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Abstract: In this paper, we deal with n-dimensional complete spacelike submanifolds M™
with flat normal bundle and parallel normalized mean curvature vector immersed in an
(n + p)-dimensional locally symmetric semi-Riemannian manifold L;“’ of index p obeying
some standard curvature conditions which are naturally satisfied when the ambient space is
a semi-Riemannian space form. In this setting, we establish sufficient conditions to guaran-
tee that, in fact, p = 1 and M™ is isometric to an isoparametric hypersurface of L{”“ having
two distinct principal curvatures, one of which is simple.
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1. INTRODUCTION

Let LZJFP be an (n + p)-dimensional semi-Riemannian space, that is, a
semi-Riemannian manifold of index p. An n-dimensional submanifold M™ im-
mersed in L;th is said to be spacelike if the metric on M™ induced from that
of L™ is positive definite. Spacelike submanifolds with parallel normalized
mean curvature vector field (that is, the mean curvature function is positive
and that the corresponding normalized mean curvature vector field is parallel
as a section of the normal bundle) immersed in semi-Riemannian manifolds
have been deeply studied for several authors (see, for example, [2, 3, 15, 19]).
More recently, in [12] the second, third and fourth authors showed that com-
plete linear Weingarten spacelike submanifolds must be isometric to certain
hyperbolic cylinders of a semi-Riemannian space form @Zﬂ’ (c) of constant
sectional curvature ¢, under suitable constraints on the values of the mean
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curvature and of the norm of the traceless part of the second fundamental
form. We recall that a spacelike submanifold is said to be linear Weingarten
when its mean and normalized scalar curvature functions are linearly related.

Now, let Lp*? be a locally symmetric semi-Riemannian space, that is, the
curvature tensor R of Ly ? is parallel in the sense that VR = 0, where V de-
notes the Levi-Civita connection of Ly . In 1984, Nishikawa [16] introduced
an important class of locally symmetric Lorentz spaces satisfying certain cur-
vature constraints. In this setting, he extended the classical results of Calabi
[4] and Cheng-Yau [6] showing that the only complete maximal spacelike hy-
persurface immersed in such a locally symmetric space having nonnegative
sectional curvature are the totally geodesic ones. This seminal Nishikawa’s
paper induced the appearing of several works approaching the problem of
characterizing complete spacelike hypersurfaces immersed in such a locally
symmetric space (see, for instance, [1, 10, 11, 13, 14]).

Our purpose in this paper is establish characterization results concerning
complete linear Weingarten submanifolds immersed in a locally symmetric
manifold obeying certain curvature conditions which extend those ones due to
Nishikawa [16]. For this, we need to work with a Cheng-Yau modified opera-
tor L and we establish a generalized maximum principle. Afterwards, under
suitable constrains, we apply our Omori-Yau maximum principle to prove that
such a submanifold must be isometric to an isoparametric hypersurface with
two distinct principal curvatures, one of them being simple. Our purpose in
this work is to extend the results of [10] for the case that the ambient space is a
locally symmetric semi-Riemannian manifold L obeying certain geometric
constraints. For this, in Section 3 we develop a suitable Simons type formula
concerning spacelike submanifolds immersed in L;“rp and having certain posi-
tive curvature function. Afterwards, in Section 4 we prove an extension of the
generalized maximum principle of Omori [17] to a Cheng Yau modified opera-
tor L (see Lemma 3). Moreover, we use our Simons type formula to obtain an
appropriated lower estimate to the operator L acting on the mean curvature
function of a linear Weingarten spacelike submanifold (cf. Proposition 1) and,
next, we establish our characterization theorems (see Theorems 1 and 2).
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2. PRELIMINARIES

Let M™ be a spacelike submanifold immersed in a locally symmetric semi-
Riemannian space LZJFP . In this context, we choose a local field of semi-
Riemannian orthonormal frames eq,...,ep4p in Lgﬂ’ , with dual coframes
Wi, ...,Wn4p, such that, at each point of M™, eq,..., e, are tangent to M".
We will use the following convention of indices

1<ABC,...<n+p, 1<4i,jk,...<n and n+l1<a,B,7,...<n+p.

In this setting, the semi-Riemannian metric of Lgﬂ’ is given by

ds® = Z €AW,
A
where ¢, =l and ¢, = -1, 1 <i<n,n+1<a <n-+p. Denoting by {wap}
the connection forms of Lg+p , we have that the structure equations of Lgﬂ’
are given by:

dWA:—ZEBWAB/\WBa waB +wpa =0, (2.1)
B
1 _
dwap = — Z ecwac Nwop — 3 ZecépRABCD we ANwp, (2.2)
C C.D

where, Racp, Rcp and R denote respectively the Riemannian curvature
tensor, the Ricci tensor and the scalar curvature of the Lorentz space Ly *P.
In this setting, we have

Rop =Y epReppp, R=Y caRaa. (2.3)
B P

Moreover, the components RABCD; g of the covariant derivative of the Rie-
mannian curvature tensor Ly P are defined by

Z eeRaBep;EwE = dRapcD — Z eg(ReBcpwEA + RapcpwEB
E E

+RABEDWEC + EABCEWED)-
Next, we restrict all the tensors to M™. First of all,

we =0, n+l<a<n+p.
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Consequently, the Riemannian metric of M" is written as ds? = D wf. Since

—Zwai/\wi = dw, = 0,
i

from Cartan’s Lemma we can write

Wai = Y hwj,  he = h. (2.4)
J

This gives the second fundamental form of M", B =" hiiwi ® wjeq, and
its square length from second fundamental form is S = |B|? = 3 i, ].(hiaj)2.
Furthermore, we define the mean curvature vector field H and the mean cur-

vature function H of M™ respectively by

a?l’]

H:iZ(Xi:hg;)ea and H:|H\:% Z(Zh&)Q

« e

The structure equations of M™ are given by

dwi:—g wij Nwj, wij +wj; =0,
J

1
dwij = =Y wik Awks — 3 > Rijuwi Awi,
ks ol

where R;ji; are the components of the curvature tensor of M". Using the
previous structure equations, we obtain Gauss equation

Rijr = Rijii — Y (hfkhfl - hghfk). (2.5)
8
and
n(n — l)R = Zﬁiji]‘ — 77,2H2 -+ S. (2.6)
i.j

We also state the structure equations of the normal bundle of M™

dwa:—ZwagAwg, Wap +W6a207
B
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1
dwag = — ZWQ’Y Nw~g — B Z Raﬁklwkz N wy.
Y k,l

We suppose that M™ has flat normal bundle, that is, R* = 0 (equivalently
Ropji = 0), then R, satisfy Ricci equation

Ragij = Z (hz‘akhgj - gjhzﬁk)- (2.7)
A

The components h% i of the covariant derivative VB satisfy

Z hijrwe = dhij — Z hijwr; — Z hjpwri — Z hfnga. (2.8)
k k k 3

In this setting, from (2.4) and (2.8) we get Codazzi equation

The first and the second covariant derivatives of h7; are denoted by h%k and
h%k,l, respectively, which satisfy

> B = dhf = > e — > by — O A — D Ay Wsa
l l l l Jé]

Thus, taking the exterior derivative in (2.8), we obtain the following Ricci
identity

W = W = = > B Rt — Y hi R (2.10)

Restricting the covariant derivative Rapc p:E of Rapcp on M"™, then Raijk;l
is given by

Raijit = Raijea + Y Ragjrhl + Zﬁaiﬁkhi + > Raijshy
g B g
+ Zﬁmzjkhgﬂ-

m,k

(2.11)

where Emjkl denotes the covariant derivative of Emjk as a tensor on M™.
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3. LOCALLY SYMMETRIC SPACES AND SOME AUXILIARY RESULTS

Proceeding with the context of the previous section, along this work we
will assume that there exist constants ¢, co and cg such that the sectional
curvature K and the curvature tensor R of the ambient space Ly satisfies
the following constraints:

K(un) =" (3.1)

for any w € TM and n € TM~*; when p > 1, suppose that

<§(§,u)n,u> =0, (3.2)
for u € TM and &, € TM*, with (£,1) = 0. Suppose also

K(u,v) > co, (3.3)

for any u,v € TM; and

for any n,& € TM*.

The curvature conditions (3.1) and (3.3), are natural extensions for higher
codimension of conditions assumed by Nishikawa [16] in context of hyper-
surfaces. Obviously, when the ambient manifold Ly has constant sectional
curvature ¢, then it satisfies conditions (3.1), (3.2), (3.3) and (3.4). On the
other hand, the next example gives us a situation where the curvature condi-
tions (3.1), (3.2), (3.3) and (3.4) are satisfied but the ambient space is not a
space form.

EXAMPLE 1. Let Ly = R x N2 be a semi-Riemannian manifold,
where R)' 7 stands for the (n; +p)-dimensional semi-Euclidean space of index
p and N2 is a mg-dimensional Riemannian manifold of constant sectional
curvature k. We consider the spacelike submanifold M™ = I'"* x N of L;Hrp ,
where I'"™ is a spacelike submanifold of Rj**?.

Taking into account that the normal bundle of I < R} is equipped
with p linearly independent timelike vector fields &1, €2, ..., €P, it is not diffi-

cult to verify that the sectional curvature K of Ly P satisfies

F(gl’ X) = <R]Rgl+p(§i7 Xl)gia X1>R21+P

(3.5)
+ <]%N,:L2 (07 X2)07 X2>N:'2 =0,
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for each i € {1,...,p}, where Rpni+» and Ryne denote the curvature tensors
D K
of Rp*™P and NP2, respectively, & = (£,0) € THM and X = (X1, Xo) € TM
On the other hand, by a direct computation we obtain

K(X,Y)= <RRzl+p(X1,Y1)X1,m>Rzl+p + (Ryma (XQ,YQ)X2,Y2>N:2 (3.6)

for every X = (X1,X2),Y = (Y1,Y2) € TM such that (X,Y) =0,(X,X) =
(YY) =1.
Consequently, from (3.6) we get

K(X,Y) = s(|X2|*Y2]* = (X2,Y2)?) > min{x,0}. (3.7)
Moreover, we have that
K(&,&) =0, forall i,je{l,...,p} (3.8)
and
(R(&,X)&,X) =0, forall i,j€{l,...,p} (3.9)

We observe from (3.5), (3.7), (3.8) and (3.9) that the curvature constraints
(3.1), (3.2), (3.3) and (3.4) are satisfied with ¢; = ¢3 = 0 and ¢z < min{k, 0}.

Denote by Rop the components of the Ricci tensor of LZ+p , then the scalar
=Y n+p . .
curvature R of L,"" is given by

R= Z eaRan = Zﬁijzj -2 ZR‘am + Zﬁaﬁag-
A irj i a8
If Ly *P satisfies conditions (3.1) and (3.4), then

R= Zﬁijij —2pc1 + (p — 1)es. (3.10)
Z'7j

But, it is well known that the scalar curvature of a locally symmetric Lorentz
space is constant. Consequently, Zl j R;j;; is a constant naturally attached
to a locally symmetric Lorentz space satisfying conditions (3.1) and (3.4).
For sake of simplicity, in the course of this work we will denote the constant
m Zl j R;ji; by R. In order to establish our main results, we devote this
section to present some auxiliary lemmas. Using the ideas of the Proposi-

tion 2.2 of [19] we have
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LEMMA 1. Let M™ be a linear Weingarten spacelike submanifold immersed
in locally symmetric space Ly *? satistying conditions (3.1) and (3.4), such that
R = aH + b for some a,b € R. Suppose that

(n—1)a® +4n (R—1b) >0. (3.11)

Then,
|VBJ? > n?|VH|?. (3.12)
Moreover, if the equality holds in (3.12) on M™, then H is constant on M"™.

Proof. Since we are supposing that R = aH + b and L, satisfies the
conditions (3.1) and (3.4) then from equation (2.6) we get

2 Z hshi = (2n*H + n(n — 1)a) Hy, (3.13)

7]a

where Hj, stands for the k-th component of VH.
Thus,

2
42 <th W) (2n2H + n(n — 1)a)’|VH|?.

7]a

Consequently, using Cauchy-Schwarz inequality, we obtain that

2
4S\VB]2:4Z(h%)2 > (hd) >4Z (Zhw w’f) (3.14)

1,,0 1,3,k ,J,

= (2n’H +n(n — l)a) |VH|?.
On the other hand, since R = aH + b, from equation (2.6) we easily see that
(2n’H + n(n — l)a)2 =n*(n—1)[(n — 1)a® +4n (R — b)] +4n*S. (3.15)
Thus, from (3.14) and (3.15) we have
4S|VB? > n*(n —1) [(n — 1)a® + 4n (R — b)] + 4n*S|VH|?, (3.16)

and taking account that since (n — 1)a® + 4n (R —b) > 0, from (3.16) we
obtain

S|VB|?* > Sn?|VH|.
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Therefore, either S = 0 and |VB|? = n?%|VH|? =0 or |[VB|? > n?|VH|%.

Now suppose that [VB* = n?|[VH|?. If (n — 1)a® + 4n (R — b) > 0 then
from (3.16) we have that H is constant. If (n — 1)a® + 4n (R — b) = 0, then
from (3.15)

(2n’H + n(n — 1)a)2 —4n2S = 0. (3.17)
This together with (3.13) forces that
S? = 4n?SH?, k=1,...,n, (3.18)

where Si stands for the k-th component of V.S.
Since the equality in (3.14) holds, there exists a real function ¢, on M™
such that

n+1 __ n+1, o @
hijk = ckhij ; ik = Ckh,

a>n+1l ijk=1..n (3.19
Taking the sum on both sides of equation (3.19) with respect to i = j, we get
Hy=c:H, H=0, a>n+1; k=1,...,n (3.20)

From second equation in (3.20) we can see that e,41 is parallel. It follows
from (3.19) that

Se=2 > hihS,=2¢S, k=1,...,n (3.21)
iyg ks
Multiplying both sides of equation (3.21) by H and using (3.20) we have
HSy = 2HyS, k=1,...,n. (3.22)
It follows from (3.18) and (3.22) that
H?S = H?n?H? k=1,...,n. (3.23)

Hence we have
|VH[*(S —n*H?) = 0. (3.24)

We suppose that H is not constant on M™. In this case, |VH| is not vanishing
identically on M™. Denote My = {z € M;|VH| > 0} and T = S — n?H?.
It follows form (3.24) that My is open in M and T = 0 over My. From
the continuity of 7', we have that 7" = 0 on the closure cl(My) of My. If
M — cl(My) # 0, then H is constant in M — cl(Mp). It follows that S is
constant and hence T is constant in M — cl(My). From the continuity of T’
we have that T = 0 and hence S = n>H? on M™. It follows that H is constant
on M™, which contradicts the assumption. Hence we complete the proof. |
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In our next result, we will deal with submanifolds M" of L;*? having
parallel normalized mean curvature vector field, which means that the mean
curvature function H is positive and that the corresponding normalized mean
curvature vector field % is parallel as a section of the normal bundle. Extend-
ing the ideas of [9] we obtain the following Simons type formula for locally
symmetric spaces.

LEMMA 2. Let M"™ be an n-dimensional (n > 2) submanifold with flat
normal bundle and parallel normalized mean curvature vector field in a locally
. . . . n-+p
symmetric semi-Riemannian space L, . Then, we have

1 o

i,7,k,m,a i,5,k,m,x
+ D WG Raigk— D hihG Rans:
i,9,k,0,8 i,5,k,0,8
+ Y WGP Rakgr — Y hgh Rais (3.25)
’]’k a?ﬁ '7j k a /B

i7" mi’ Pmy

+nZhZ+IH —nH Y hhGht!
N 2,7,m,o

+Z [tr(hhP)] ZN (h*h? — hPh),
a,B a,B

where N(A) = tr(AA"), for all matrix A = (a;;).

Proof. Note that

fAS SThgARg + 3 (he)’

1,7, 1,9,k,a

Using the definition of AR, = >, by, and the fact that |VB|? = Z”k(h%k)Q
we have
—AS = ) hEhS, + VB
,7,k,00

Using the Codazzi equation (2.9) and the fact that hf; = hY; we get

1 as ara 2
§ASZ Z hs; Roijkk + Z hijhiie + VB

0,3,k .5,k
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From (2.10) we obtain

1 ) _
5AS = ‘VB’ + Z h%Raijkk + Z h;'xj %ik] + Z hz] km ngk+
’]»k «@ 7‘7.]7k7a ,j k ,m,x

+ ) hgho, Rk

i,7,k,m,a

Thence,

1 2 ap apo ap

‘7j k a A7j k“ [ i7j7k“7a
+ ) R Rkt > B h% Roik-
1,5,k,m,a i,5,k,m,x

Using the Gauss equation (2.5) we get

S hEht Rk = > h&hf R — > WG, hb B+

,],k’mOé ,]k‘mOé 7]kma7ﬁ
B 38
+ Z hii P Mo i
i7j7k7m7a75
and
> hEhG iRk = > hShS Rk —n Y hGhehh HO+
Jk‘mOé 7]7kma ,]maﬁ
+ Y RGRS R R
i,g,k,m,0n8
Since we can choose a local orthonormal frame {e,...,en4p} such that

entl = %, we have that

1 1
H" = Z¢r(h"™)=H and H® = —tr(h*) =0, for a>n+2.
n n

Thus, we get
apa pntl
R e S e e Sk ) SR L o
1,7, k,m,a 1,9, k,m,a i,,m,a

+ Y RGRSH R

17'"ma’ "mk
7] k m a7ﬁ
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Therefore,

Y WG Ruige + ) BGh Rk

17.]7k7m7a 17.77k7m7a

= Y hShfRuie— > AR, R R,

17.]7k7m7a l’]7k‘7m7a7ﬁ

Y MRy D B Rk

Z7j7k7m7a718 Z7J7k7m7a

—n > GRS H 4 Y hEhGhl h.

i7" "mi’ “myj 17" "ma' "mk
i7j7m7a 7"7j7k7m7a’ﬁ

From (2.11) we have

Z e Raijik = Z h$i Raijisk + Z h%hfkﬁaﬁjk+ Z h%hfkﬁaiﬁk

i7j7k7a i?j7k7a i7j7k7a75 ihj?k?a?ﬁ
a1B o ara D
+ > by Reiis+ Y hhi Rijk.
i7j7k7a75 i7j7k7m7a

Using the Ricci equation (2.7) , we conclude that

Z h%h;‘@kﬁaﬂjk = Z h%hiﬁkh?mhik - Z h%h?khgmkh]@m'

1,3,k,0,0 i,3,k,m,a,8 i,3,k,m,a,B8
Thence,
o _ o B B
Y hRaijek = > b Ragrn+ Y, bR hS
i7j7k’a i7j7k7a i7j7k7m7a7/8
apBra 1B apB
- E hi g i gy, + E hijh e Raigi
Z’7.j7k7m7a?/8 i’j’k7a76
5 = _
+ Y hEhgRais+ Y hihi R
Z’7.j7k7a?/8 i?j)k7m7a

On other hand

> hiyRaini = 32 WiRakieg + D Wik Ragi+ D R Rarsr
i7j7k7a i7j7k7a i7j7k7a7ﬁ i7j7k7a7ﬁ

+ Z h%h/]fjﬁakiﬂ'f' Z h%h?mﬁmk:ik-

i,5,k,0,8 i,5,km,a
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Thence,

> h%hfjﬁa&-k = > g hfj he,h — >ong hfjh%khfm
i,5,k,a, 0 i,5,k,m,,8 i,5,k,m,,3

Therefore,

> WS Roking = Y hfRaking + Y hSh o R,
i7j7k7a 7] k a 7] k m a?ﬁ

- > g hy h%kh + > hei Y Raksr
i,5,k,m,o 8 i,5,k,0.,8

+ > hGhp Rakip+ Y BGhS, Rukin
i,5,k,0,8 1,7,k,m,a

Hence,

Z hei(Raijkk + Rakikj) = Z hei(Raijisk + Rakiksj)

ivjvkva ',j k (0%

> Bk~ D Bk kR
7kaaw8 ,]kma,@

+ Z hw ik mgk + Z h{j; h Rm]ﬂ
1,5,k i,9,k,0,0

+ Y A Rkt Y hGRERG R,
@4,k m,x i,5,k,m,a,3

— > hShLhehh > AR Rakar
i,J,k,m,a, B i,3,k,0,0

+ > hEhy Rapig+ Y hShS, Rk

1,5,k,0,8 i,5,k,m,a

Since L7 is locally symmetric, we have that

Z hei(Raijksk + Rakiksj) = 0.
/L‘7j7k7a
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Thus,

7 08 (Raijik + Rakirg) = Y hSho RS b0 — > hGR SRS

i7j7k“7a Z7‘7 k m a?ﬁ 7]7k m a?ﬁ

+ > S Rage+ D hhy Raijs

A7j7k“ a?/B Z] k a75
Z hzg kmimzjk + Z ha h,g] h?mhik

1,5,k,m,a i,5,k,m,,8

— Z h hﬂ hfnkh + Z h” i Rakpk
4,3,k,m,0,8 i,3,k,a,8

+ Z h'L k]Rakzﬁ + Z h%thRmmk
1,3,k i,3,k,m,a

Now, observe that

> hghiy = nZhaHa

1,5,k i,5,0

Using the fact that Hy; = H,’:[H and Hp; =0, for & > n + 1 we have

> hghg, = nZh”HH

1,5,k,a

Finally, we conclude that

1
SAS= VB + ) WG hS o — N hEh hehl
7]kmavﬁ ,]kma,ﬁ
+ Z hi’; hfkﬁawk +nH Z h$i Raijn+
i,J,k,0.,3 i,7,k,a
+ Z h hk:m mijk + Z ha hij h?mhfnk
1,7, k,m,c i,3,k,m,a,B

- Z hij hfjh% m T+ Z hw ij O"Cﬂk +
i,5,k,m,a,B i,9,k,a,B
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+ > hShy Ragip+ Y BSRS, Ry +n > S H;;
5.k, 8 i,5,k,m,a i

+ > B R — . hShf

Z7J7k7m7a Z7J7k7m7a7/3

_ (3.26)
+ Z hij %mhf@kh?j—i— Z hehoyi Ronijik
/[:7j7k77m7a718 i?j7k:7m7a
1 B
—nH Y hEhG " hEShG D
i?j7m7a i7j7k7m7a’/3
Note that
D S N T A
i:jzkzmzawB i,j,k,m,a,ﬁ , (3.27)
= tr(h*hPRPR) =Y " tr(hhF)7,
a7ﬁ avﬁ
D Hhtb = > R lghi
i:jzkzmzawB , i,j,k,m,a,ﬁ , (3.28)
= [tr(n®hP)]" = tr(hhP)7,
a7ﬁ awB
> g he b =" tr(hhPRPRe) (3.29)
iaj7k7m7a7ﬁ a,,B
and
> hhfahn by = Y RS RGhG,
i’j7k7m7a7ﬁ1 i,j,k,m,oc,ﬁ (3.30)
=5 D N(nh? = n'n).
a?ﬂ

Therefore, inserting (3.27), (3.28), (3.29) and (3.30) into (3.26) we com-
plete the proof. |1

In order to study linear Weingarten submanifolds, we will consider, for
each a € R, an appropriated Cheng-Yau’s modified operator, which is given
by

n J—
2

1
L=0+ al\, (3.31)
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where, according to [7], the square operator is defined by

Df = Z (nH(S” — nhn—’_l)fij, (3.32)
4,3
for each f € C°°(M), and the normal vector field e, 1 is taken in the direction
of the mean curvature vector field, that is, e,+1 = %

The next lemma guarantees us the existence of an Omori-type sequence
related to the operator L.

LEMMA 3. Let M™ be a complete linear Weingarten spacelike in a locally
symmetric semi-Riemannian space Ly P (c) satisfying conditions (3.1), (3.3)
and (3.4), such that R = aH + b, with a > 0 and (n — 1)a® + 4n (R — b) > 0.
If H is bounded on M™, then there is a sequence of points {qx}ren C M"
such that

lilgnnH(qk) =supnH, lilgn \VnH(q)| =0 and limsup L(nH(gx)) <0.
M k

Proof. Let us choose a local orthonormal frame {eq,...,e,} on M™ such
that h’%ﬂ = A\'"t16;;. From (3.31) we have that

-1
L(nH) = nz <nH + ”Ta - /\?+1> Hy;.
Thus, for alli = 1,...,7n and since that Ly "? satisfies the conditions (3.1) and
(3.4) then from (2.6) and with straightforward computation we get
(A2 < S =n*H>+n(n—1) (aH +b—TR)

2
= (w4 ") =" (= D an (R )

n—1\2
§<nH+ 5 a),

where we have used our assumption that (n —1)a®+4n (ﬁ — b) > 0 to obtain
the last inequality. Consequently, for all i = 1,...,n, we have

n—1

A < [nH 4

al. (3.33)
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Thus, from (2.6) we obtain
Rijij = Rijij — Y hghs; + Y (h$))?
> Rijij — Y hhs;.

Since

we get that

a2 n—1\2

for every «,1,j and, hence, from (3.33) we have

n—1\2
h; ?‘j§|hf‘iHh§‘j]§<nH+ 5 a> .

Therefore, since we are supposing that H is bounded on M™ and L;H'p satisfies

the condition (3.3), this is, R;j;; > c2, it follows that the sectional curvatures of
M™ are bounded from below. Thus, we may apply the well known generalized
maximum principle of Omori [17] to the function nH, obtaining a sequence
of points {qx }ren in M™ such that

lillcrnnH(qk) = supnH, lillcrn |VnH (qx)| =0, and
(3.34)

limksup ; nH;i(qx) < 0.

Since sup,; H > 0, taking subsequences if necessary, we can arrive to a se-

quence {qx)ken in M™ which satisfies (3.34) and such that H(g;) > 0. Hence,

since a > 0, we have

n—1
2

a+ |\ aw)| < 2nH(qx) + (n — 1)a.

n—1
2

2

0 < nH(q)+ a— [N g < nH (q) + a— A" qe)

n
< nH/(q) +
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This previous estimate shows that function nH (g;) + “5ta — A" (gy) is non-
negative and bounded on M™", for all k € N. Therefore, taking into account

(3.34), we obtain

. . n—1 n
hmksup(L(nH)(qk)) < nzi:hmksup [(nH + 50~ Al +1> (qk)Hii(qk)} < O.I

We close this section with the following algebraic lemma, whose proof can
be found in [18].

LEMMA 4. Let A,B : R" — R" be symmetric linear maps such that
AB — BA =0 and tr(A) =tr(B) =0. Then
n—2

r(A’B)| < ———=N(A4)\/N(B),
[tr(4B)| £ == N(A)VN(B)

where N (A) = tr(AA"), for all matrix A = (a;j). Moreover, the equality holds

if and only if (n — 1) of the eigenvalues x; of B and corresponding eigenvalues
y; of A satisty

i = né\rn(i;)l)’ riy; >0 and y; = N(A)) <resp.— nN(A)>

4. MAIN RESULTS

As before, the normal vector field e, is taken in the direction of the mean
curvature vector field, that is, e,11 = % In this setting, we will consider the
following symmetric tensor

P = Z q)%wi ® wjeq,

17]7a

where @%H = h?jﬂ — Hé;; and % = h%, n+2 < a < mn-+p Let

2 __ a2
|D|* = Zid’a(fbij) be the square of the length of ®.

Remark 1. Since the normalized mean curvature vector of M™ is parallel,
we have w114 = 0, for @ > n+1. Thus, from of the structure equations of the
normal bundle of M™, it follows that Rm—lﬁz‘j =0, for all a,,j. Hence, from
Ricci equation, we have that A"t h® —h®h" ! = 0, for all a. This implies that
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the matrix A""! commutes with all the matrix h®. Thus, being ®* = (@5):
we have that ®* = h* — H® and, hence ®"+1 = ptl — g7+l and & = h°,
for @ > n+ 1. These form, ®"*! commutes with all the matrix ®. Since the
matrix ®¢ is traceless and symmetric, once the matrix A% are symmetric, we
can use Lemma 4 for the matrix ®* and ®"*! in order to obtain

n—2

o (I)a 2¢n+1
(@) < L2

N(3%)/N(@+1). (4.1)

Summing (4.1) in «, we have
Z [t ((B%)20m )| < — L2 ZN (@%)/N (&),

In order to prove our characterization results, it will be essential the fol-
lowing lower boundedness for the Laplacian operator acting on the square of
the length of the second fundamental form. If Ly is a space form then from
[8] follows that R = 0 if and only if there exists an orthogonal basis for TM
that diagonalizes simultaneously all Be,§ € TM L

ProOPOSITION 1. Let M"™ be a linear Weingarten spacelike submanifold in
a semi-Riemannian locally symmetric space LZH’ satisfying conditions (3.1),
(3.2), (3.3) and (3.4), with parallel normalized mean curvature vector field
and flat normal bundle. Suppose that there exists an orthogonal basis for
TM that diagonalizes simultaneously all Be,§ € TM*. If M" is such that
R=aH +b, with (n — 1)a* 4+ 4n (R —b) > 0 and ¢ = <& + 2cy, then

2 @’2 n(n —2) 2
L(nH) > || ( ) — e _1)H|<I>|—n( c)).

Proof. Let us consider {eq, .. en} a local orthonormal frame on M" such
that hi; = Al'djj, for all @ € {n +1,...,n + p}. From (3.25), we get

( Z h‘ 7m13k + Z h%h‘]mRmkzk)

i, J,k,m,a 1,7,k,m,a

=2 Z (A2 Rigirs + AN Rian) = Z Riin(AY — AD)2.

i,k,Ot ’i,k‘,Oé
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Since that Ly *? satisfies the condition (3.3) we have

< Z h h‘km mz]k+ Z h%h]mRmkzk)

i,5,k,m,x i,7,k,m,a (42)

> Y (A = A2)? = 2nea|@f.

ik,

Now, for each a, consider A the symmetric matrix (hg;), and
B
Sap = Z hijhis-

Then the (p x p)-matrix (S,g) is symmetric and we can see that is diagonal-
izable for a choose of e,41,...,en4p. Thence,

— — (e N(e%
o Saa - E hz]hz]7
1]

and we have that

S:Zsa.

Since that Ly *? satisfies the condition (3.2) we obtain

> W Rk = D WG Rasi+ > W R

1,9,k,00,0 t,9,k,2,8 1,4,k,0,08
E 8 5 _ 275 2
h%hkkROéiﬁj - E (>‘za) Rakak —nH C1.
i,5,k,0,8 ik,o

Since that Ly *? satisfies the condition (3.1) we conclude that

Z hz] ijasz_ Z hZ] ]kRakﬁz+ Z hzth]Rakﬁk

i,5,k,0,8 ,0,k,0,8 .5,k
B (4.3)
Z h%hgkRaiﬁj = Cl|‘I>|2.
i7j7k7a7/8
Finally note that
> N(nhP = 1°h*) > 0. (4.4)

a7ﬂ
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Therefore, from (3.25) and using (4.2), (4.3) and (4.4) we conclude that

fAS > VB + cn|®> + nz hiT H;

b (4.5)
(e N7 n o 2
—nH Y R 4> [tr(hR)].
0,7, a,f
From (3.31) we have
-1
L(nH) = O(nH) + = 5 aA(nH)
n+1 n—1
= Z nHé;; — hii) (nH)y; + aA(nH)

= n2H Z Hy—n Z B H + = aA(nH)
=n’HAH aA(nH).
’-]
Note that
AH? =2HAH +2|VH|?.
Thus,
1
L(nH) = 5A(rﬂfﬁ) n?|VH|? — (nH).

7]

Since that R = aH + b and Ly " satisfies the conditions (3.1) and (3.3) we
have that R is constant then from (2.6) we get

én(n—l)A(aH)wt%A( 2h%) = AS

Therefore, using the inequality (4.5) and Lemma 1 we conclude that

L(nH) = AS—n2|VH|2 n> A H;
7]

IVB|? — n?|VH|? + cn|®|?

—nH Y RGRGAE 3 [tr(hhf))
i,5,m,a a,B

> en|®? —nH Y AGhSRE 3 [tr(hhf))

i3 'mi’ my
,Jm, B

v
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On the other hand, with a straightforward computation we guarantee that

—nd Yt [ ()] + Y [t (hen?))?

a,B
= —nH Y tr[em (@) —nmoP + Y [r(e0e?)] )
a a,B
. . 4
> MH\@F’ —nH?®*> + 127,

n(n—1)

Therefore,

—2 P[4
=2 P - nE?ef + i

Vvn(n—1) p (4.7)

L(nH) > cn|®? —

= [®*Prrp.e(|®]),
where )
— 2
Pipe(z) = — — =2 g, n(H? - c).
P n(n —1) 1

When ¢ > 0, if H2 > 4(5(;}))0, where Q(p) = (n — 2)%p+4(n — 1), then the

polynomial Py, . defined by

22 n(n-—
Pripc(x) = e T(l(n2)1)H$ —n(H? —¢)

has (at least) a positive real root given by

Vn
C(n, 7H:7( n—2)H + H?2 -4 n—lc).
(np H) = 55 (p(n~2) VrQ(p) p(n —1)
On the other hand, in the case that ¢ < 0, the same occurs without any
restriction on the values of the mean curvature function H. Now, we are in

position to present our first theorem.

THEOREM 1. Let M™ be a complete linear Weingarten spacelike subman-
ifold in locally symmetric Ly P satisfying conditions (3.1), (3.2), (3.3) and
(3.4), with parallel normalized mean curvature vector and flat normal bundle,
such that R = aH + b with a > 0 and (n — 1)a* + 4n (R — b) > 0. Suppose
that there exists an orthogonal basis for T'M that diagonalizes simultaneously
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all Be, € € TM*. When ¢ > 0, assume in addition that H? > *5=)°. If H is

bounded on M™ and |®| > C(n,p,sup H), then p =1 and M™ is an isopara-
metric hypersurface with two distinct principal curvatures one of which is
simple.

Proof. Since we are assuming that a > 0 and that inequality (3.11) holds,
we can apply Lemma 3 to the function nH in order to obtain a sequence of
points {gx treny € M™ such that

hlf:n nH(qr) =supnH, and limsupL(nH)(g) <O0. (4.8)
M k

Thus, from (4.7) and (4.8) we have
0 > limsup L(nH)(qx) > sup |(I)2PsupH7pyc<Sup \q>|>. (4.9)
k M M

On the other hand, our hypothesis imposed on |®| guarantees us that
sup,; |®| > 0. Therefore, from (4.9) we conclude that

PoapHpe <Sﬁp@|> <0. (4.10)

Suppose, initially, the case ¢ > 0. From our restrictions on H and |®|, we have
that Py po(|®]) > 0, with Py, .(|®|) = 0 if, and only if, |®| = C(n,p, H).
Consequently, from (4.10) we get

sup |®| = C(n,p,sup H).
M
Taking into account once more our restriction on |®|, we have that |®| is

constant on M™. Thus, since M" is a linear Weingarten submanifold, from
(3.11) we have that H is also constant on M™. Hence, from (4.7) we obtain

0=L(nH) > ’(I)|2PH7P,C(’(I)|) > 0.

Since |®| > 0, we must have Py .(|®|) = 0. Thus, all inequalities obtained
along the proof of Proposition 1 are, in fact, equalities. In particular, from
inequality (4.6) we conclude that

tr(®") = |®?.
So, from (2.6) we get
tr(®"H2 = |®|> = S — nH (4.11)
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On the other hand, we also have that

tr(@ ) =5- > 3" (hg)? - nH (4.12)

a>n+1 4,5

Thus, from (4.11) and (4.12) we conclude that ) ., ., Z”(hf})2 = 0. But,
from inequality (4.6) we also have that

@ =p > [N(2%)]* = pN (2"+1)* = plo|*. (4.13)

Hence, since |®| > 0, we must have that p = 1. In this setting, from (3.12)
and (4.13) we get

> (h;lj;lf = |VB|? = n?|VH[? =0,
4,7,k

that is, h?j;l = 0 for all 7,j. Hence, we obtain that M" is an isoparametric
hypersurface of Ly 7.

When ¢ < 0, we proceed as before until reach equation (4.10) and, from
|®| > C(n,p,sup H), we have that Py, .(|®|) > 0. At this point, we can
reason as in the previous case to obtain that H is constant, p = 1 and,
consequently, we also conclude that M™ is an isoparametric hypersurface of
L;Hp . Hence, since the equality occurs in (4.1), we have that also occurs the
equality in Lemma 4. Consequently, M"™ has at most two distinct constant
principal curvatures. |

In particular, when the immersed submanifold has constant scalar curva-
ture, from Theorem 1 we obtain the following

COROLLARY 1. Let M"™ be a complete spacelike submanifold in locally
symmetric semi-Riemannian Ly P satisfying conditions (3.1), (3.2), (3.3) and
(3.4), with parallel normalized mean curvature vector, flat normal bundle
and constant normalized scalar curvature R satisfying R < c¢. Suppose that
there exists an orthogonal basis for TM that diagonalizes simultaneously all
Be¢,& € TM*. When ¢ > 0, assume in addition that H? > 4((3(;1))0. If
H is bounded on M™ and |®| > C(n,p,sup H), then p = 1 and M"™ is an
isoparametric hypersurface with two distinct principal curvatures one of which
is simple.
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In order to establish our next theorem, we will need of the following lemma
obtained by Caminha, which can be regarded as an extension of Hopf’s maxi-
mum principle for complete Riemannian manifolds (cf. Proposition 2.1 of [5]).
In what follows, let £!(M) denote the space of Lebesgue integrable functions
on M™.

LEMMA 5. Let X be a smooth vector field on the n-dimensional complete
noncompact oriented Riemannian manifold M™, such that divy; X does not
change sign on M™. If | X| € LY(M), then divy X = 0.

We close our paper stating and proving our second characterization theo-
rem.

THEOREM 2. Let M"™ be a complete linear Weingarten spacelike submani-
fold in locally symmetric Einstein semi-Riemannian L;,Ler satisfying conditions
(3.1), (3.2), (3.3) and (3.4), with parallel normalized mean curvature vector,
flat normal bundle such that R = aH +b, with (n—1)a?+4n(R—b) > 0. Sup-
pose that there exists an orthogonal basis for T M that diagonalizes simulta-
neously all Bg, & € TM*. When ¢ > 0, assume in addition that H? > 4(8(_;)6.

If H is bounded on M™, |®| > C(n,p, H) and |VH| € L'(M), then p = 1 and
M™ is a isoparametric hypersurface with two distinct principal curvatures one
of which is simple.

Proof. Since the ambient space L;Hp is supposed to be Einstein, reasoning
as in the first part of the proof of Theorem 1.1 in [10], from (3.31) and (3.32)
it is not difficult to verify that

L(nH) = divy (P(VH)), (4.14)
where

1
pP= (n2H + ”(”2)a> I —nh™., (4.15)

On the other hand, since R = aH + b and H is bounded on M", from equa-
tion (2.6) we have that B is bounded on M™. Consequently, from (4.15) we
conclude that the operator P is bounded, that is, there exists C] such that
|P| < Cy. Since we are also assuming that |VH| € £1(M), we obtain that

|P(VH)| < |P||VH| < C1|VH| € L (M). (4.16)
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So, from Lemma 5 and (4.14) we obtain that L(nH) = 0 on M". Thus,
0= L(nH) > |®*Py,.(|®]) >0 (4.17)

and, consequently, we have that all inequalities are, in fact, equalities. In
particular, from (3.11) we obtain

|VB|? = n?|VH|?. (4.18)

Hence, Lemma 1 guarantees that H is constant. At this point, we can proceed
as in the last part of the proof of Theorem 1 to conclude our result. |
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