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1. Introduction

The multifractal formalism of a measure µ aims to establish a relationship
between the dimension of level set of the local Hölder exponent of µ to the
Legendre transform of what is called the ”free energy” function. A problem
initially raised and studied for physical motivations [8, 9, 11, 12, 10]. It will
be convenient to give a brief description of the multifractal formalism. Let X
be a metric space. The local Hölder exponent αµ(x) at the point x ∈ X is
defined to be

αµ(x) = lim
r→0

logµ(B(x, r))

log r

where B(x, r) stands for the ball of radius r centered at x. The measure µ is
said to satisfy the multifractal formalism at α ≥ 0, if the Hausdorff dimension
(dim) and the packing dimension (Dim) of the level set E(α) which is defined
by

E(α) = {x ∈ supp(µ) : αµ(x) = α} ,
are equal respectively to the value of the Legendre transform at α of a scale
function τµ associated to the measure µ, i.e.,

dimE(α) = DimE(α) = τ∗µ(α),
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where f∗(x) = inf
y

(xy + f(y)) is the Legendre transform of a function f and

supp(µ) is the topological support of µ.
The upper bound for dimE(α) (respectively DimE(α)) is obtained by a

standard covering argument as Besicovisch’s covering Theorem and Vitali’s
Lemma [13]. However, the lower bound is usually much harder to prove, it is
related to the existence of an auxiliary measure such as a Gibbs measure [13]
or a Frostman measure [3] which is supported by the set to be analyzed.

For this reason, F. Ben Nasr et al. [4] improved the Olsen’s result in de-
scribing a class of measures satisfying the multifractal formalism and proposed
a new sufficient condition that gives the lower bound. In such a situation,
they concluded that Bµ(q) = bµ(q), where bµ and Bµ are Olsen’s functions.
Besides, they constructed inhomogeneous Bernoulli products, such measures
whose both multifractal dimension functions bµ and Bµ agree at one or two
points only. Which implies a valid refined multifractal formalism no more
than two points. In [5], Ben Nasr and Peyrière constructed an example of
a “bad” measure on the interval {0, 1}N for which the Olsen’s functions bµ
and Bµ differ and the Hausdorff dimensions of the sets E(α) are given by
the Legendre transform of bµ, and their packing dimensions by the Legendre
transform of Bµ, i.e., bµ(q) < Bµ(q) for all q ∈ {0, 1} and

dimE(α) = b∗µ(α) and DimE(α) = B∗µ(α), for some α ≥ 0.

Shen [14] and Wu et al. [17, 18, 19] revisited this example such that the
functions Bµ and bµ can be real analytic. Motivated by these examples N.
Attia and B. Selmi [1, 2] introduced and studied a new multifractal formalism
based on the Hewitt-Stromberg measures and showed that this formalism is
completely parallel to Olsen’s multifractal formalism based on the Hausdorff
and packing measures.

In the present work, let 2 ≤ r1 < r2 be two integers, we consider a class
of measures defined on a product symbolic space A1 × A2 endowed with the
distance product where Ai = {0, . . . , ri − 1} for i = 1, 2, and constructed on
the rectangles that flatten as their diameters tend to zero. However, these
rectangles do not allow the calculation of the Hausdorff dimension, hence the
difficulty of the problem. The aim of this paper is to study the validity of the
refined multifractal formalism of this class of measures.

The paper is organized as follows. In Section 2, we give some notations and
definitions which will be useful. In the third section we consider a sequence
of finite partitions of a product symbolic space made of rectangles and we
show through an example that the almost squares allow the calculation of the
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Hausdorff and packing dimensions. In Section 4, we consider a variant of the
refined multifractal formalism as already introduced by Ben Nasr and Peyrière
[5] which we adapt it to almost squares and estimate the dimensions of the
level sets E(α). Finally, we apply our results to a class of inhomogeneous
measures defined on the product symbolic space.

2. Notations and definitions

In this section, we will recall the Hausdorff and packing measures and
their dimensions. Let (X, d) be a separable metric space. The diameter of a
non-empty set E ⊆ X is given by

diamE = sup {d(x, y) : x, y ∈ E} ,

with the convention that diam(∅) = 0.

We define the closed ball with center x ∈ X and radius r > 0 as

B(x, r) = {y ∈ X : d(x, y) ≤ r} .

A finite or countable collection of subsets {Ui}i of X is called a δ-cover of
E ⊆ X, if for each i we have diamUi ≤ δ and E ⊂

⋃
i Ui.

Suppose that E is a subset of X and s is a non-negative number. For any
δ > 0 we define

Hsδ(E) = inf

{∑
i

diam(Ui)
s : {Ui}i is a δ-cover of E

}
.

As δ decreases, the class of δ-covers of E is reduced. Therefore, this infimum
increases and approaches a limit as δ ↘ 0. Thus we define

Hs(E) = lim
δ→0
Hsδ(E).

We term Hs(E) the s-dimensional Hausdorff measure of E. Then we define
the Hausdorff dimension of E as

dim(E) = sup {s ≥ 0 : Hs(E) =∞} = inf {s ≥ 0 : Hs(E) = 0} .

Remark 1. Notice that the covering of E with centered balls in E allow
the calculation of the Hausdorff dimension of E, for more details see [7].
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We will now define the packing measure. First, let define a δ-packing of
E ⊂ X to be a finite or countable collection of disjoint balls {B(xi, ri)}i of
diameter at most δ and with centers in E. For s ≥ 0 and δ > 0, let

Psδ(E) = sup

{∑
i

(2ri)
s : {B(xi, ri)}i is a δ-packing of E

}
.

From this the s-dimensional pre-packing measure Ps of E is defined by

Ps(E) = lim
δ→0
Psδ(E).

Finally, we define the s-dimensional packing measure Ps(E) of E by

Ps(E) = inf

{∑
i

Ps(Ei) : E ⊂
∞⋃
i=1

Ei

}
.

The packing dimension of E, denoted by Dim(E), is defined in the same way
as Hausdorff dimension, that means

Dim(E) = sup {s ≥ 0 : Ps(E) =∞} = inf {s ≥ 0 : Ps(E) = 0} .

For more details about the Hausdorff, packing measures and their dimen-
sions see [15, 16, 7].

3. Calculation of the Hausdorff and packing dimensions on the
product symbolic space on different basis

For practical reasons, we shall need basic notions about the set of words
on an alphabet. Let 2 ≤ r1 < r2 be two integers. For i ∈ {1, 2}, given
Ai = {0, . . . , ri − 1} a finite alphabet. For all n ∈ N∗, each element in Ani
is denoted by a string of n letters or digits in Ai that we call a word; by
convention A0

i is reduced to the empty word ∅. Let A∗i =
⋃
n≥0A

n
i be the set

of finite words built over Ai and Ai = AN∗
i the symbolic space over Ai.

The set A∗i ∪ Ai is endowed with the concatenation operation: If ω ∈ A∗i
and ω′ ∈ A∗i ∪ Ai, we denote by ω.ω′ the word obtained by juxtaposition of
the two words ω and ω′.

For each finite word ω ∈ A∗i , [ω] is the cylinder ω ·Ai = {ω · ω′ : ω′ ∈ Ai}.
Furthermore, if ω = ω1 · · ·ωk · · · ∈ Ai and n ∈ N then ω|n stands for the
prefix ω1 · · ·ωn of ω for n ≥ 1 and the empty word otherwise. Each set Ai
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is endowed with the ultrametric distance di : (z, z′) ∈ A2
i 7−→ r

−|z∧z′|
i , where

z ∧ z′ is defined to be the longest prefix common to both z and z′ and |z| the
length of a word z ∈ A∗i ∪ Ai. Then the product symbolic space A1 × A2 is
endowed with the ultrametric distance.

d((x, y), (x′, y′)) = max(d1(x, x′), d2(y, y′)).

In the next, if ω ∈ Ak1 and ω′ ∈ Ak′2 , we call R(ω, ω′) the rectangle obtained
as the product of the cylinders [ω] and [ω′]. We denote by

∣∣R(ω, ω′)
∣∣
M

= sup

(
1

rk1
,

1

rk
′

2

)
,

and ∣∣R(ω, ω′)
∣∣
m

= inf

(
1

rk1
,

1

rk
′

2

)
.

We say that a sequence {ξn}n≥1 of finite partitions of A1 × A2 made of
rectangles satisfies condition (1) if

lim
n→∞

sup
R∈ξn

diam(R) = 0 and ξn+1 is a refinement of ξn. (1)

In all over this work, we will consider a sequence {ξn}n≥1 of finite partitions
of A1 × A2 made of rectangles verifying (1) and we put ξ =

⋃
n≥1 ξn. If R

belongs to ξn+1, we define by p(R) the element of ξn that contains it.

Let E be a nonempty subset of A1 × A2 and s a strictly positive real
number. For all ε > 0, a finite or countable collection of rectangles {Rj}j is
called an ε-covering of E if diam(Rj) ≤ ε for all j and E ⊂

⋃
j Rj .

Let

Hsξ,ε(E) = inf

∑
j

diam(Rj)
s : Rj ∈ ξ, {Rj}j is an ε-covering of E


and

Hsξ(E) = lim
ε→0
Hsξ,ε(E).

Finally, the dimension dimξ(E) is given by

dimξ(E) = inf
{
s > 0 : Hsξ(E) = 0

}
= sup

{
s > 0 : Hsξ(E) =∞

}
.
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Here, we define an ε-packing of E ⊂ A1 × A2 to be a finite or countable
collection of disjoint rectangles {Rj}j of diameter not exceeding ε and with
Rj ∩ E 6= ∅. For ε > 0, we define

Psξ,ε(E) = sup

∑
j

diam(Rj)
s : Rj ∈ ξ, {Rj}j is an ε-packing of E

 .

Then Psξ,ε(E) decreases as ε increases, so we may take the limit

Psξ(E) = lim
ε→0
Psξ,ε(E).

Unfortunately, Psξ(E) is not an outer measure, to overcome this difficulty
we define

Psξ (E) = inf

∑
j

Psξ(Ej) : E ⊆
⋃
j

Ej

 .

The definition of packing dimension parallels that of Hausdorff dimension. So,
let Dimξ(E) defined such that

Dimξ(E) = inf
{
s > 0 : Psξ (E) = 0

}
= sup

{
s > 0 : Psξ (E) =∞

}
.

In the following proposition we will give some conditions on a family ξ of
rectangles of the symbolic space A1×A2 such that for every part E of A1×A2,
we have

dim(E) = dimξ(E) and Dim(E) = Dimξ(E).

Proposition 3.1. Suppose that

(i) lim
n→∞

sup
R∈ξn

log |R |m / log |R |M = 1,

(ii) lim
n→∞

sup
R∈ξn

log |R |M / log |p(R)|M = 1.

Then for any part E of A1 × A2, we have

Dimξ(E) = Dim(E), (2)

dimξ(E) = dim(E). (3)
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Proof. In order to prove the equality (2), we start by proving that
Dimξ(E) ≤ Dim(E).

Let t > Dim(E) and η > 0 such that t
1+η > Dim(E). It follows from

assumption (i) that there exists an integer n0 such that for all n ≥ n0 and for
all R ∈ ξn, we have

|R|1+η
M ≤ |R|m .

Take {Ej}j a cover of E and choose {Rk}k an ε-packing of Ej with
ε ≤ inf

R∈ξn0
diam(R). For j ∈ N, fix xk ∈ Rk ∩ Ej , we denote by Bk =

B(xk, |Rk|m). It is clear that {Bk}k is an ε-packing of Ej .

As ε ≤ inf
R∈ξn0

diam(R) we get for all integer k,

|Rk|1+η
M ≤ |Rk|m (4)

and ∑
k

diam(Rk)
t ≤

∑
k

diam(Bk)
t

1+η .

Then,

Ptξ,ε(Ej) ≤ P
t

1+η
ε (Ej)

and as ε goes to 0, yields

Ptξ(Ej) ≤ P
t

1+η (Ej).

Therefore,

Ptξ(E) ≤ P
t

1+η (E) < +∞

consequently,

Dimξ(E) < t , for all t > Dim(E),

which implies that

Dimξ(E) ≤ Dim(E).

In order to obtain the other inequality, fix t > Dimξ(E) and η > 0 such
that t

1+η > Dimξ(E). Using assumption (ii) there exists an integer n0 such
that for all n ≥ n0 and for all R ∈ ξn, we have

|P (R)|1+η
M ≤ |R |M . (5)
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Let {Ej}j be a cover of E and {Bk = B(xk, rk)}k an ε-packing of Ej with
ε ≤ inf

R∈ξn0
diam(R). If Rk is a rectangle such that

Rk ⊂ B(xk, rk) and P (Rk) * B(xk, rk), (6)

then {Rk}k is an ε-packing of Ej . Since ε ≤ inf
R∈ξn0

diam(R), we have for all

k ∈ N,

|P (Rk)|1+η
M ≤ |Rk|M . (7)

Taking into account relations (6) and (7), we have∑
k

diam(Bk)
t ≤

∑
k

diam(P (Rk))
t ≤

∑
k

diam(Rk)
t

1+η .

So,

Ptε(Ej) ≤ P
t

1+η

ξ,ε (Ej).

As ε goes to zero,

Pt(Ej) ≤ P
t

1+η

ξ (Ej).

Then, we obtain

Pt(E) ≤ P
t

1+η

ξ (E) < +∞.

Hence,

Dim(E) ≤ Dimξ(E)

which achieves the proof of equality (2).

Now, we will be interested in proving the equality (3).

It is easy to see that Ht(E) ≤ Htξ(E) then dim(E) ≤ dimξ(E). Let’s prove
that

dimξ(E) ≤ dim(E).

Fix t > dim(E) and η > 0 such that t
1+η +(2−2(1+η)3) > dim(E). Let ε

be a positive number such that ε ≤ inf
R∈ξn0

diam(R). Pick an ε-covering {Rj}j
of E and set Bj = B(xj , |Rj |M ) such that Rj ⊆ Bj .

For all j ∈ N, there exists a family of disjoint rectangles {Rjk}k∈Lj such

that ⋃
k∈Lj

Rjk ⊂ Bj , P (Rjk) * Bj and Bj ⊆
⋃
k∈Lj

P (Rjk).
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In a first step, we will calculate the number of P (Rjk) that cover Bj . We
denote by λ the Lebesgue measure on A1 × A2. Using relations (4) and (5),
we have

λ(P (Rjk))
(1+η)2 ≤ λ(Rjk)

and

diam(Bj)
2(1+η)3 ≤ λ(Rjk). (8)

Let s and s′ be two positive integers such that

r
−(s+1)
1 < |Rjk|M ≤ r

−s
1 and r

−(s′+1)
2 < |Rjk|M ≤ r

−s′
2 .

We have ∑
k∈Lj

λ(Rjk) ≤ λ(Bj) ≤ r−s1 r−s
′

2 ≤ (r1r2) diam(Bj)
2. (9)

It follows from inequalities (8) and (9) that∑
k∈Lj

diam(Bj)
2(1+η)3 ≤ r1r2 diam(Bj)

2.

Hence,

card(Lj) ≤ r1r2 diam(Bj)
2−2(1+η)3 .

In a second step, we have

|P (Rjk)|1+η
M ≤ |Rjk|M ≤ diam(Bj)

and ∑
k∈Lj

|P (Rjk)|tM ≤
∑
k∈Lj

diam(Bj)
t

1+η .

So, ∑
j

diam(Rjk)
t ≤

∑
j

∑
k∈Lj

|P (Rjk)|tM

≤
∑
j

(r1r2) diam(Bj)
2−2(1+η)3 diam(Bj)

t
1+η

and

Htξ,ε(E) ≤ (r1r2)H
t

1+η
+(2−2(1+η)3)

ε (E).
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Letting ε tend to 0 implies

Htξ(E) ≤ (r1r2)H
t

1+η
+2−(1+η)3

(E).

Finally, we obtain

dimξ(E) ≤ t.

And the result yields.

Next, we set a generalization of the Billingsley Theorem [6] in our case.
For this purpose, we introduce the following notations. If E is a non empty
subset of A1 × A2 and x = (x1, x2) ∈ E, let ξ =

⋃
n≥1 ξn be a family of

rectangles satisfying assumptions (i) and (ii) of Proposition 3.1 and Rn(x) be
the rectangle of ξn containing x.

In the sequel, we define by P(A1×A2) the set of Borel probability measures
on A1 × A2. For all µ ∈ P(A1 × A2) and ε > 0, and E ∈ A1 × A2, we define

µ]ε(E) = inf

∑
j

µ(Rj) : Rj ∈ ξ, {Rj}j an ε-covering of E

 ,

µ](E) = lim
ε→0

µ]ε(E)

and

ess sup
x∈E,µ]

A(x) = inf
{
t ∈ R : µ]({x ∈ E : A(x) > t}) = 0

}
.

Proposition 3.2. Let E be a subset of A1 × A2 and µ ∈ P(A1 × A2),
we have

(a) dimξ(E) ≤ sup
x∈E

lim inf
n→∞

logµ(Rn(x))
log(diam(Rn(x))) ;

(b) Dimξ(E) ≤ sup
x∈E

lim sup
n→∞

log µ(Rn(x))
log(diam(Rn(x))) .

If µ](E) > 0, then we have

(c) dimξ(E) ≥ ess sup
x∈E,µ]

lim inf
n→∞

log µ(Rn(x))
log(diam(Rn(x))) ;

(d) Dimξ(E) ≥ ess sup
x∈E,µ]

lim sup
n→∞

logµ(Rn(x))
log(diam(Rn(x))) .
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Proof. Let us prove assumption (a). Take δ> sup
x∈E

lim inf
n→∞

logµ(Rn(x))

log(diam(Rn(x)))
,

then for all x ∈ E, there exists k ≥ n such that

µ(Rk(x)) ≥ diam(Rk(x))δ.

Let ε be a positive number, there exists {Rj}j a family of pairwise disjoint
rectangles such that E ⊂

⋃
j Rj with

µ(Rj) ≥ diam(Rj)
δ and diam(Rj) ≤ ε.

We have ∑
j

diam(Rj)
δ ≤

∑
j

µ(Rj) <∞.

Therefore, Hδξ,ε(E) < ∞. Finally, when ε → 0, we get dimξ(E) ≤ δ and the
result easily follows.

To prove the assumption (b), take δ > sup
x∈E

lim sup
n→∞

logµ(Rn(x))

log(diam(Rn(x)))
. For

all x ∈ E, there exists n ∈ N such that, for all k ≥ n one has

µ(Rk(x)) ≥ diam(Rk(x))δ.

Consider the set

E(n) =
{
x ∈ E : for each k ≥ n, µ(Rk(x)) ≥ diam(Rk(x))δ

}
.

Let {Ek}k be a cover of E and {Rj}j be an ε-packing of E(n) ∩ Ek with
ε < infR∈ξn0 diam(R). One has∑

j

diam(Rj)
δ ≤

∑
j

µ(Rj) <∞.

From which Pδξ,ε(E(n) ∩ Ek) < ∞. Then we get Pδξ(E(n) ∩ Ek) < ∞ when
ε→ 0. Since E =

⋃
nE(n), we obtain

Dimξ(E) ≤ δ.

Hence (b).

Let us prove assumption (c). Take δ < ess sup
x∈E,µ]

lim inf
n→∞

logµ(Rn(x))

log(diam(Rn(x)))

and set

Eδ =

{
x ∈ E : lim inf

n→∞

logµ(Rn(x))

log(diam(Rn(x)))
> δ

}
.
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Let

En =
{
x ∈ Eδ : for each k ≥ n, µ(Rk(x)) ≤ diam(Rk(x))δ

}
.

It is clear that Eδ =
⋃
nEn. As we have µ](Eδ) > 0, there exists n ∈ N such

that µ](En) > 0. Then, for any ε-covering {Rj}j of En, one has

µ]ε(En) ≤
∑
j

µ(Rj) ≤
∑
j

diam(Rj)
δ.

Therefore,

µ]ε(En) ≤ Hδξ,ε(En).

So,

0 < µ](En) ≤ Hδξ(En),

which implies

dimξ(E) ≥ dimξ(Eδ) ≥ dimξ(En) ≥ δ

and assumption (c) yields.

In order to prove assumption (d), let δ < ess sup
x∈E,µ]

lim sup
n→∞

logµ(Rn(x))

log(diam(Rn(x)))
,

and put

Eδ =

{
x ∈ E : lim sup

n→∞

log(µ(Rn(x)))

log(diam(Rn(x)))
> δ

}
.

We have µ](Eδ) > 0, so there exists a subset F of Eδ such that µ](F ) > 0. If
x ∈ F , then for all n ∈ N there exists k ≥ n such that

µ(Rk(x)) ≤ diam(Rk(x))δ (10)

Let ε > 0 and {Rj}j an ε-packing of F satisfying (10). So,

µ]ε(F ) ≤
∑
j

µ(Rj) ≤
∑
j

diam(Rj)
δ.

Then

µ]ε(F ) ≤ Pδξ,ε(F ).

This implies

0 < µ](F ) ≤ Pδξ(F ).
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Hence, if F =
⋃
j Fj , one has

0 < µ](F ) <
∑
j

µ](Fj) ≤
∑
j

Pδξ(Fj).

Thus,
Pδξ (F ) > 0.

Therefore,
Dimξ(Eδ) ≥ δ,

from which the result follows and we achieve the proof of Proposition 3.2.

As a consequence of Proposition 3.2, we obtain the following corollary. We
adopt the following convention

log 0

log ρ
= +∞, for each ρ > 0.

Corollary 1. Let γ ∈ R. If µ is a probability Borel measure on A1 × A2

such that µ(E) > 0, we consider a family ξ of rectangles verifying the assump-
tions of Proposition 3.1 and

E ⊂
{
x ∈ A1 × A2 : lim

n→∞

logµ(Rn(x))

log(diam(Rn(x)))
= γ

}
,

we have
dimξ(E) = Dimξ(E) = γ.

Next, we will be interested in adding an example of application of
Corollary 1.

Example. Let {ξn}n≥1 be a sequence of finite partitions of A1×A2 made

of rectangles in the form [ω]×[ω′], for all (ω, ω′) ∈ Aq(n)
1 ×An2 and ξ =

⋃
n≥1 ξn,

where the integer q(n) is defined such that, for n ∈ N∗

n
log(r2)

log(r1)
≤ q(n) < n

log(r2)

log(r1)
+ 1.

It is clear that the family ξ satisfies the assumptions of Proposition 3.1.
For α ≥ 0, we consider the set

Eα =

{
x ∈ A1 × A2 : lim

n→∞

Nω,ω′
n

n
(x) = αω,ω′ for all (ω, ω′) ∈ A1 ×A2

}
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where for (ω, ω′) ∈ A1 × A2, Nω,ω′
n (x) stands for the number of appearances

of the couple (ω, ω′) in the product word x|n×y|n and α = (αω,ω′)(ω,ω′)∈A1×A2

is a family of positive numbers such that∑
(ω,ω′)∈A1×A2

αω,ω′ = 1.

We propose to calculate the Hausdorff dimension of the set Eα. For this
purpose, we consider the Bernoulli measure µ in A1 × A2 defined by

µ([ω1 · · ·ωn]× [ω′1 · · ·ω′n]) =

n∏
k=1

αωk,ω′k for each n ∈ N∗.

We have

µ([ω1 · · ·ωq(n)]× [ω′1 · · ·ω′n]) =

n∏
k=1

αωk,ω′k

q(n)∏
k=n+1

λωk

with λωk =
∑
ω′k

αωk,ω′k .

It is clear that

Eα ⊂
{
x ∈ A1 × A2 : lim

n→∞

logµ(Rn(x))

log(diam(Rn(x)))
= γ

}
,

where

γ = −
∑
ω,ω′

αω,ω′ logαω,ω′

log r2
+

(
1

log r2
− 1

log r1

)∑
ω

λω log λω.

So, according to the strong law of large numbers we have µ(Eα) = 1. By using
Corollary 1 we have,

dimξ(Eα) = Dimξ(Eα) = γ,

which implies from Proposition 3.1 that

dim(Eα) = Dim(Eα) = γ.

Thus, any Borel set of Eα with dimension inferior to γ is of measure µ-zero.
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4. A variant of the refined multifractal formalism
in the product space A1 × A2

4.1. Problematic. In this section, we will consider a sequence {ξn}n≥1

of finite partitions of A1 ×A2 made of rectangles satisfying condition (1) and
we put ξ =

⋃
n≥1 ξn.

In the following, we consider a Borel probability measure µ on A1 × A2

and one defines its support supp(µ) to be the complement of the set⋃
{R ∈ ξ : µ(R) = 0} .

Then, we intend to underestimate the dimensions of the fractal sets Eµ(γ) for
some values of γ, where

Eµ(γ) =

{
x ∈ supp(µ) : lim

n→∞

logµ(Rn(x))

log(diam(Rn(x)))
= γ

}
.

Notice that the natural coverings of these iso-Hölder sets are made of rectan-
gles which become thinner and thinner as their diameter tends to zero which
doesn’t allow the calculation of the Hausdorff and packing dimensions. For
this purpose, we will consider a variant of the refined multifractal formalism as
already introduced by F. Ben Nasr and J. Peyrière [5], adapted to rectangles.

Let us consider an auxiliary Borel probability measure ν on A1×A2. If E
is a nonempty subset of A1×A2 then for q, t ∈ R and ε > 0, we introduce the
following quantities:

Hq,t
µ,ν,ε(E) = inf

{∑
j

µ(Rj)
q diam(Rj)

tν(Rj) :

Rj ∈ ξ, {Rj}j an ε-covering of E

}
,

Hq,t
µ,ν(E) = lim

ε→0
Hq,t
µ,ν,ε(E),

and

P
q,t
µ,ν,ε(E) = sup

{∑
j

µ(Rj)
q diam(Rj)

tν(Rj) :

Rj ∈ ξ, {Rj}j an ε-packing of E

}
,

P
q,t
µ,ν(E) = lim

ε→0
P
q,t
µ,ν,ε(E).
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The function P
q,t
µ,ν is called the packing pre-measure. In order to deal with

an outer measure, one defines

Pq,t
µ,ν(E) = inf

∑
j

P
q,t
µ,ν(Ej) : E ⊂

⋃
j

Ej

 .

Let ϕ be the following function

ϕ(q) = inf
{
t ∈ R : P

q,t
µ,ν(supp(µ)) = 0

}
. (11)

4.2. Main results. Let µ be a Borel probability measure on A1 × A2.
For α, β ∈ R, one sets

Eµ(α, β) = Eµ(α) ∩ Eµ(β),

where

Eµ(α) =

{
x ∈ supp(µ) : lim inf

n→∞

logµ(Rn(x))

log(diam(Rn(x)))
≥ α

}
and

Eµ(β) =

{
x ∈ supp(µ) : lim sup

n→∞

logµ(Rn(x))

log(diam(Rn(x)))
≤ β

}
.

Theorem 4.1. Assume that ϕ(0) = 0 and ν](supp(µ)) > 0. Then one
has

dimξ Eµ
(
− ϕ′r(0),−ϕ′l(0)

)
≥ inf

{
lim inf
n→∞

log ν(Rn(x))

log(diam(Rn(x)))
: x ∈ Eµ(−ϕ′r(0),−ϕ′l(0))

}
and

Dimξ Eµ
(
− ϕ′r(0),−ϕ′l(0)

)
≥ inf

{
lim sup
n→∞

log ν(Rn(x))

log(diam(Rn(x)))
: x ∈ Eµ(−ϕ′r(0),−ϕ′l(0))

}
,

where ϕ′r, ϕ
′
l are respectively the left-hand and right-hand derivatives of ϕ.
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Remark 2. The same result holds with

ψ(q) = inf
{
t ∈ R : Pq,t

µ,ν(supp(µ)) = 0
}
.

The proof of Theorem 4.1 is an immediate consequence of the following
proposition.

Proposition 4.1. Assume that ϕ(0) = 0 and ν](supp(µ)) > 0. Then one
has

ν](Eµ(−ϕ′r(0),−ϕ′l(0))c) = 0.

Proof. Take δ > −ϕ′l(0), there exist two positive reals t and δ′ such that

δ > δ′ > −ϕ′l(0) and δ′t > ϕ(−t) which implies P−t,δ
′t

µ,ν (supp(µ)) = 0. So,
there exists a partition {Ej}j of supp(µ) such that∑

j

P
−t,δ′t
µ,ν (Ej) ≤ 1.

It results that P
−t,δt
µ,ν (Ej) = 0 for all j.

Now, consider the set

Eδ =

{
x ∈ supp(µ) : lim sup

n→∞

logµ(Rn(x))

log(diam(Rn(x)))
> δ

}
.

If x ∈ Eδ, for all n ∈ N there exists k ≥ n such that

µ(Rk(x)) ≤ diam(Rk(x))δ.

Let E be a subset of Eδ and set Fj = E ∩ Ej . For 0 < ε ≤ inf
R∈ξn

diam(R) and

for all j, one can find an ε-packing {Rjk}k of Fj such that

µ(Rjk) ≤ diam(Rjk)δ.

So, we have

ν]ε(Fj) ≤
∑
j

ν(Rj) ≤
∑
j

∑
k

ν(Rjk)

≤
∑
j

∑
k

µ(Rjk)−t diam(Rjk)δtν(Rjk) ≤
∑
j

P
−t,δt
µ,ν,ε (Fj) = 0.
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Then

ν](Eδ) = 0.

We conclude that

ν]
({

x ∈ supp(µ) : lim sup
n→∞

logµ(Rn(x))

log(diam(Rn(x)))
> −ϕ′l(0)

})
= 0.

In the same way, one proves that

ν]
({

x ∈ supp(µ) : lim inf
n→∞

logµ(Rn(x))

log(diam(Rn(x)))
< −ϕ′r(0)

})
= 0.

Proof of Theorem 4.1. Assume that ϕ(0) = 0 and ν](supp(µ)) > 0. Then
we have according to Proposition 4.1

ν](Eµ(−ϕ′r(0),−ϕ′l(0))) > 0.

So, it is easy to see from Proposition 3.2 that

dimξEµ(−ϕ′r(0),−ϕ′l(0)) ≥ ess sup
x∈Eµ(−ϕ′r(0),−ϕ′l(0)),ν]

lim inf
n→∞

log ν(Rn(x))

log(diam(Rn(x)))
,

and

Dimξ Eµ(−ϕ′r(0),−ϕ′l(0)) ≥ ess sup
x∈Eµ(−ϕ′r(0),−ϕ′l(0)),ν]

lim sup
n→∞

log ν(Rn(x))

log(diam(Rn(x)))
.

However, as a property of ess sup, we know that if ν](Eµ(−ϕ′r(0),−ϕ′l(0)))
> 0, then

inf
x∈Eµ(−ϕ′r(0),−ϕ′l(0))

{
lim inf
n→0

log ν(R(x))

log(diam(Rn(x)))

}
≤ ess sup
x∈Eµ(−ϕ′r(0),−ϕ′l(0)),ν]

lim inf
n→∞

log ν(R(x))

log(diam(Rn(x)))

and the proof of the theorem follows.
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5. An example

In this section we give a large class of measures satisfying the result of
Theorem 4.1. Let {ξn}n≥1 be the sequence of finite partitions of A1 × A2

made of rectangles of the form [ω] × [ω′], for all (ω, ω′) ∈ A
q(n)
1 × An2 and

ξ =
⋃
n≥1

ξn, where the integer q(n) is defined such that, for n ∈ N∗

n
log(r2)

log(r1)
≤ q(n) < n

log(r2)

log(r1)
+ 1.

For (i, j) ∈ A1×A2, take (pi,j)i,j and (qi,j)i,j two sequences of non negative
numbers such that∑

i,j

pi,j =
∑
i,j

qi,j = 1 and λi =
∑
j

pi,j =
∑
j

qi,j .

Let (Tn)n≥1 be a sequence of integers defined by

T1 = 1 , Tn < Tn+1 and lim
n→∞

Tn
Tn+1

= 0.

Consider the family of parameters αik,jk

αik,jk =

{
pik,jk if T2n−1 ≤ k < T2n,

qik,jk if T2n ≤ k < T2n+1.

We define the measure µ on A1 × A2 as follows

µ
(
[i1 · · · in]× [j1 · · · jn]

)
=

n∏
k=1

αik,jk .

It is easy to see that

µ
(
[i1 · · · iq(n)]× [j1 · · · jn]

)
= µ

(
[i1 · · · in]× [j1 · · · jn]

)
· λin+1 · · ·λiq(n) .

In the sequel we will impose those monotony hypotheses

p0,0 < p0,1 < · · · < p0,r2−1 < p1,0 < · · · < p1,r2−1 < · · ·
· · · < pr1−1,0 < · · · < pr1−1,r2−1,

q0,0 < q0,1 < · · · < q0,r2−1 < q1,0 < · · · < q1,r2−1 < · · ·
· · · < qr1−1,0 < · · · < qr1−1,r2−1,

p0,0 < q0,0 and pr1−1,r2−1 > qr1−1,r2−1,
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which prove the existence of a real x0 such that T (x0) = W (x0), where

T (x) =
∑
i,j

pxi,j∑
i,j
pxi,j

logr2 pi,j +

(
1

log r1
− 1

log r2

)∑
i,j

pxi,j∑
i,j
pxi,j

log λi

and

W (x) =
∑
i,j

qxi,j∑
i,j
qxi,j

logr2 qi,j +

(
1

log r1
− 1

log r2

)∑
i,j

qxi,j∑
i,j
qxi,j

log λi.

For this real x0, we denote by

p̃i,j =
px0i,j∑
i,j
px0i,j

and q̃i,j =
qx0i,j∑
i,j
qx0i,j

.

Our aim is to estimate the dimensions of the sets Eµ(γ) for certain values
of γ. To be done, we consider an auxiliary measure ν on A1 × A2 defined as
µ with the parameters p̃i,j and q̃i,j instead of pi,j and qi,j by

ν([i1 · · · in]× [j1 · · · jn]) =

n∏
k=1

α̃ik,jk

where

α̃ik,jk =

{
p̃ik,jk if T2n−1 ≤ k < T2n,

q̃ik,jk if T2n ≤ k < T2n+1.

Let λ̃i =
∑
j
p̃i,j =

∑
j
q̃i,j . Then, we have the following result.

Theorem 5.1. For every

γ ∈

(
− logr2

(
qr1−1,r2−1λ

log(r2)
log(r1)

−1

r1−1

)
,− logr2

(
q0,0λ

log(r2)
log(r1)

−1

0

))

we have

dimEµ(γ) ≥ min {h(p̃), h(q̃)}

and

DimEµ(γ) ≥ max {h(p̃), h(q̃)} ,
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where

h(p̃) = −
∑
i,j

p̃i,j logr2 p̃i,j +

(
1

log r2
− 1

log r1

)∑
i

λ̃i log λ̃i

and

h(q̃) = −
∑
i,j

q̃i,j logr2 q̃i,j +

(
1

log r2
− 1

log r1

)∑
i

λ̃i log λ̃i.

In order to prove this theorem we will calculate the function ϕ defined in
equation (11). For that, we need to use the following lemma.

Lemma 5.1. For t ∈ R, one has

ϕ(t) = lim sup
n→∞

1

n log r2
log

∑
Rn∩ supp(µ)6=∅

µ(Rn)tν(Rn).

Proof. For t ∈ R, we denote by

Φ(t) = lim sup
n→∞

1

n log r2
log

∑
Rn∩ supp(µ)6=∅

µ(Rn)tν(Rn).

We will prove that
ϕ(t) = Φ(t).

Let’s begin by proving that ϕ(t) ≤ Φ(t).
For α > 0 satisfying Φ(t) ≤ α, there exists n0 ∈ N such that for all n ≥ n0,

1

n log r2
log

∑
Rn∩ supp(µ)6=∅

µ(Rn)tν(Rn) ≤ α.

So, ∑
Rn∩ supp(µ) 6=∅

µ(Rn)tν(Rn)r−nα2 ≤ 1, for each n ≥ n0.

Then
P
t,α
µ,ν(supp(µ)) ≤ 1,

and
α ≥ ϕ(t),

which gives that
Φ(t) ≥ ϕ(t).
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Next, we prove that ϕ(t) ≥ Φ(t). Let α > ϕ(t), then

P
t,α
µ,ν(supp(µ)) = 0.

For ε > 0, there exists an ε-packing {Rn}n of supp(µ) such that∑
Rn∩ supp(µ)6=∅

µ(Rn)tν(Rn)r−nα2 ≤ 1.

Thus
1

n log r2
log

∑
Rn∩ supp(µ)6=∅

µ(Rn)tν(Rn) ≤ α.

So,

lim sup
n→∞

1

n log r2
log

∑
Rn∩ supp(µ)6=∅

µ(Rn)tν(Rn) ≤ α

and

Φ(t) ≤ α,

which prove Lemma 5.1.

Now, we are able to prove Theorem 5.1. It is easy to see that

ϕ(t) = sup

logr2

∑
i,j

pti,j p̃i,j , logr2

∑
i,j

qti,j q̃i,j

+

(
1

log r1
− 1

log r2

)
log
∑
i

λtiλ̃i

and

ϕ(0) = 0.

By the way, using the definitions of the sequences (p̃i,j) and (q̃i,j) and a simple
computation of the derivative of ϕ at 0 we obtain

ϕ′(0) =
∑
i,j

p̃i,j logr2 pi,j +

(
1

log r1
− 1

log r2

)∑
i

λ̃i log λi.

Let γ = −ϕ′(0), it is clear that

γ ∈

(
− logr2

(
qr1−1,r2−1λ

log(r2)
log(r1)

−1

r1−1

)
,− logr2

(
q0,0λ

log(r2)
log(r1)

−1

0

))
.
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Besides, using the strong law of large numbers we can see that

lim inf
n→∞

logr2 ν(Rn(x))

−n
= min {h(p̃), h(q̃)}

and

lim sup
n→∞

logr2 ν(Rn(x))

−n
= max {h(p̃), h(q̃)} ,

for ν-almost every x.
Then, it follows from Theorem 4.1 and Proposition 3.2 that

dimEµ(γ) ≥ min {h(p̃), h(q̃)}

and
DimEµ(γ) ≥ max {h(p̃), h(q̃)}

which achieve the proof of Theorem 5.1.
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