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Abstract : We apply combinatorial methods to a geometric problem: the classification of
polytopes, in terms of Minkowski decomposability. Various properties of skeletons of poly-
topes are exhibited, each sufficient to guarantee indecomposability of a significant class of
polytopes. We illustrate further the power of these techniques, compared with the tradi-
tional method of examining triangular faces, with several applications. In any dimension
d 6= 2, we show that of all the polytopes with d2 + 1

2
d or fewer edges, only one is decom-

posable. In 3 dimensions, we complete the classification, in terms of decomposability, of the
260 combinatorial types of polyhedra with 15 or fewer edges.
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Dedicated to the memory of Carlos Beńıtez

What happens if you have two line segments in the plane, oriented in
different directions, and you calculate all the sums of all pairs of elements,
one from each segment? Of course you end up with a rectangle, or at least a
parallelogram. Do the same again with a triangle and a line segment in three
dimensions: this time, you get a prism. Thus the prism and the parallelogram
are decomposable; they can be expressed as the (Minkowski) sum of two dis-
similar convex bodies. (Recall that that two polytopes are similar if one can
be obtained from the other by a dilation and a translation.) On the other
hand, any triangle, tetrahedron or octahedron is indecomposable.

We refer to [7] for a general introduction to the theory of polytopes, as
well as for specific results. Determining the decomposability of a polytope
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can be reduced to a computational problem in linear algebra [12, 17]. That
is, given the co-ordinates of its vertices, all we have to do is calculate the rank
of a rather large matrix. However that is not the approach to be taken here.

The edges and vertices of any polytope obviously constitute a graph, some-
times known as its skeleton. In the case of a polyhedron, this will be isomor-
phic to a planar graph. All the geometric conclusions of this paper will be
established by considering the properties of this graph. Section 1 develops
a number of sufficient conditions for indecomposability (or decomposability).
Our results have wider applicability than earlier results in this area, which
generally relied on the existence large families of triangular faces. Section 2
applies them to complete the classification of 3-dimensional polyhedra with up
to 15 edges. Section 3 applies them to completely classify, as indecomposable
or decomposable, all d-dimensional polytopes with up to d2 + 1

2d edges. We
also show that there is no d-dimensional polytope at all with 2d vertices and
d2 + 1 edges, for d 6= 3.

1. Geometric graphs and indecomposability

We will not give a thorough history of this topic, but it is important to
recall some preliminary information.

We depend heavily on the concept of a geometric graph, which was pio-
neered by Kallay [9]. He defined a geometric graph as any graph G whose
vertex set V is a subset of a finite-dimensional real vector space X, and whose
edge set E is a subset of the line segments joining members of V . (Of course,
X will be isomorphic to Rd for some d, but we prefer this basis-free formula-
tion.) It is largely a formality whether we consider an edge to be an unordered
pair or a line segment. It is significant that such a graph need not be the edge
graph of any polytope. He then extended the notion of decomposability to
such graphs in the following manner.

For convenience, let us say that a function f : V → X is a decomposing
function for the graph (V,E) if it has the property that f(v)−f(w) is a scalar
multiple of v − w for each edge [v, w] ∈ E. (This is slightly different from
Kallay’s local similarity; he insisted on strictly positive multiples.) A geomet-
ric graph G = (V,E) is then called decomposable if there is a decomposing
function which is neither constant, nor the restriction of a homothety on X. If
the only non-constant decomposing functions are homotheties then G is called
indecomposable.

Significantly, Kallay showed [9, Theorem 1] that a polytope is indecompos-
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able if and only if its edge graph is indecomposable in this sense. Exploiting an
idea of McMullen [11] and Kallay [9, Theorem 1b], we showed in [14, Theorem
8] that it is even sufficient just to have an indecomposable subgraph which
contains at least one vertex from every facet (maximal face). A strategy for
proving indecomposability of a polytope is thus to prove that certain simple
geometric graphs are indecomposable, and by building up to show that the en-
tire skeleton of our polytope is indecomposable. (It also would be interesting
to formulate somehow a notion of primitivity for such graphs.)

Building on the concept introduced in [18, p. 139], let us say that a geomet-
ric graph G = (V,E) is a simple extension of a geometric graph G0 = (V0, E0)
if G has one more vertex and two more edges than G0. More precisely, we
mean that there is a unique v ∈ V \ V0, and distinct vertices u and w in V0,
such that E = E0∪{[u, v]}∪{[v, w]}. Observe that the existence of these two
edges means that the value of any decomposing function at v is determined
by its values at u and w. No assumption is made about whether [u,w] is an
edge of either graph. Our first result is a special case of the next one, but it
is so useful and so easy to prove that it is worth stating separately.

Proposition 1. Suppose that G0, G1, . . . , Gn are geometric graphs, that
Gi+1 is a simple extension of Gi for each i, and that G0 is indecomposable.
Then Gn is also indecomposable.

Proof. It is clearly sufficient to prove this when n = 1, and this follows
from the observation in the preceding paragraph.

Let us illustrate how this can be applied in the simplest cases, polyhedra for
which “sufficiently many” faces are triangles [15, §3]. Any edge is obviously
indecomposable, and then Proposition 1 easily implies that any triangle is
indecomposable. Furthermore if an indecomposable geometric graph shares
an edge with a triangle, then their union is easily proved to be indecomposable.
It follows that the union of a chain of triangles, as defined in [15, p. 92], is
an indecomposable graph. This makes it clear that a polyhedron must be
indecomposable if every face is a triangle. If every face but one is a triangle,
it remains true that the triangular faces can be ordered into a chain, whose
union is the entire skeleton of the polyhedron; again indecomposability is
assured. The same holds if all faces but two are triangular, and the non-
triangular faces do not share an edge. If all faces but two are triangular, but
the non-triangular faces do share an edge, then the triangular faces can still be
ordered into a chain, whose union will contain every vertex of the polyhedron
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Figure 1: Two indecomposable examples without many triangles

and every edge bar one. So, indecomposability is assured, whenever there are
two or fewer non-triangular faces.

This conclusion no longer holds if we have three non-triangular faces, since
the triangular prism is decomposable. On the other hand, there are also
many indecomposable polyhedra with precisely three non-triangular faces.
For comparison, let us mention that that a polyhedron with only three, or
fewer, triangular faces is automatically decomposable [17, §6].

To show how powerful Proposition 1 is, we note that it guarantees in-
decomposability of any polyhedron whose graph is either of those shown in
Figure 1. In neither example is there a chain of triangles touching every face.

For the first example, begin with the edge AB, which is indecomposable,
then successively add the vertices C,D,E and F . Each additional vertex is
adjacent to two of the preceding ones, so the resulting geometric graph is in-
decomposable. Since it touches every face, the polyhedron is indecomposable.
The second example is even quicker; beginning with the edge AB, it is enough
to add the vertices C,D then E.

A similar argument also gives a particularly easy proof of the indecompos-
ability of the example in [9, §6]. Further applications are given in [3].

Kallay [9, Theorem 8] showed that if two indecomposable graphs have two
common vertices, then their union is indecomposable. A prime example for
this result is the 199th polyhedron in the catalogue [4], which will be discussed
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Figure 2: BD199 is indecomposable

again in the next section. In Figure 1, it should be clear that the six triangular
faces can be partitioned in two groups, each of which constitutes a chain of 3
triangles. It is clear that the resulting two indecomposable geometric graphs
have two vertices (but no edge) in common, and that their union contains
every vertex.

Our next result is a generalization of both Proposition 1 and [9, Theo-
rem 8]. Our proof is no different from Kallay’s but, as we shall soon see, our
formulation is somewhat more powerful. It is clear from the definition that
adding an edge but no vertex to an already indecomposable graph preserves
its indecomposability. The point of part (i) is that, with a little care, we can
throw away some edges and still preserve indecomposability. Part (ii) says
that if one edge of an indecomposable graph is replaced by another indecom-
posable graph, then the new graph is indecomposable.

Theorem 2. (i) Suppose that G1 = (V1, E1) and G2 = (V2, E2) are two
geometric graphs in the same vector space, and that V12 = V1 ∩ V2 contains
at least two distinct vertices. Let E12 be the collection of those edges of G1,
both of whose vertices lie in V12. Let G = (V,E) be another geometric graph
with vertex set V = V1 ∪ V2 and whose edge set E contains (E1 \ E12) ∪ E2.
If both G1 and G2 are indecomposable, then so is G.

(ii) Suppose that G1 = (V1, E1) and G2 = (V2, E2) are two indecomposable
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geometric graphs, that V1 ∩ V2 contains at least two distinct vertices u and
w. Define a new geometric graph G = (V,E) with vertices V = V1 ∪ V2 and
edges E = (E1 \ {[u,w]}) ∪ E2. Then G is also indecomposable.

Proof. (i) Let f : V → X be a decomposing function, where X is the
ambient vector space. Since G2 is indecomposable, f |V2 must be the restriction
of a similarity, i.e. there are a scalar α and a vector x such that f(v) = αv+x
for all v ∈ V2. In particular, f(u)− f(w) = α(u− w) for all u,w ∈ V12 (even
when [u,w] is not an edge of G2). Since E1 ⊆ E12∪E, this implies that f |V1 is
also a decomposing function, so by hypothesis must also be the restriction of
a similarity. Thus there are a scalar β and a vector y such that f(v) = βv+ y
for all v ∈ V1.

Now, fix distinct u,w ∈ V12. Consistency requires αu + x = βu + y and
αw+x = βw+y, which quickly forces x = y and α = β. Thus f is a similarity.

(ii) In the notation of part (i), we clearly have (E1 \E12) ∪E2 ⊆ E. Note
that we make no assumption about whether the edge [u,w] belongs to either
G1 or G2.

Recall that a graph G is called a cycle if |V | = k ≥ 3 and V can be ordered
as {v1, . . . , vk}, so that E = {{v1, v2}, . . . , {vk−1, vk}, {vk, v1}}. The number
k is said to be the length of the cycle. The next result is a rewording of [14,
Proposition 2]. Once formulated it is easy to prove, yet surprisingly useful.
The 3-dimensional case has already been used in [14, §4]. We state it explicitly
here, since we will use both the 3-dimensional and higher dimensional versions
in the next sections.

Proposition 3. Any cycle, whose vertices are affinely independent, is an
indecomposable geometric graph. In particular, a polytope will be indecom-
posable, if its skeleton contains a cycle, whose vertices are not contained in
any affine hyperplane, and which touches every facet.

The next result indicates further how indecomposability of a graph can be
established by considering smaller subgraphs.

Theorem 4. (i) Let H = (V,E) be an indecomposable geometric graph
and for each e = [u, v] ∈ E, let Ge = (Ve, Ee) be an indecomposable geometric
graph containing both vertices u, v. Then the union

⋃
eGe is an indecompos-

able geometric graph.
(ii) Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gn = (Vn, En) be indecom-

posable geometric graphs and let v1, v2, . . . , vn be a collection of affinely inde-
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pendent vertices. Set G0 = Gn, v0 = vn and suppose vi ∈ Vi ∩ Vi−1 for each
i. Then the union G1 ∪G2 ∪ · · · ∪Gn is indecomposable.

(iii) Let P be a polytope, and let G1 = (V1, E1), G2 = (V2, E2) be two
indecomposable subgraphs of the skeleton of P , with V1 ∩ V2 6= ∅, and sup-
pose that V1 ∪ V2 contains all but at most d − 2 vertices of P . Then P is
indecomposable.

Proof. (i) Just apply Theorem 2(ii) successively, replacing each edge e of
H with the graph Ge.

(ii) The graph with vertices v1, . . . , vn and edges [v1, v2], . . ., [vn−1, vn],
[vn, v1] is indecomposable by Proposition 3. Now we just apply (i).

(iii) If V1 ∩ V2 contains two or more elements, the conclusion follows from
Theorem 2(i). So we assume that V1 ∩ V2 contains a unique element, say v2.
Set V ′i = Vi \ {v2}, and C = V \ (V ′1 ∪ V ′2). Then C contains at most d − 1
vertices, so their removal from the graph of P will not disconnect it. Since V ′1
and V ′2 are disjoint, there must then be an edge between them, say between
v1 ∈ V ′1 and v3 ∈ V ′2 . Letting G3 be the graph with the single edge [v1, v3], we
can apply (ii) with n = 3. (We cannot claim G1 ∪G2 is indecomposable.)

It is easy to see that [9, Theorem 9] is precisely the case n = 3 of part
(ii), and that [9, Theorem 10] is implied by the case n = 4. Part (iii) is a
strengthening of [16, Corollary 8.6], where it is assumed that every vertex
of P lies in V1 ∪ V2. We will indicate the strength of this with another two
examples. In both polyhedra whose graphs are shown in Figure 3, we can take
G1 and G2 as chains of triangles. Only part (iii) of the preceding Theorem is
capable of proving the indecomposability of these two polyhedra.

Sufficient conditions for decomposability are not so common. The following
result was proved without statement by Shephard [15, Result (15)]. More
precisely, he made the stronger assumption that every vertex in F had degree
d; however, his proof also works in the formulation presented here. It may be
interesting to present a proof using decomposing functions.

Proposition 5. A polytope P is decomposable whenever there is a facet
F such that every vertex in F has a unique neighbor outside F , and P has at
least two vertices outside F .

Proof. Let y be a support functional for F . We may suppose that y(F ) =
{1} and that y(x) < 1 for all other x in the polytope. Label the vertices of F
as v1, . . . , vn. For each vertex vi of F , denote by wi the unique vertex which
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Figure 3: Another two examples

is adjacent to vi but not in F . Set α = maxn
i=1 y(wi); clearly α < 1. For each

i, let xi be the unique point on the edge [vi, wi] satisfying y(xi) = α.

Now define a function f by f(vi) = xi and f(v) = v for all other vertices.
Clearly f(v) − f(w) = v − w whenever both vertices are outside F . Since
f(vi) − f(wi) = xi − wi and xi is a convex combination of vi and wi, the
condition for a decomposing function is also satisfied when one vertex lies in
F . What if both vertices lie in F? Fix two adjacent vertices vi, vj in F , and
consider a 2-face containing them but not contained in F . This face must
contain xi and xj . Since y(vi) = y(vj) 6= y(xi) = y(xj), the line segments
[vi, vj ] and [xi, xj ] must be parallel; we do not claim that [xi, xj ] is an edge of
P . Then f(vi)− f(vj) = xi − xj is a non-negative multiple of vi − vj . So f is
a decomposing function, as anticipated.

Finally, f is not a similarity, because it coincides with the identity func-
tion at all the vertices outside F but is not equal to the identity function.
Decomposability follows.

The next section requires the 3-dimensional case of the following result. It
is not difficult, but appears to be new, so we state it in full generality.

Proposition 6. Let F be a facet of a polytope P . Suppose that F is
indecomposable. Let Q be obtained from P by stacking a pyramid on F .
Then P is decomposable if and only Q is decomposable.

Proof. Let V be the vertex set of P , u the unique vertex of Q not in P , S
the pyramid being glued onto F and X the ambient vector space. It is easy
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to show that any decomposing function defined on F has a unique extension
to S.

If P is indecomposable, so is its graph, G(P ). Let f : V ∪ {u} → X be a
decomposing function for Q. Then f |V is a decomposing function for P , so
we find α, x so that f(v) = αv + x for all v ∈ V . By the previous paragraph,
αu+ x is the only conceivable value for f(v). Thus Q is indecomposable.

Conversely, suppose Q is indecomposable. Let g : V → X be any de-
composing function for P . Again by the first paragraph, there a unique de-
composing function f : V ∪ {u} → X which extends g. Since f must be the
restriction of a homothety on X, so must g.

2. Polyhedra with 15 edges

If a given polyhedron has V vertices, E edges and F faces, then Euler’s
relation E = V +F −2 suggests that the number of edges is a reasonable mea-
sure of its complexity. Accordingly, we gave in [19] the complete classification,
in terms of decomposability, of the 58 combinatorial types of polyhedra with
14 edges. The classification of the 44 types of polyhedra with 13 or fewer
edges was essentially known [17, §6].

Indeed, there are only four types of polyhedra with 6, 8 or 10 edges, and
they are easily seen to be indecomposable. No polyhedron can have 7 edges.
Besides the triangular prism, the only other polyhedron with 9 edges is the
triangular bipyramid, which is obviously indecomposable.

A thorough study of this topic had already been made by Smilansky, who
showed [17, Theorem 6.7] that a polyhedron is decomposable if there are
more vertices than faces; and that a polyhedron is indecomposable if F ≥
2V − 6. As remarked in [19, p 719], simply knowing the values of F and
V is then enough to decide decomposability in all cases when E ≤ 11 or
E = 13. The examples with 12 edges were discussed in more detail in [19],
but the results were obviously known to Smilansky. (The only example whose
indecomposability is not clear from classical triangle arguments is [19, figure
2], and its indecomposability is guaranteed by [16, Corollary 8.6].)

The classification of polyhedra with 14 or fewer edges incidentally com-
pleted the classification of all polyhedra with 8 or fewer faces. We should
recall that two polytopes are said to be combinatorially equivalent if their
face lattices are isomorphic. In three dimensions, Steinitz’s Theorem assures
us that two polyhedra are combinatorially equivalent as soon as we know that
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their graphs are isomorphic. In many cases, two polytopes with the same
combinatorial type will either both be decomposable or both be indecompos-
able. Smilansky [17, §6] first announced that this is not so for polyhedra with
14 edges, and some explicit examples were given in [19].

We push this project a bit further in this section by completing the clas-
sification of the 158 combinatorial types of polyhedra with 15 edges. This
also completes the classification of the 301 combinatorial types of polyhedra
with 8 or fewer vertices. We also note the indecomposability of all higher
dimensional polytopes with 15 or fewer edges.

The aforementioned results of Smilansky imply that a polyhedron is de-
composable if (V, F ) is either (10, 7) or (9, 8) and that a polyhedron is inde-
composable if (V, F ) = (7, 10); these three cases account for 84 combinatorial
types. Our assumption that V + F = 17 then tells us that the only case
remaining is V = 8, F = 9.

There are 74 combinatorial types of polyhedra with 8 vertices and 9 faces,
which were first described verbally, but not visually, by Kirkman [10, pp 362–
364]. It is possible to use computers to generate diagrams of such polyhedra,
but we are dealing with a relatively small number of polyhedra, so it is simpler
to use a published catalogue. The only one for this class seems to be that of
Britton and Dunitz [4]. They exhibited diagrams of all the 301 combinatorially
distinct types of polyhedra with up to 8 vertices. On their list, those with 8
vertices and 9 faces are numbers 129 to 202 in [4, Fig. 5].

Of these, we will see that most are indecomposable because they have suf-
ficiently many triangles, and 2 are obviously decomposable thanks to Propo-
sition 5 (in the simplest geometric realizations, because they have a segment
as a summand). The remaining 6 are also indecomposable but arguments
using triangular faces alone don’t work; we need to use the results from §1 to
establish their indecomposability.

Theorem 7. Of the 74 types of polyhedra with 9 faces and 8 vertices,
only 2 types are decomposable, 66 types are indecomposable by classical ar-
guments, and the remaining 6 require some results from §1 to establish their
indecomposability. More precisely:

(i) Polyhedra numbers 182 and 198 (on the list of Britton and Dunitz) are
decomposable.

(ii) Altogether, 66 are indecomposable by virtue of having a connected
chain of triangular faces. Specifically, we mean those numbered 129–172,
174–178, 180, 181, 183–186, 188, 189, 191, 193–197, 200–202.
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Figure 4: The Capped Prism, BD182 and BD198

(iii) The other 6, namely numbers 173, 179, 187, 190, 192 and 199, are
indecomposable thanks to either Proposition 1 or 3 or Theorem 2.

Proof. We begin with the decomposable examples. As remarked in the
opening paragraph, a triangular prism is the Minkowski sum of a triangle and
a line segment. If we glue a tetrahedron onto one end of a prism, we obtain
the capped prism, which is decomposable as the sum of a tetrahedron and
a line segment. Better still, Proposition 5 guarantees that any polyhedron
combinatorially equivalent to this will be decomposable.

There are two ways to glue a second tetrahedron onto the capped prism.
Either we glue it onto one face of the first tetrahedron, or we glue it onto the
remaining triangular face of the original prism. In both cases, we obtain a
polyhedron with 8 vertices and 9 faces. All three are pictured here, the latter
two being numbers 182 and 198 respectively from the list of [4].

In case the three edges which lie between pairs of quadrilateral faces are all
parallel, each of the latter two polyhedra will be decomposable, being the sum
of a triangular bipyramid and a line segment. Since one of them has vertices
of degree 5 and the other does not, they are not combinatorially equivalent.
This exemplifies the fact that the combinatorial type of two polyhedra does not
determine the type of their sum. Our diagrams are not identical to those in [4];
we have drawn them slightly differently to emphasize their decomposability.

It is true, but not totally obvious, that any polyhedron combinatorially
equivalent to these two will be decomposable. Let us prove it.

Proposition 5 clearly implies that [4, 182] is decomposable (but not nec-
essarily that a line segment will be a summand). For [4, 198], recall that the
capped prism is decomposable, and then apply Proposition 6.

Now let us look at the indecomposable examples. Numbers 129, 130 and
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Figure 5: BD173 and BD179

131 each have one hexagonal face and 8 triangular faces. Each of examples
132–155 has one pentagonal face, one quadrilateral face and 7 triangular faces.
Indecomposability of all these examples is assured by our remarks in the pre-
vious section, because they have at most two non-triangular faces.

Examples 156–181, 183–197 and 199–202 all have three quadrilateral and
six triangular faces. By inspection, all but six of them (namely 173, 179, 187,
190, 192 and 199) are indecomposable because (some of) their triangular faces
can be ordered into a chain whose union touches every face. We note also that
for some examples, the chain of indecomposable triangles does not contain
every vertex. (In particular, 157 and several others each have a vertex which
does not lie in any triangular face.) Thus the weakness of the assumption,
that the chain only touches every face, is significant.

Proposition 3 implies the indecomposability of examples 173, 179, 187,
190 and 192 from Britton and Dunitz. Alternatively, their indecomposability
can also be established by Proposition 1. None of these examples contains
a connected sequence of triangular faces touching every face, so some new
technique was needed. We present here their diagrams, with an appropriate
4-cycle highlighted. In each case, three vertices of the 4-cycle lie in one face,
while the fourth does not, so the 4-cycle cannot be coplanar. The diagrams
make it clear that the 4-cycle touches every face. This time, we have used the
same diagrams as in [4], except that for aesthetic reasons we have reversed
the front and back faces of 190 and 192.

Finally, we recall from §1 that 199 is also indecomposable.

We remark that all higher dimensional polytopes with 15 or fewer edges
are indecomposable; this extends [19, Proposition 2.11]. The “smallest” d-
dimensional polytope, the simplex, obviously has exactly 1

2d(d+ 1) edges. So
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Figure 6: BD187, BD190 and BD192

in dimensions 6 and higher, there are in fact no polytopes with 15 or fewer
edges. In dimension 5, the only polytope with 15 or fewer edges is the simplex.
Two more examples exist in dimension 4, but the next result shows they are
both indecomposable.

Proposition 8. The assertion “every 4-dimensional polytope with n edges
is indecomposable” is true if and only if n ≤ 15 or n = 17.

Proof. Any polytope satisfying these restrictions on n will have at most 7
vertices [7, 10.4.2]. This condition forces indecomposability by [18, Proposi-
tion 6].

For the converse, we need to consider various possible values for n. We
will simply describe the examples, and not verify all the details.

A particularly simple decomposable polytope with 18 edges is the sum of
two triangles lying in orthogonal planes.

The sum of a 4-dimensional simplex with a line segment, which is parallel
to one 2-face but not parallel to any edge of the simplex, will have 19 edges.

The sum of a 4-dimensional simplex with a line segment, which is not
parallel to any proper face of the simplex, will have 20 edges.

Denoting by ei the usual basis vectors, let P be the convex hull of {0, e1, e2,
e3, e4, e3 + e4}. Then the sum of P with the segment [0, e1] has 22 edges.

The sum of the cyclic polytope C(6, 4) with a line segment which is parallel
to one of its edges, will have 25 edges.

The sum of a 4-dimensional simplex with a triangle, which is parallel to
one of its 2-faces but has the opposite orientation, will have 27 edges.

If P is a polyhedron with E edges and V vertices, then the sum of a P
with a line segment (not parallel to the affine hull of P ) is easily seen to have
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2E+V edges. (This is equally true in higher dimensions.) The possible values
of E and V for polyhedra are well known [7, §10.3], and the corresponding
values of 2E + V account for all remaining values of n.

In particular, the sum of a tetrahedron with a line segment has 16 edges.
In the next section, we will see that this is (up to combinatorial equivalence)
the only example with 16 edges.

3. Polytopes with not too many edges

A simplicial prism, i.e. the sum of a segment with a (d − 1)-dimensional
simplex, has 2d vertices, d2 edges and d + 2 facets. These numbers turn out
be the minimum possible, for a d-dimensional decomposable polytope. In the
case of vertices or edges, the prism is (up to combinatorial equivalence) the
unique minimiser.

In d dimensions, any polytope has at least d+1 facets, and only the simplex
has d + 1 facets. So no non-trivial bound on the number of facets will imply
indecomposability. Nor can uniqueness be expected; a (d − 2)-fold pyramid
over a quadrilateral also has d + 2 facets. For further examples, see Lemma
10 below.

The conclusions regarding the numbers of vertices and edges are more in-
teresting; for edges, this extends Proposition 8 to higher dimensions. Propo-
sition 3 is an essential tool for these. So also is Gale’s result [15, (14)] that
any pyramid, i.e. the convex hull of a maximal face and a single point, is
indecomposable. This is clear, because every 2-face outside the base must be
triangular.

As noted in [18, Proposition 6], a d-dimensional polytope with strictly
fewer than 2d vertices is automatically indecomposable, and this estimate is
the best possible.

We will prove now that the simplicial prism is the only decomposable
d-polytope with 2d or fewer vertices, before the corresponding result about
edges. We have learnt recently that this result was first proved by Kallay [8,
Theorem 7.1, page 39] but never published; his argument is different, using
Balinski’s Theorem.

Recall that a d-polytope P is simple if every vertex is simple, i.e. has degree
d. Clearly every simple d-polytope, other than a simplex, is decomposable.

Theorem 9. Let P be a decomposable d-dimensional polytope with 2d
or fewer vertices. Then P is combinatorially equivalent to the sum of a line
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segment and a (d−1)-dimensional simplex (and hence has precisely d2 edges).

Proof. The 2-dimensional case is almost obvious and the 3-dimensional
case is quite easy, from §2. We proceed by induction on d.

So let P be a decomposable (d+ 1)-dimensional polytope with 2(d+ 1) or
fewer vertices.

Then some d-dimensional facet, say F , must be decomposable. Since P
is not a pyramid, there must be (at least) two vertices of P outside F ; this
implies that F has at most 2d vertices. By the inductive hypothesis, F is
combinatorially equivalent to the sum of a line segment and a (d−1)-simplex.

This means that F has two faces which are simplices, whose vertex sets
{v1, v2, . . . , vd} and {w1, w2, . . . , wd} can be labelled in such a way that vi is
adjacent to wi for each i. In particular F has 2d vertices and d2 edges.

Furthermore there must be precisely two vertices of P outside F , say x
and y.

Suppose that one of them is adjacent to vertices in both simplices, say
[x, vi] and [x,wj ] are both edges of P for some i and j. A routine degree
argument shows that x is adjacent to at least two vertices in one simplex,
so without loss of generality i 6= j. We may renumber the vertices so that
i = 1, j = d. But then

{v1, v2, . . . , vd, wd, x}

will be an affinely independent (d+2)-cycle. It touches every facet, since P has
only 2d+2 vertices. This contradicts our assumption that P is decomposable.

Thus each of x, y is adjacent to vertices in only one simplex, say x is not
adjacent to any wj and y is not adjacent to any vi. Since all vertices have
degree at least d+ 1, it follows that x is adjacent to each vi, y is adjacent to
each wj , and x and y are adjacent to each other. This means that the skeleton
of P is isomorphic to the skeleton of the sum of a line segment and a simplex.

Now observe that P is simple and so is in fact combinatorially equivalent
to the sum of a line segment and a simplex, thanks to a result of Blind and
Mani [2].

Proposition 5 implies that if we cut any vertex from any polytope, the
resulting polytope will be decomposable. This makes it easy to construct de-
composable polytopes with any number of vertices greater than 2d. On the
other hand, Proposition 8 asserts that there are gaps in the possibe num-
bers of edges of decomposable polytopes, at least in dimension 4. We show
now that this is also true in higher dimensions. In fact, a decomposable
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d-dimensional polytope with strictly less than d2 + 1
2d edges must be combi-

natorially equivalent to a prism; this is an easy consequence of Theorem 9.
With some additional material, we can prove a stronger result.

We will first examine the existence of simple polytopes with less than 3d
vertices. Being decomposable, Theorem 9 implies that no simple d-polytope
has between d + 1 and 2d vertices. This also follows from Barnette’s Lower
Bound theorem. For results concerning higher numbers of vertices, see [13]
and the references therein.

We denote by ∆m,n the sum of an m-dimensional simplex and an n-
dimensional simplex lying in complementary subspaces. It is routine to check
that ∆m,n is a simple (m+ n)-dimensional polytope with (m+ 1)(n+ 1) ver-
tices, 1

2(m+ n)(m+ 1)(n+ 1) edges and m+ n+ 2 facets. We denote by Wd

the result of cutting a vertex from a d-dimensional simplicial prism ∆1,d−1.
This simple polytope has 3d− 1 vertices, 1

2d(3d− 1) edges, and d+ 3 facets,
comprising 2 simplices, 2 prisms and d − 1 copies of Wd−1. In dimension 3,
W3 is simply the 5-wedge.

Lemma 10. (i) The (combinatorial types of) simple d-dimensional poly-
topes with d+ 2 facets are precisely the polytopes ∆k,d−k for 1 ≤ k ≤ 1

2d.

(ii) Up to combinatorial equivalence, the only simple d-dimensional poly-
topes with fewer than 3d vertices are the simplex ∆0,d, the simplicial prism
∆1,d−1, the polytope ∆2,d−2, the 6-dimensional polytope ∆3,3, the polytope
Wd, the 3-dimensional cube ∆1,1,1 and the 7-dimensional polytope ∆3,4.

(iii) For every d 6= 6, the smallest vertex counts of simple d-polytopes are
d+1, 2d, 3d−3 and 3d−1. In dimension 6 only, there is also a simple polytope
with 3d− 2 vertices.

Proof. (i) The simplicial polytopes with d + 2 vertices are described in
detail by Grünbaum [7, §6.1], and these are their duals.

(ii) Obviously the simplex is the only polytope with d+1 (or fewer) facets.
Barnette, [1] or [5, §19], showed that a polytope with d + 4 or more facets
has at least 4d− 2 ≥ 3d vertices. He also showed that a polytope with d+ 3
facets has at least 3d − 1 vertices, and that if d > 3 the only such example
with precisely 3d−1 vertices arises from truncating a vertex from a simplicial
prism, i.e. it is Wd. If d = 3, the cube ∆1,1,1 is the unique other example.

We are left with the case of d+ 2 facets. Clearly ∆1,d−1 and ∆2,d−2 have
respectively 2d and 3d− 3 vertices.

If 3 ≤ k ≤ 1
2d, then d ≥ 6. If d ≥ 8, then ∆k,d−k has at least (3+1)(d−3+

1) > 3d−1 vertices. If d = 7, we have the example ∆3,4, which has 20 = 3d−1
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vertices. If d = 6, we must also consider ∆3,3, which has 16 = 3d− 2 vertices.

(iii) This follows immediately from (ii).

Theorem 11. Let P be a decomposable d-dimensional polytope with no
more than d2 + 1

2d edges. Then either P is combinatorially equivalent to a
simplicial prism ∆1,d−1 (and hence has precisely d2 edges), or d = 4 and P is
combinatorially equivalent to ∆2,2.

Proof. A d-dimensional polytope with 2d + 1 or more vertices must have
at least 1

2(2d+ 1)d edges.

So if P has 2d+ 1 vertices, it must be simple, and Lemma 10 implies that
2d+ 1 ≥ 3d− 3. Thus d = 4 and P is ∆2,2.

Otherwise, P has at most 2d vertices and the conclusion follows from
Theorem 9.

In particular, a polychoron with 17 edges is necessarily indecomposable.
Grünbaum [7, p 193] showed that there is no polychoron at all with 8 vertices
and 17 edges. We finish by using the preceding results to show that this is
not an isolated curiosity: in fact, there is no d-dimensional polytope with
2d vertices and d2 + 1 edges for any higher value of d. (There are two easy
examples when d = 3; see [4, Fig. 3].)

Lemma 12. The polytope ∆2,d−3 cannot be a facet of any decomposable
d-dimensional polytope with 3d− 4 vertices.

Proof. We can realize ∆2,d−3 as the convex hull of three (d− 3)-simplices,
say S, T, U , all translates of one another, so that the convex hull of any two
of them is a facet therein, combinatorially equivalent to ∆1,d−3. Moreover in
each such facet, e.g. co(S, T ), each of the d − 2 edges joining S and T also
belongs to a triangular face whose third vertex lies in U .

Suppose that this copy of ∆2,d−3 is a facet of a decomposable polytope
P with 3d − 4 vertices. Denote v, w the two vertices of P lying outside this
facet. Then co(S, T ) is a ridge in P ; denote by F the other facet containing
it. Then F contains at least one of v, w.

In particular, F omits at most d − 1 vertices of P . These d − 1 vertices
cannot form a facet, so F touches every facet. Decomposability of P then
implies that F is also decomposable.

Since F has at most 2d − 2 vertices, it can only be a copy of the prism
∆1,d−2, with one of v, w adjacent to every vertex in S and no vertex in T ,
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and the other adjacent to every vertex in T and no vertex in S. The same
argument applied to co(T,U) and co(S,U) quickly yields a contradiction.

Theorem 13. Let P be a d-dimensional polytope with 2d vertices and
d2 + 1 or fewer edges. Then either P is combinatorially equivalent to the
prism ∆1,d−1 (and hence has precisely d2 edges), or d = 3.

Proof. If d is 1 or 2, the conclusion is obvious. In case we can establish
decomposability, the conclusion will follow from Theorem 11.

If P has exactly d2 edges, then it is simple, hence decomposable by Shep-
hard’s result, Proposition 5. Since every vertex has degree at least d, P cannot
have fewer than d2 edges.

We are forced to contemplate the possibility that P has precisely d2 + 1
edges. Then P is indecomposable by Theorem 11. Since 2E − dV = 2, there
are at most two vertices which are not simple.

Now suppose that some vertex has degree d + 2, and choose a facet F
not containing v. Then P must be a pyramid over F , otherwise it would be
decomposable by Shephard’s result. Then F has v = 2d − 1 = 2(d − 1) + 1
vertices, and hence at least 1

2(d − 1)v = (d − 1)2 + 1
2(d − 1) edges. Hence P

will have at least (d − 1)2 + 1
2(d − 1) + (2d − 1) = d2 + 1

2d −
1
2 edges. The

hypothesis then implies that 1
2d−

1
2 ≤ 1. We conclude that d = 3 and P is a

pentagonal prism.
Next consider the case that one vertex v has degree d+ 1 and that all its

neighbors are simple vertices. If we cut this vertex from P , the resulting facet
will be simple and contain d+ 1 vertices. This facet cannot be a simplex, so
Lemma 10 implies that d+ 1 ≥ 2(d− 1), i.e. d ≤ 3.

Finally consider the case that P has two adjacent vertices of degree d+ 1.
We can find a hyperplane which has this edge on one side, and all other
vertices of P on the other side. This divides P into two polytopes, say Q and
R respectively, with a common facet F . All other vertices are simple, so F
will be simple and contain 2d vertices. Now F cannot be a simplex or a prism,
because it has more than (d− 1) + 1 or 2(d− 1) vertices. Lemma 10(iii) then
forces 2d ≥ 3(d− 1)− 3, i.e. d ≤ 6.

If d = 6, then F has 12 vertices, and can only be ∆2,3. But Q has 14
vertices, which is impossible according to Lemma 12. If d = 5, then F is
simple and has 10 = 3(d − 1) − 2 vertices, which according to Lemma 10
is impossible unless d − 1 = 6. Grünbaum [7, p 193] showed that the case
d = 4 is impossible. The only remaining possibility is that d = 3 and P is
combinatorially equivalent to the second last example in [4, Fig. 3].
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