, Id_M) is a Hom-Jordan \mathbb{A} -bimodule where $\mathbb{A} = (A, \mu, Id_A)$ is a Hom-Jordan algebra.
- (iii) If $f:(A, \mu_A, \alpha_A) \to (B, \mu_B, \alpha_B)$ is a surjective morphism of Hom-Jordan algebras, then (B, α_B) becomes a Hom-Jordan A-bimodule via f, i.e, the structure maps are defined by $\rho_l:(a,b)\mapsto \mu_B(b,f(a))$ and $\rho_r:(b,a)\mapsto \mu_B(f(a),b)$ for all $(a,b)\in A\times B$.

As in the case of Hom-alternative algebras, in order to give another example of Hom-Jordan bimodules, let us consider the following

DEFINITION 4.8. An abelian extension of Hom-Jordan algebras is a short exact sequence of Hom-Jordan algebras

$$0 \to (V, \alpha_V) \xrightarrow{i} (A, \mu_A, \alpha_A) \xrightarrow{\pi} (B, \mu_B, \alpha_B) \to 0$$

where (V, α_V) is a trivial Hom-Jordan algebra, i and π are morphisms of Hom-algebras. Furthermore, if there exists a morphism $s:(B, \mu_B, \alpha_B) \to (A, \mu_A, \alpha_A)$ such that $\pi \circ s = id_B$ then the abelian extension is said to be split and s is called a section of π .

EXAMPLE 4.9. Given an abelian extension as in the previous definition, the Hom-module (V, α_V) inherits a structure of a Hom-Jordan B-bimodule

and the actions of the Hom-algebra (B, μ_B, α_B) on V are as follows. For any $x \in B$, there exist $\tilde{x} \in A$ such that $x = \pi(\tilde{x})$. Let x acts on $v \in V$ by $x \cdot v := \mu_A(\tilde{x}, i(v))$ and $v \cdot x := \mu_A(i(v), \tilde{x})$. These are well-defined, as another lift $\tilde{x'}$ of x is written $\tilde{x'} = \tilde{x} + v'$ for some $v' \in V$ and thus $x \cdot v = \mu_A(\tilde{x}, i(v)) = \mu_A(\tilde{x'}, i(v))$ and $v \cdot x = \mu_A(i(v), \tilde{x}) = \mu_A(i(v), \tilde{x'})$ because V is trivial. The actions property follow from the Hom-Jordan identity. In case these actions of B on V are trivial, one speaks of a central extension.

The next result shows that a special left and right Hom-Jordan module has a Hom-Jordan bimodule structure under a specific condition.

THEOREM 4.10. Let (A, μ, α_A) be a Hom-Jordan algebra and (V, α_V) be both a left and a right special Hom-Jordan A-module with the structure maps ρ_1 and ρ_2 respectively such that the Hom-associativity (or operator commutativity) condition holds

$$\rho_2 \circ (\rho_1 \otimes \alpha_A) = \rho_1 \circ (\alpha_A \otimes \rho_2). \tag{21}$$

Define the bilinear maps $\rho_l: A \otimes V \to V$ and $\rho_r: V \otimes A \to V$ by

$$\rho_l = \rho_1 + \rho_2 \circ \tau_1 \quad \text{and} \quad \rho_r = \rho_1 \circ \tau_2 + \rho_2. \tag{22}$$

Then $(V, \alpha_V, \rho_l, \rho_r)$ is a Hom-Jordan A-bimodule.

Proof. It is clear that ρ_l and ρ_r are structure maps and (16) holds. To prove relations (17) and (18), let put $\rho_l(a \otimes v) := a \diamond v$, i.e., $a \diamond v = a \cdot v + v \cdot a$ for all $(a, v) \in A \times V$. We have then $\rho_r(v \otimes a) := v \diamond a = a \cdot v + v \cdot a$ for all $(a, v) \in A \times V$. Therefore for all $(a, b, v) \in A \times A \times V$, we have

$$\begin{split} \alpha_{V}(v \diamond a) \diamond \alpha_{A}(bc) + \alpha_{V}(v \diamond b) \diamond \alpha_{A}(ca) + \alpha_{V}(v \diamond c) \diamond \alpha_{A}(ab) \\ &= \alpha_{V}(v \cdot a) \cdot \alpha_{A}(bc) + \alpha_{V}(a \cdot v) \cdot \alpha_{A}(bc) + \alpha_{A}(bc) \cdot \alpha_{V}(v \cdot a) \\ &+ \alpha_{A}(bc) \cdot \alpha_{V}(a \cdot v) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(ca) + \alpha_{V}(b \cdot v) \cdot \alpha_{A}(ca) \\ &+ \alpha_{A}(ca) \cdot \alpha_{V}(v \cdot b) + \alpha_{A}(ca) \cdot \alpha_{V}(b \cdot v) + \alpha_{V}(v \cdot c) \cdot \alpha_{A}(ab) \\ &+ \alpha_{V}(c \cdot v) \cdot \alpha_{A}(ab) + \alpha_{A}(ab) \cdot \alpha_{V}(v \cdot c) + \alpha_{A}(ab) \cdot \alpha_{V}(c \cdot v) \\ & \text{(by a straightforward computation)} \\ &= \{\alpha_{V}(v \cdot a) \cdot \alpha_{A}(bc) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(ca) + \alpha_{V}(v \cdot c) \cdot \alpha_{A}(ab)\} \\ &+ \{\alpha_{A}(bc) \cdot (\alpha_{V}(v) \cdot \alpha_{A}(a)) + \alpha_{A}(ca) \cdot (\alpha_{V}(v) \cdot \alpha_{A}(b)) \\ &+ \alpha_{A}(ab) \cdot (\alpha_{V}(v) \cdot \alpha_{A}(c))\} + \{\alpha_{A}(bc) \cdot \alpha_{V}(a \cdot v) + \alpha_{A}(ca) \cdot \alpha_{V}(b \cdot v)\} \end{split}$$

$$+ \alpha_A(ab) \cdot \alpha_V(c \cdot v) \} + \{ (\alpha_A(a) \cdot \alpha_V(v)) \cdot \alpha_A(bc)$$

$$+ (\alpha_A(b) \cdot \alpha_V(v)) \cdot \alpha_A(ca) + (\alpha_A(c) \cdot \alpha_V(v)) \cdot \alpha_A(ab) \}$$

$$(rearranging terms and noting that ρ_1 and ρ_2 are morphisms)
$$= \{ (\alpha_V(v) \cdot bc) \cdot \alpha_A^2(a) + (\alpha_V(v) \cdot ca) \cdot \alpha_A^2(b) + (\alpha_V(v) \cdot ab) \cdot \alpha_A^2(c) \}$$

$$+ \{ (bc \cdot \alpha_V(v)) \cdot \alpha_A^2(a) + (ca \cdot \alpha_V(v)) \cdot \alpha_A^2(b) + (ab \cdot \alpha_V(v)) \cdot \alpha_A^2(c) \}$$

$$+ \{ \alpha_A^2(a) \cdot (bc \cdot \alpha_V(v)) + \alpha_A^2(b) \cdot (ca \cdot \alpha_V(v)) + \alpha_A^2(c) \cdot (ab \cdot \alpha_V(v)) \}$$

$$+ \{ \alpha_A^2(a) \cdot (\alpha_V(v) \cdot bc) + \alpha_A^2(b) \cdot (\alpha_V(v) \cdot ca) + \alpha_A^2(c) \cdot (\alpha_V(v) \cdot ab) \}$$

$$(by (9), (11) \text{ and } (21))$$

$$= \{ (\alpha_V(v) \diamond bc) \cdot \alpha_A^2(a) + (\alpha_V(v) \diamond ca) \cdot \alpha_A^2(b) + (\alpha_V(v) \diamond ab) \cdot \alpha_A^2(c) \}$$

$$+ \{ \alpha_A^2(a) \cdot (\alpha_V(v) \diamond bc) + \alpha_A^2(b) \cdot (\alpha_V(v) \diamond ca) + \alpha_A^2(c) \cdot (\alpha_V(v) \diamond ab) \}$$

$$(by \text{ the definition of } \diamond)$$

$$= (\alpha_V(v) \diamond bc) \diamond \alpha_A^2(a) + (\alpha_V(v) \diamond ca) \diamond \alpha_A^2(b) + (\alpha_V(v) \diamond ab) \diamond \alpha_A^2(c)$$

$$(again by \text{ the definition of } \diamond).$$$$

Therefore, we get (17). Finally, we have:

$$\alpha_{V}(v \diamond a) \diamond \alpha_{A}(bc) + \alpha_{V}(v \diamond b) \diamond \alpha_{A}(ca) + \alpha_{V}(v \diamond c) \diamond \alpha_{A}(ab)$$

$$= \alpha_{V}(v \cdot a) \cdot \alpha_{A}(bc) + \alpha_{V}(a \cdot v) \cdot \alpha_{A}(bc) + \alpha_{A}(bc) \cdot \alpha_{V}(v \cdot a)$$

$$+ \alpha_{A}(bc) \cdot \alpha_{V}(a \cdot v) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(ca) + \alpha_{V}(b \cdot v) \cdot \alpha_{A}(ca)$$

$$+ \alpha_{A}(ca) \cdot \alpha_{V}(v \cdot b) + \alpha_{A}(ca) \cdot \alpha_{V}(b \cdot v) + \alpha_{V}(v \cdot c) \cdot \alpha_{A}(ab)$$

$$+ \alpha_{V}(c \cdot v) \cdot \alpha_{A}(ab) + \alpha_{A}(ab) \cdot \alpha_{V}(v \cdot c) + \alpha_{A}(ab) \cdot \alpha_{V}(c \cdot v)$$
(by a straightforward computation)
$$= \{\alpha_{V}(v \cdot a) \cdot \alpha_{A}(bc) + \alpha_{V}(v \cdot b) \cdot \alpha_{A}(ca) + \alpha_{V}(v \cdot c) \cdot \alpha_{A}(ab)\}$$

$$+ \{(\alpha_{V}(a \cdot v) \cdot \alpha_{A}(b)\alpha_{A}(c) + (\alpha_{V}(b \cdot v)) \cdot \alpha_{A}(c)\alpha_{A}(a)$$

$$+ (\alpha_{V}(c \cdot v) \cdot \alpha_{A}(a)\alpha_{A}(b)\} + \{\alpha_{A}(bc) \cdot \alpha_{V}(a \cdot v) + \alpha_{A}(ca) \cdot \alpha_{V}(b \cdot v)$$

$$+ \alpha_{A}(ab) \cdot \alpha_{V}(c \cdot v)\} + \{\alpha_{A}(b)\alpha_{A}(c) \cdot \alpha_{V}(v \cdot a)$$

$$+ \alpha_{A}(c)\alpha_{A}(a) \cdot \alpha_{V}(v \cdot b) + \alpha_{A}(a)\alpha_{A}(b) \cdot \alpha_{V}(v \cdot c)\}$$
(rearranging terms and using the multiplicativity of α_{A})
$$= \{((v \cdot a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + ((v \cdot c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a) + \alpha_{V}^{2}(v) \cdot ((ac)\alpha_{A}(b))\}$$

$$+ \underbrace{\{((a \cdot v) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c)}_{1} + ((a \cdot v) \cdot \alpha_{A}(c)) \cdot \alpha_{A}^{2}(b) \\
+ ((b \cdot v) \cdot \alpha_{A}(c)) \cdot \alpha_{A}^{2}(a) + ((b \cdot v) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(c) \\
+ ((c \cdot v) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(b) + \underbrace{((c \cdot v) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a)}_{2} \\
+ \underbrace{\{\alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (a \cdot v)) + \alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (c \cdot v))}_{3} \\
+ \underbrace{((ac)\alpha_{A}(b)) \cdot \alpha_{V}^{2}(v)}_{3} + \underbrace{\{\alpha_{A}^{2}(b) \cdot (\alpha_{A}(c) \cdot (v \cdot a)) \\
+ \alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \cdot a)) + \alpha_{A}^{2}(a) \cdot (\alpha_{A}(c) \cdot (v \cdot b)) \\
+ \alpha_{A}^{2}(c) \cdot (\alpha_{A}(a) \cdot (v \cdot b)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ \alpha_{A}^{2}(b) \cdot (\alpha_{A}(a) \cdot (v \cdot b)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ \alpha_{A}^{2}(b) \cdot (\alpha_{A}(a) \cdot (v \cdot b)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ \alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \cdot a)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ \alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \cdot a)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ \alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \cdot a)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ \alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \cdot a)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ ((c \cdot v) \cdot \alpha_{A}(c)) \cdot \alpha_{A}^{2}(a) + ((b \cdot v) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(c) \\
+ ((c \cdot v) \cdot \alpha_{A}(a)) \cdot \alpha_{A}^{2}(b) + \underbrace{\alpha_{A}^{2}(b) \cdot (\alpha_{A}(c) \cdot (v \cdot a))}_{4} \\
+ \alpha_{A}^{2}(a) \cdot (\alpha_{A}(c) \cdot (v \cdot b)) + \underbrace{\alpha_{A}^{2}(c) \cdot (\alpha_{A}(a) \cdot (v \cdot b))}_{4} \\
+ \alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot a)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ \alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \cdot a)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ \alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \cdot a)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ \alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \cdot a)) + \underbrace{\alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \cdot c))}_{4} \\
+ (\alpha_{A}(b) \cdot (v \cdot c)) \cdot \underbrace{\alpha_{A}^{2}(a)}_{4} + (\alpha_{A}(b) \cdot (v \cdot c)) \cdot \underbrace{\alpha_{A}^{2}(b)}_{4} \\
+ (\alpha_{A}(c) \cdot (v \cdot a)) \cdot \underbrace{\alpha_{A}^{2}(b)}_{4} + (\alpha_{A}(b) \cdot (v \cdot c)) \cdot \underbrace{\alpha_{A}^{2}(b)}_{4} \\
+ (\alpha_{A}(c) \cdot (v \cdot a)) \cdot \underbrace{\alpha_{A}^{2}(b)}_{4} + (\alpha_{A}(b) \cdot ((c \cdot v) \cdot \alpha_{A}(b)) \\
+ \alpha_{A}^{2}(b) \cdot (((c \cdot v) \cdot \alpha_{A}(b)) + \alpha_{A}^{2}(c) \cdot (((a \cdot v) \cdot \alpha_{A}(b)) \\
+ \alpha_{A}^{2}(b) \cdot (($$

$$= ((v \diamond a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c) + ((v \diamond c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a) \\ + \alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \diamond a)) + \alpha_{A}^{2}(a) \cdot (\alpha_{A}(b) \cdot (v \diamond c)) \\ + \alpha_{V}^{2}(v) \diamond ((ac)\alpha_{A}(b)) + \underbrace{\alpha_{A}^{2}(a) \cdot ((v \cdot c) \cdot \alpha_{A}(b))}_{6} \\ + \underbrace{(\alpha_{A}(b) \cdot (v \cdot c)) \cdot \alpha_{A}^{2}(a)}_{7} + \underbrace{(\alpha_{A}(b) \cdot (v \cdot a)) \cdot \alpha_{A}^{2}(c)}_{8} \\ + \underbrace{\alpha_{A}^{2}(c) \cdot ((v \cdot a) \cdot \alpha_{A}(b))}_{9} + \underbrace{(\alpha_{A}(b) \cdot (c \cdot v)) \cdot \alpha_{A}^{2}(a)}_{7} \\ + \underbrace{\alpha_{A}^{2}(a) \cdot ((c \cdot v) \cdot \alpha_{A}(b))}_{9} + \underbrace{(\alpha_{A}(b) \cdot (a \cdot v) \cdot \alpha_{A}(b))}_{7} \\ + \underbrace{(\alpha_{A}(b) \cdot (a \cdot v)) \cdot \alpha_{A}^{2}(c)}_{8} + \underbrace{((v \diamond c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a)}_{9} \\ + \underbrace{(\alpha_{A}(b) \cdot (a \cdot v)) \cdot \alpha_{A}^{2}(c)}_{10} + \underbrace{((v \diamond c) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(a)}_{11} \\ + \underbrace{\alpha_{A}^{2}(c) \cdot (\alpha_{A}(b) \cdot (v \diamond a))}_{13} + \underbrace{\alpha_{A}^{2}(a) \cdot ((\alpha_{A}(b) \cdot (v \diamond c))}_{12} \\ + \underbrace{(\alpha_{A}(b) \cdot (v \diamond c)) \cdot \alpha_{A}^{2}(a)}_{11} + \underbrace{(\alpha_{A}(b) \cdot (v \diamond c) \cdot \alpha_{A}(b))}_{12} \\ + \underbrace{(\alpha_{A}(b) \cdot (v \diamond c)) \cdot \alpha_{A}^{2}(a)}_{11} + \underbrace{(\alpha_{A}(b) \cdot (v \diamond a)) \cdot \alpha_{A}^{2}(c)}_{11} \\ + \underbrace{\alpha_{A}^{2}(c) \cdot ((v \diamond a) \cdot \alpha_{A}(b))}_{13} + \underbrace{(\alpha_{A}(b) \cdot (v \diamond a)) \cdot \alpha_{A}^{2}(c)}_{11} \\ + \underbrace{\alpha_{A}^{2}(c) \cdot ((v \diamond a) \cdot \alpha_{A}(b))}_{13} + \underbrace{(\alpha_{A}(b) \cdot (v \diamond a)) \cdot \alpha_{A}^{2}(c)}_{11} \\ + \underbrace{\alpha_{A}^{2}(c) \cdot ((v \diamond a) \cdot \alpha_{A}(b))}_{13} + \underbrace{(\alpha_{A}(b) \cdot (v \diamond a)) \cdot \alpha_{A}^{2}(c)}_{11} \\ + \underbrace{\alpha_{A}^{2}(c) \cdot ((v \diamond a) \cdot \alpha_{A}(b))}_{13} + \underbrace{(\alpha_{A}(b) \cdot (v \diamond a)) \cdot \alpha_{A}^{2}(c)}_{11} \\ + \underbrace{\alpha_{A}^{2}(c) \cdot ((v \diamond a) \cdot \alpha_{A}(b))}_{13} + \underbrace{(\alpha_{A}(b) \cdot (v \diamond a)) \cdot \alpha_{A}^{2}(c)}_{11} \\ + \underbrace{\alpha_{A}^{2}(c) \cdot ((v \diamond a) \cdot \alpha_{A}(b))}_{13} + \underbrace{(\alpha_{A}(b) \cdot (v \diamond a)) \cdot \alpha_{A}^{2}(c)}_{11} \\ + \underbrace{\alpha_{A}^{2}(c) \cdot ((v \diamond a) \cdot \alpha_{A}(b))}_{13} + \underbrace{(v \diamond a) \cdot \alpha_{A}(b)) \cdot \alpha_{A}^{2}(c)}_{11} + \underbrace{(v \diamond a) \cdot \alpha_{A}(b)}_{11} + \underbrace{(v \diamond a)$$

which is (18).

The following result will be used below. It gives a relation between Hom-associative modules and special Hom-Jordan modules.

LEMMA 4.11. Let (A, μ, α_A) be a Hom-associative algebra and (V, α_V) be a Hom-module.

- (i) If (V, α_V) is a right Hom-associative A-module with the structure maps ρ_r then (V, α_V) is a right special Hom-Jordan A^+ -module with the same structure map ρ_r .
- (ii) If (V, α_V) is a left Hom-associative A-module with the structure maps ρ_l then (V, α_V) is a left special Hom-Jordan A^+ -module with the same structure map ρ_l .

Proof. It also suffices to prove (14) and (15).

- (i) If (V, α_V) is a right Hom-associative A-module with the structure map ρ_r then for all $(x, y, v) \in A \times A \times V$, $\alpha_V(v) \cdot (a*b) = \alpha_V(v) \cdot (ab) + \alpha_V(v) \cdot (ba) = (v \cdot a) \cdot \alpha_A(b) + (v \cdot b) \cdot \alpha_A(a)$ where the last equality holds by (5). Then (V, α_V) is a right special Hom-Jordan A^+ -module.
- (ii) If (V, α_V) is a left Hom-associative A-module with the structure map ρ_l then for all $(x, y, v) \in A \times A \times V$, $(a*b) \cdot \alpha_V(v) = (ab) \cdot \alpha_V(v) + (ba) \cdot \alpha_V(v) = \alpha_A(a) \cdot (b \cdot v) + \alpha_A(b) \cdot (a \cdot v)$ where the last equality holds by (4). Then (V, α_V) is a left special Hom-Jordan A^+ -module.

Now, we prove that a Hom-associative module gives rise to a Hom-Jordan module for its plus Hom-algebra.

PROPOSITION 4.12. Let (A, μ, α_A) be a Hom-associative algebra and $(V, \rho_1, \rho_2, \alpha_V)$ be a Hom-associative A-bimodule. Then $(V, \rho_l, \rho_r, \alpha_V)$ is a Hom-Jordan A^+ -bimodule where ρ_l and ρ_r are defined as in (22).

Proof. The proof follows from Lemma 4.11 , the Hom-associativity condition (6) and Theorem 4.10. \blacksquare

The following elementary result will be used below. It gives a property of a module Hom-associator.

LEMMA 4.13. Let (A, μ, α_A) be a Hom-Jordan algebra and (V, α_V) be an Hom-Jordan A-bimodule with the structure maps ρ_l and ρ_r . Then

$$\alpha_V^n \circ as_{A,V} \circ Id_{A \otimes V \otimes A} = as_{A,V} \circ (\alpha_A^{\otimes n} \otimes \alpha_V^{\otimes n} \otimes \alpha_A^{\otimes n}). \tag{23}$$

Proof. Using twice the fact that ρ_l and ρ_r are morphisms of Hom-modules, we get

$$\alpha_{V}^{n} \circ as_{A,V} \circ Id_{A \otimes V \otimes A}$$

$$= \alpha_{V}^{n} \circ (\rho_{r} \circ (\rho_{l} \otimes \alpha_{A}) - \rho_{l} \circ (\alpha_{A} \otimes \rho_{r}))$$

$$= \alpha_{V}^{n} \circ \rho_{r} \circ (\rho_{l} \otimes \alpha_{A}) - \alpha_{V}^{n} \circ \rho_{l} \circ (\alpha_{A} \otimes \rho_{r}) \quad \text{(linearity of } \alpha_{V}^{n})$$

$$= \rho_{r} \circ (\alpha_{V}^{n} \circ \rho_{l} \otimes \alpha_{A}^{n+1}) - \rho_{l} \circ (\alpha_{A}^{n+1} \otimes \alpha_{V}^{n} \circ \rho_{r})$$

$$= \rho_{r} \circ (\rho_{l} \circ (\alpha_{A}^{n} \otimes \alpha_{V}^{n}) \otimes \alpha_{A}^{n+1}) - \rho_{l} \circ (\alpha_{A}^{n+1} \otimes \rho_{r} \circ (\alpha_{V}^{n} \otimes \alpha_{A}^{n}))$$

$$= (\rho_{r} \circ (\rho_{l} \otimes \alpha_{A}) - \rho_{l} \circ (\alpha_{A} \otimes \rho_{r})) \circ (\alpha_{A}^{\otimes n} \otimes \alpha_{V}^{\otimes n} \otimes \alpha_{A}^{\otimes n})$$

$$= as_{A,V} \circ (\alpha_{A}^{\otimes n} \otimes \alpha_{V}^{\otimes n} \otimes \alpha_{A}^{\otimes n}).$$

That ends the proof.

The next result is similar to the one of Proposition 3.7, but an additional condition is needed.

PROPOSITION 4.14. Let (A, μ, α_A) be a Hom-Jordan algebra and (V, α_V) be a Hom-Jordan A-bimodule with the structure maps ρ_l and ρ_r . Suppose that there exists $n \in \mathbb{N}$ such that $\alpha_V^n = Id_V$. Then the maps

$$\rho_l^{(n)} = \rho_l \circ (\alpha_A^n \otimes Id_V), \qquad (24)$$

$$\rho_r^{(n)} = \rho_r \circ (Id_V \otimes \alpha_A^n) \tag{25}$$

give the Hom-module (V, α_V) the structure of a Hom-Jordan A-bimodule that we denote by $V^{(n)}$.

Proof. Since the structure map ρ_l is a morphism of Hom-modules, we get:

$$\alpha_{V} \circ \rho_{l}^{(n)} = \alpha_{V} \circ \rho_{l} \circ (\alpha_{A}^{n} \otimes Id_{V}) \quad \text{(by (24))}$$

$$= \rho_{l} \circ (\alpha_{A}^{n+1} \otimes \alpha_{V})$$

$$= \rho_{l} \circ (\alpha_{A}^{n} \otimes Id_{V}) \circ (\alpha_{A} \otimes \alpha_{V})$$

$$= \rho_{l}^{(n)} \circ (\alpha_{A} \otimes \alpha_{V})$$

Then, $\rho_l^{(n)}$ is a morphism. Similarly, we get that $\rho_r^{(n)}$ is a morphism and that (16) holds for $V^{(n)}$. Next, we compute

Then we get (19) for $V^{(n)}$. Finally remarking that

$$\begin{split} as_{A,V^{(n)}}(\rho_r^n(v,a),\alpha_A(b),\alpha_A(c)) \\ &= as_{A,V^{(n)}}(v\cdot\alpha_A^n(a),\alpha_A(b),\alpha_A(c)) \\ &= \rho_r^n(\rho_r^n(v\cdot\alpha_A^n(a),\alpha_A(b),\alpha_A^2(c)) - \rho_r^n(\alpha_V(v)\cdot\alpha_A^{n+1}(a),\mu(\alpha_A(b),\alpha(A(c))) \\ &= \rho_r(\rho_r(v\cdot\alpha_A^n(a),\alpha_A^{n+1}(b),\alpha_A^{n+2}(c)) \\ &- \rho_r(\alpha_V(v)\cdot\alpha_A^{n+1}(a),\mu(\alpha_A^{n+1}(b),\alpha_A^{n+1}(c)) \\ &= \alpha_{A,V}(v\cdot\alpha_A^n(a),\alpha_A^{n+1}(b),\alpha_A^{n+1}(c)) \,, \end{split}$$

and similarly

$$\begin{split} as_{A,V^{(n)}}(\rho_r^n(v,c),\alpha_A(b),\alpha_A(a)) &= as_{A,V}(v\cdot\alpha_A^n(c),\alpha_A^{n+1}(b),\alpha_A^{n+1}(a))\,,\\ as_{A,V^{(n)}}(ac,\alpha_A(b),\alpha_V(v)) &= as_{A,V}(\alpha_A^n(a)\alpha_A^n(c),\alpha_A^{n+1}(b),\alpha_V(v)) \end{split}$$

(20) is proved for $V^{(n)}$ as it follows:

$$\begin{split} as_{A,V^{(n)}}(\rho_r^n(v,a),\alpha_A(b),\alpha_A(c)) + as_{A,V^{(n)}}(\rho_r^n(v,c),\alpha_A(b),\alpha_A(a)) \\ &\quad + as_{A,V^{(n)}}(ac,\alpha_A(b),\alpha_V(v)) \\ &= \alpha_V(v \cdot \alpha_A^n(a),\alpha_A^{n+1}(b),\alpha_A^{n+1}(c)) + as_{A,V}(v \cdot \alpha_A^n(c),\alpha_A^{n+1}(b),\alpha_A^{n+1}(a)) \\ &\quad + as_{A,V}(\alpha_A^n(a)\alpha_A^n(c),\alpha_A^{n+1}(b),\alpha_V(v)) \end{split}$$

$$= \alpha_V(v \cdot \alpha_A^n(a), \alpha_A(\alpha_A^n(b)), \alpha_A(\alpha_A^n(c)))$$

$$+ as_{A,V}(v \cdot \alpha_A^n(c), \alpha_A(\alpha_A^n(b)), \alpha_A(\alpha_A^n(a)))$$

$$+ as_{A,V}(\alpha_A^n(a)\alpha_A^n(c), \alpha_A(\alpha_A^n(b)), \alpha_V(v))$$

$$= 0 \text{(by (20) in } V).$$

We conclude that $V^{(n)}$ is a Hom-Jordan A-bimodule.

EXAMPLE 4.15. Consider the Hom-Jordan algebra \mathcal{A}^+ of the Examples 2.10 and the subspace $V = \operatorname{span}(e_1, e_3)$ of A. Then (V, μ_V, α_V) is a Homideal of \mathcal{A}^+ where $\mu_V = \mu_{A|_V}$ and $\alpha_V = \alpha_{A|_V}$. It follows that $(V, \rho_l, \rho_r, \alpha_V)$ is a Hom-Jordan \mathcal{A}^+ -bimodule where ρ_l and ρ_r are defined as in Examples 4.7. We have $\alpha_V^2 = Id_V$, then by Proposition 4.14, the structure maps $\rho_l^{(2)} = \rho_l \circ (\alpha_A^2 \otimes Id_V)$ and $\rho_r^{(2)} = \rho_r \circ (Id_V \otimes \alpha_A^2)$ give the Hom-module (V, α_V) the structure of a Hom-Jordan \mathcal{A}^+ -bimodule that we denote by $V^{(2)}$.

COROLLARY 4.16. Let (A, μ, α_A) be a Hom-Jordan algebra and (V, α_V) be a Hom-Jordan A-bimodule with the structure maps ρ_l and ρ_r such that α_V is an involution. Then (V, α_V) is a Hom-Jordan A-bimodule with the structure maps $\rho_l^{(2)} = \rho_l \circ (\alpha_A^2 \otimes Id_V)$ and $\rho_r^{(2)} = \rho_r \circ (Id_V \otimes \alpha_A^2)$.

EXAMPLE 4.17. Consider the Hom-Jordan algebra \mathcal{B}^+ of the Examples 2.10 and the subspace $V = \operatorname{span}(e_1, e_2)$ of B. Then (V, μ_V, α_V) is a Hom-ideal of \mathcal{B}^+ where $\mu_V = \mu_{B|_V}$ and $\alpha_V = \alpha_{B|_V}$. Therefore $(V, \rho_l, \rho_r, \alpha_V)$ is a Hom-Jordan \mathcal{B}^+ -bimodule where ρ_l and ρ_r are defined as in Examples 4.7. Note that α_V is involutive, i.e., $\alpha_V^2 = Id_V$, then by Corollary 4.16, the structure maps $\rho_l^{(2)} = \rho_l \circ (\alpha_B^2 \otimes Id_V)$ and $\rho_r^{(2)} = \rho_r \circ (Id_V \otimes \alpha_B^2)$ give the Hom-module (V, α_V) the structure of a Hom-Jordan \mathcal{B}^+ -bimodule.

The following result is similar to theorem 3.8. It says that Jordan bimodules can be deformed into Hom-Jordan bimodules via an endomorphism.

Theorem 4.18. Let (A, μ) be a Jordan algebra, V be a Jordan A-bimodule with the structure maps ρ_l and ρ_r , α_A be an endomorphism of the Jordan algebra A and α_V be a linear self-map of V such that $\alpha_V \circ \rho_l = \rho_l \circ (\alpha_A \otimes \alpha_V)$ and $\alpha_V \circ \rho_r = \rho_r \circ (\alpha_V \otimes \alpha_A)$. Write A_{α_A} for the Hom-Jordan algebra $(A, \mu_{\alpha_A}, \alpha_A)$ and V_{α_V} for the Hom-module (V, α_V) . Then the maps:

$$\tilde{\rho}_l = \alpha_V \circ \rho_l$$
 and $\tilde{\rho}_r = \alpha_V \circ \rho_r$

give the Hom-module V_{α_V} the structure of a Hom-Jordan A_{α_A} -bimodule.

Proof. It is easy to prove that the relation (16) for V_{α_V} holds and both maps $\tilde{\rho}_l$, $\tilde{\rho}_r$ are morphisms. Remarking that

$$as_{A,V_{\alpha_V}} = \alpha_V^2 \circ as_{A,V} \tag{26}$$

we first compute

$$\circlearrowleft_{(a,b,c)} as_{A,V_{\alpha_V}}(\alpha_A(a), \alpha_V(v), \mu_{\alpha_A}(b,c))
= \circlearrowleft_{(a,b,c)} \alpha_V^2(as_{A,V}(\alpha_A(a), \alpha_V(v), \alpha_A(bc))) \quad \text{(by (26))}
= \circlearrowleft_{(a,b,c)} \alpha_V^3((as_{A,V}(a,v,bc)) \quad \text{(by (23))}
= \alpha_V^3(\circlearrowleft_{(a,b,c)} (as_{A,V}(a,v,bc))
= 0 \quad \text{(by (19) in } V)$$

and then, we get (19) for V_{α_V} . Finally, we get

$$as_{A,V_{\alpha_{V}}}(\tilde{\rho_{r}}(v,a),\alpha_{A}(b),\alpha_{A}(c)) + as_{A,V_{\alpha_{V}}}(\tilde{\rho_{r}}(v,c),\alpha_{A}(b),\alpha_{A}(a)) \\ + as_{A,V_{\alpha_{V}}}(\mu_{\alpha_{A}}(a,c),\alpha_{A}(b),\alpha_{V}(v)) \\ = \alpha_{V}^{2}(as_{A,V}(\tilde{\rho_{r}}(v,a),\alpha_{A}(b),\alpha_{A}(c))) + \alpha_{V}^{2}(as_{A,V}(\tilde{\rho_{r}}(v,c),\alpha_{A}(b),\alpha_{A}(a))) \\ + \alpha_{V}^{2}(as_{A,V}(\mu_{\alpha_{A}}(a,c),\alpha_{A}(b),\alpha_{V}(v))) \quad \text{(by (26))} \\ = \alpha_{V}^{2}(as_{A,V}(\alpha_{V}(v\cdot a),\alpha_{A}(b),\alpha_{A}(c))) \\ + \alpha_{V}^{2}(as_{A,V}(\alpha_{V}(v\cdot c),\alpha_{A}(b),\alpha_{A}(a))) \\ + \alpha_{V}^{2}(as_{A,V}(\alpha_{A}(ac),\alpha_{A}(b),\alpha_{V}(v))) \\ = \alpha_{V}^{3}(as_{A,V}(v\cdot a,b,c)) + \alpha_{V}^{3}(as_{A,V}(v\cdot c,b,a)) \\ + \alpha_{V}^{3}(as_{A,V}(ac,b,v)) \quad \text{(by 23)} \\ = \alpha_{V}^{3}(as_{A,V}(v\cdot a,b,c) + as_{A,V}(v\cdot c,b,a) + as_{A,V}(ac,b,v)) \\ = 0 \quad \text{(by (20) in } V)$$

which is (20) for V_{α_V} . Therefore the Hom-module V_{α_V} has a Hom-Jordan A_{α_A} -bimodule structure.

COROLLARY 4.19. Let (A, μ) be a Jordan algebra, V be a Jordan A-bimodule with the structure maps ρ_l and ρ_r , α_A be an endomorphism of the Jordan algebra A and α_V be a linear self-map of V such that $\alpha_V \circ \rho_l = \rho_l \circ (\alpha_A \otimes \alpha_V)$ and $\alpha_V \circ \rho_r = \rho_r \circ (\alpha_V \otimes \alpha_A)$.

Moreover, suppose that there exists $n \in \mathbb{N}$ such that $\alpha_V^n = Id_V$. Write A_{α_A} for the Hom-Jordan algebra $(A, \mu_{\alpha_A}, \alpha_A)$ and V_{α_V} for the Hom-module

 (V, α_V) . Then the maps:

$$\tilde{\rho}_l^{(n)} = \rho_l \circ (\alpha_A^{n+1} \otimes \alpha_V) \text{ and } \tilde{\rho}_r^{(n)} = \rho_r \circ (\alpha_V \otimes \alpha_A^{n+1})$$
 (27)

give the Hom-module V_{α} the structure of a Hom-Jordan A_{α_A} -bimodule for each $n \in \mathbb{N}$.

Proof. The proof follows from Proposition 4.14 and Theorem 4.18.

Similarly to Hom-alternative algebras, the split null extension, determined by the given bimodule over a Hom-Jordan algebra, is constructed as follows:

THEOREM 4.20. Let (A, μ, α_A) be a Hom-Jordan algebra and (V, α_V) be a Hom-Jordan A-bimodule with the structure maps ρ_l and ρ_r . Then $(A \oplus V, \tilde{\mu}, \tilde{\alpha})$ is a Hom-Jordan algebra where

$$\tilde{\mu}: (A \oplus V)^{\otimes 2} \to A \oplus V, \ \tilde{\mu}(a+m,b+n) := ab+a \cdot n + m \cdot b \ \text{and} \ \tilde{\alpha}: A \oplus V \to A \oplus V, \ \tilde{\alpha}(a+m) := \alpha_A(a) + \alpha_V(m)$$

Proof. First, the commutativity of $\tilde{\mu}$ follows from the one of μ . Next, the multiplicativity of $\tilde{\alpha}$ with respect to $\tilde{\mu}$ follows from the one of α with respect to μ and the fact that ρ_l and ρ_r are morphisms of Hom-modules. Finally, we prove the Hom-Jordan identity (3) for $E = A \oplus V$ as it follows

$$\begin{split} as_E(\tilde{\mu}(x+m,x+m),\tilde{\alpha}(y+n),\tilde{\alpha}(x+m)) \\ &= \tilde{\mu}(\tilde{\mu}(\tilde{\mu}(x+m,x+m),\tilde{\alpha}(y+n)),\tilde{\alpha}^2(x+m)) - \tilde{\mu}(\tilde{\alpha}(\tilde{\mu}(x+m,x+m)),\\ & \tilde{\mu}(\tilde{\alpha}(y+n),\tilde{\alpha}(x+m))) \\ &= \tilde{\mu}(\tilde{\mu}(x^2+x\cdot m+m\cdot x,\alpha_A(y)-\tilde{\mu}(\alpha_A(x^2)+\alpha_V(n)),\alpha_A^2(x)+\alpha_V^2(m)) \\ &+ \alpha_V(x\cdot m) + \alpha_V(m\cdot x),\tilde{\mu}(\alpha_A(y)+\alpha_V(n),\alpha_A(x)+\alpha_V(m))) \\ &= \tilde{\mu}(x^2\alpha_A(y)+x^2\cdot\alpha_V(n)+(x\cdot m)\cdot\alpha_A(y)+(m\cdot x)\cdot\alpha_A(y),\alpha_A^2(x) \\ &+ \alpha_V^2(m))-\tilde{\mu}(\alpha_A^2(x^2)+\alpha_V(x\cdot m)+\alpha_V(m\cdot x),\alpha_A(y)\alpha_A(x) \\ &+ \alpha_A(y)\cdot\alpha_V(m)+\alpha_V(n)\cdot\alpha_A(x)) \\ &= (x^2\alpha_A(y))\alpha_A^2(x)+(x^2\alpha_A(y))\cdot\alpha_V^2(m)+(x^2\cdot\alpha_V(n))\cdot\alpha_A^2(x) \\ &+((x\cdot m)\cdot\alpha_A(y))\cdot\alpha_A^2(x)+((m\cdot x)\cdot\alpha_A(y))\cdot\alpha_A^2(x)) \\ &-\alpha_A(x^2)(\alpha_A(y)\alpha_A(x))-\alpha_A(x^2)\cdot(\alpha_A(y)\cdot\alpha_V(m)) \\ &-\alpha_A(x^2)\cdot(\alpha_V(n)\cdot\alpha_A(x))-\alpha_V(x\cdot m)\cdot(\alpha_A(y)\alpha_A(x)) \\ &-\alpha_V(m\cdot x)\cdot(\alpha_A(y)\alpha_A(x)) \end{split}$$

$$= as_{A}(x^{2}, \alpha_{A}(y), \alpha_{A}(x)) + as_{A,V}(x^{2}, \alpha_{A}(y), \alpha_{V}(m))$$

$$+ as_{A,V}(x^{2}, \alpha_{V}(n), \alpha_{A}(x)) + as_{A,V}(x \cdot m, \alpha_{A}(y), \alpha_{A}(x))$$

$$+ as_{A,V}(m \cdot x, \alpha_{A}(y), \alpha_{A}(x))$$

$$= \underbrace{as_{A,V}(m \cdot x, \alpha_{A}(y), \alpha_{A}(x)) + as_{A,V}(m \cdot x, \alpha_{A}(y), \alpha_{A}(x))}_{0}$$

$$+ \underbrace{as_{A,V}(x^{2}, \alpha_{V}(n), \alpha_{A}(x)) + as_{A,V}(x^{2}, \alpha_{A}(y), \alpha_{V}(m))}_{0}$$

$$+ \underbrace{as_{A,V}(x^{2}, \alpha_{A}(y), \alpha_{A}(x))}_{0} = 0,$$

where the first 0 follows from (20), the second from (19) (see Remarks 4.6) and the last from the Hom-Jordan identity (3) in A. We conclude then that $(A \oplus V, \tilde{\mu}, \tilde{\alpha})$ is a Hom-Jordan algebra.

Similarly as Hom-alternative algebra case, let give the following:

Remark 4.21. Consider the split null extension $A \oplus V$ determined by the Hom-Jordan bimodule (V, α_V) for the Hom-Jordan algebra (A, μ, α_A) in the previous theorem. Write elements a+v of $A \oplus V$ as (a,v). Then there is an injective homomorphism of Hom-modules $i: V \to A \oplus V$ given by i(v) = (0,v) and a surjective homomorphism of Hom-modules $\pi: A \oplus V \to A$ given by $\pi(a,v)=a$. Moreover, i(V) is a Hom-ideal of $A \oplus V$ such that $A \oplus V/i(V) \cong A$. On the other hand, there is a morphism of Hom-algebras $\sigma: A \to A \oplus V$ given by $\sigma(a)=(a,0)$ which is clearly a section of π . Hence, we obtain the abelian split exact sequence of Hom-Jordan algebras and (V,α_V) is a Hom-Jordan bimodule for A via π .

References

- H. ATAGUEMA, A. MAKHLOUF, S.D. SILVESTROV, Generalization of nary Nambu algebras and beyond, J. Math. Phys. 50 (8) (2009), 083501, 15 pp.
- [2] I. BAKAYOKO, B. MANGA, Hom-alternative modules and Hom-Poisson comodules. arXiv:1411.7957v1
- [3] S. EILENBERG, Extensions of general algebras, Ann. Soc. Polon. Math. 21 (1948), 125-34.
- [4] F. GÜRSEY, C.-H. TZE, On The Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

- [5] N. HUANG, L.Y. CHEN, Y. WANG, Hom-Jordan algebras and their α^k -(a, b, c)-derivations, Comm. Algebra **46** (6) (2018), 2600 2614.
- [6] J.T. HARTWIG, D. LARSSON, S.D. SILVESTROV, Deformations of Lie algebras using σ-derivations, J. Algebra 292 (2006), 314 – 361.
- [7] N. JACOBSON, General representation theory of Jordan algebras, *Trans. Amer. Math. Soc.* **70** (1951), 509 530.
- [8] N. JACOBSON, Structure of alternative and Jordan bimodules, Osaka Math. J. 6 (1954), 1-71.
- [9] P. JORDAN, J. VON NEUMANN, E. WIGNER, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. (2) 35 (1934), 29-64.
- [10] D. LARSSON, S.D. SILVESTROV, Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288 (2005), 321–344.
- [11] D. LARSSON, S.D. SILVESTROV, Quasi-Lie algebras, in "Noncommutative Geometry and Representation Theory in Mathematical Physics", Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 241–248.
- [12] D. LARSSON, S.D. SILVESTROV, Quasi-deformations of sl₂(F) using twisted derivations, Comm. Algebra 35 (12) (2007), 4303 – 4318.
- [13] A. MAKHLOUF, S. SILVESTROV, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (4) (2010), 715 – 739.
- [14] A. Makhlouf, Hom-Alternative algebras and Hom-Jordan algebras, *Int. Electron. J. Algebra* 8 (2010), 177–190.
- [15] A. Makhlouf, S.D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64.
- [16] S. OKUBO, "Introduction to Octonion and other Non-associative Algebras in Physics", Cambridge University Press, Cambridge, 1995.
- [17] R.D. Schafer, Representations of alternative algebras, *Trans. Amer. Math. Soc.* **72** (1952), 1–17.
- [18] Y. Sheng, Representation of hom-Lie algebras, Algebr. Represent. Theory 15 (6) (2012), 1081–1098.
- [19] T.A. Springer, F.D. Veldkamp, "Octonions, Jordan Algebras, and Exceptional Groups", Springer-Verlag, Berlin, 2000.
- [20] J. Tits, R.M. Weiss, "Moufang Polygons", Springer-Verlag, Berlin, 2002.
- [21] D. YAU, Hom-algebras and homology. arXiv:0712.3515v1
- [22] D. YAU, Module Hom-algebras. arXiv:0812.4695v1
- [23] D. YAU, Hom-Maltsev, Hom-alternative and Hom-Jordan algebras, Int. Electron. J. Algebra 11 (2012), 177 – 217.
- [24] A. ZAHARY, A. MAKHLOUF, Structure and classification of Hom-associative algebras. arXiv:1906.04969V1[math.RA]