EXTRACTA MATHEMATICAE Vol. 31, Num. 1, 4767 (2016)

Quasi Griiss Type Inequalities for Complex Functions
Defined on Unit Circle with Applications for Unitary
Operators in Hilbert Spaces

S.S. DRAGOMIR

Mathematics, College of Engineering & Science, Victoria University,
PO Box 14428, Melbourne City, MC 8001, Australia

and

School of Computational & Applied Mathematics, University of the Witwatersrand,
Private Bag 3, Johannesburg 2050, South Africa

sever.dragomir@uu.edu.au http://rgmia.org/dragomir

Presented by Alfonso Montes Received April 14, 2015

Abstract: Some quasi Griiss type inequalities for the Riemann-Stieltjes integral of continuous
complex valued integrands defined on the complex unit circle C(0,1) and various subclasses
of integrators are given. Natural applications for functions of unitary operators in Hilbert
spaces are provided.

Key words: Griiss type inequalities, Riemann-Stieltjes integral inequalities, Unitary opera-
tors in Hilbert spaces, Spectral theory, Quadrature rules.

AMS Subject Class. (2010): 26D15, 47A63.

1. INTRODUCTION

The concept of Riemann-Stieltjes integral f; f(t) du(t), where f is called
the integrand and wu is called the integrator, plays an important role in Math-
ematics, for instance in the definition of complex integral, the representation
of bounded linear functionals on the Banach space of all continuous functions
on an interval [a,b], in the spectral representation of selfadjoint operators on
complex Hilbert spaces and other classes of operators such as the unitary
operators, etc.

One can approximate the Riemann-Stieltjes integral f; f(t) du(t) with the
following simpler quantity:

1
b—a

b
[u(b) — u(a)]- / fyde (1), (12)). (11)

In order to provide a priory sharp bounds for the approximation error,
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consider the functionals:

b b
D(f.uiat) = [ f®du(®) - ;) ~ (@) [ F(0)a

If the integrand f is Riemann integrable on [a,b] and the integrator
u : [a,b] — R is L—Lipschitzian, i.e.,

|u(t) —u(s)| < L|t — s for each t,s € [a,b], (1.2)

then the Riemann-Stieltjes integral fab f(t) du(t) exists and, as pointed out in
[11], the following quasi Griiss type inequality holds

b b
|Dmew>gL/ ﬂw—/biaﬂ@wdt (1.3)

The inequality (1.3) is sharp in the sense that the multiplicative constant
C = 1 in front of L cannot be replaced by a smaller quantity. Moreover,
if there exists the constants m, M € R such that m < f(t) < M for a.e.
t € [a,b], then [11]

1
|D(f,u;a,b)| < §L(M —m)(b—a). (1.4)
The constant % is best possible in (1.4).

We call this type of mequahtles of quasi Griiss type since for integrators
of integral form u(t) := b - f g(s)ds the left hand side becomes

/f t) du(t /f t)dt - /bg(s)ds

that is related with the well known Griiss inequality.
A different approach in the case of integrands of bounded variation were
considered by the same authors in 2001, [12], where they showed that

b b
_ bia/ £(s)ds| \/ (), (1.5)

provided that f is continuous and w is of bounded variation. Here \/Z(u)
denotes the total variation of w on [a, b]. The inequality (1.5) is sharp.

|D(f,u;a,b)] < max
te[ab]
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If we assume that f is K —Lipschitzian, then [12]

b
\D(f,u;a,b)] < %K(b— @)\ (w), (1.6)

with 3 the best possible constant in (1.6).

For various bounds on the error functional D(f,u;a,b) where f and wu
belong to different classes of function for which the Stieltjes integral exists,
see [9], [8], [7], and [6] and the references therein.

For other inequalities for the Riemann-Stieltjes integral see [1]-[4], [5]-
[10], [14] and the references therein.

For continuous functions f : C(0,1) — C, where C(0,1) is the unit circle
from C centered in 0 and u : [a,b] C [0,27] — C is a function of bounded
variation on [a,b], we can define the following functional of quasi Griiss type
as well:

b b
De(fiua)i= [ Fedu(t) = ;= fulb) ~u(@)] - [ et (1.7)

In this paper we establish some bounds for the magnitude of S¢(f;u,a,b)
when the integrand f : C(0,1) — C satisfies some Holder’s type conditions on
the circle C(0, 1) while the integrator u is of bonded variation.

It is shown that this functional can be naturally connected with continuous
functions of unitary operators on Hilbert spaces.

We recall here some basic facts on unitary operators and spectral families
that will be used in the sequel.

We say that the bounded linear operator U : H — H on the Hilbert space
H is unitary iff U* = U1

It is well known that (see for instance [13, p. 275-p. 276]), if U is a
unitary operator, then there exists a family of projections {Ex}ejo 2+, called
the spectral family of U with the following properties:

a) By < E, for 0 <\ <p < 2m;

b) Ey =0 and Ey; = 1y (the identity operator on H);

c) Exio=FE) for 0 <\ < 2m;

d) U= f027r e"*dE), where the integral is of Riemann-Stieltjes type.

Moreover, if {F\} Ac[0,2x) 18 a family of projections satisfying the require-
ments a)-d) above for the operator U, then F)\ = E) for all A € [0, 27].
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Also, for every continuous complex valued function f : C(0,1) — C on the
complex unit circle C(0, 1), we have

2
() = /0 F(e™) dE (L8)

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

2 )
GOa) = [ 1) dEray) (19)
0
and
2 2
= ei)‘ 2 X = Gi)\ 2 T, .
uwnu?-/ﬂ F(e) ) e / £ PdlBra,a),  (L10)

for any z,y € H.
From the above properties it follows that the function g, (\) := (Eyz, x) is
monotonic nondecreasing and right continuous on [0, 27| for any = € H.
Such functions of unitary operators are

2m
exp(U) :/0 exp (ei)‘)dEA

and
2
Ur = / em/\dE by
0
for n an integer.

We can also define the trigonometric functions for a unitary operator U
by

27 . 2m .
sin(U) = / sin (el)‘)dE)\ and cos(U) = / Cos (eZ)‘)dE,\
0 0
and the hyperbolic functions by
2 . 2m .
sinh(U) = / sinh (eZ)‘)dEA and cosh(U) = / cosh (el’\)dE)\
0 0
where

1 1
sinh(z) := i[expz —exp(—=z)] and cosh(z) := 5[expz +exp(—z)], zeC.
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2. INEQUALITIES FOR RIEMANN-STIELTJES INTEGRAL

We say that the complex function f : C(0,1) — C satisfies an H-r-Holder’s
type condition on the circle C(0, 1), where H > 0 and r € (0, 1] are given, if

1f(2) = fw)| < H|z —w[" (2.1)

for any w, z € C(0,1).

If r =1 and L = H then we call it of L-Lipschitz type.

Consider the power function f : C\{0} — C, f(z) = 2™ where m is a
nonzero integer. Then, obviously, for any z,w belonging to the unit circle
C(0,1) we have the inequality

£ (2) = f(w)| < [m]]z = w]

which shows that f is Lipschitzian with the constant L = |m| on the circle
C(0,1).

For a # +1,0 real numbers, consider the function f : C(0,1) — C, f,(2) =
1_—laz. Observe that

lallz — w|

— = 2.2
() = Fulw)l = T (2
for any z,w € C(0,1).
If z = e with t € [0,27], then we have
11 —az|> =1 —2aRe(2) +a*|z|* = 1 — 2acost + a*
> 1- 9] +a? = (1 - |a])?
therefore ) . ) )
d < 2.3
Tael = =l ™ T aw] = [Tl (%)
for any z,w € C(0,1).
Utilising (2.2) and (2.3) we deduce
al2) — fulwl] € A0l (2.4
(1 —lal)

for any z,w € C(0,1), showing that the function f, is Lipschitzian with the

|al

constant Lo = 7=,z on the circle C(0,1).
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THEOREM 1. Let f : C(0,1) — C satisfies an H-r-Hélder’s type condition
on the circle C(0,1), where H > 0 and r € (0,1] are given. If u : [a,b] C
[0,27] — C is a function of bounded variation on [a,b], then

. b
|De(fiu,a,b)| < — tgl[%B a,b;t) \/
) ¢ (2.5)
< -V
where
— b —
r(a,b;t) / (t S)ds—i—/ sinr<8 t)ds

¢ 2

(2.6)

1 t _ a)rJrl + (b )7‘+1

<7
27 r+1

for any t € [a, b].
In particular, if f is Lipschitzian with the constant L > 0, and [a,b] C
[0,27] with b — a # 2w, then we have the simpler inequality

b
e a.b)] < 5

b
—La sin <b;a> \a/(u) < %L(b—a) \a/(u) (2.7)

If a =0 and b = 27 and f is Lipschitzian with the constant L > 0, then

2m
De(F;m,0,20)| < 22\ ). (23)

Proof. We have

De(f;u,a,b) = / b (f(e“) —ﬁ bf(e“)ds) du(t)

a

—_ /ab (/b F(e) — £(e)] ds) du(t).

It is known that if p : [¢,d] — C is a continuous function and v : [¢,d] — C is

(2.9)

of bounded variation, then the Riemann-Stieltjes integral f p(t)dv(t) exists
and the following inequality holds

d

d
/p(t)dv(t)‘ < max [p(t)] \/ (v). (2.10)

tele,d]
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Utilising this property and (2.9) we have

|De(f;u,a,b)| = ; i . /b </b [f(eit) B f(eis)] ds) du(t)’
1 R ' ‘ b (2.11)
<yt | [ 1) < s | Vo

Utilising the properties of the Riemann integral and the fact that f is of
H-r-Hoélder’s type on the circle C(0,1) we have

[ e = s as| < [ 156 - s

o (2.12)
< H/ ‘ew — e”‘rds
a
Since
‘61'5 _ eit|2 _ ‘613’2 — 9Re <ei(sft)) i ’ez‘tf
—1
=2 — 2cos(s — t) = 4sin’ <s 5 >
for any t,s € R, then
) ) —t\|"
e — ¢!|" = 27 |sin (S . ) (2.13)
for any t,s € R.
Therefore
b b T
. . ¢
/ ’615 - eit‘rds = QT/ sin <S> ds
a a 2
(2.14)

t _ b _
=2" {/a sin” <t28> ds +/t sin” <S2t> ds]
for any t € [a, b].

On making use of (2.12) and (2.14) we have

[ 1 s @

and the first inequality in (2.5) is proved.

max

< 2"H max By(a,b;t)
z€[a,b]

tela,b]
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Utilising the elementary inequality |sin(x)| < |z|, z € R we have

t . r b o r
BT(a,b;t)g/ (t S) ds+/ (‘9 t) ds
a 2 t 2

B 1 (t _ a)r—H + (b _ t)r—i—l
oo r+1
for any t € [a,b], and the inequality (2.6) is proved.
If we consider the auxiliary function ¢ : [a,b] — R,

ot)=(t—a)T (b -t)"", re(0,1]

(2.15)

then
) =(r+1)[t—a)—0-1)]
and
O"(t) = (r+ D[t —a)"" 4+ (b—1t)"71].
We have ¢/(t) = 0 iff t = &2, /(t) < 0 for t € (a, ) and ¢/(t) > 0 for
t € (%5, b). We also have that ¢"(t) > 0 for any t € (a,b) showing that ¢

is strictly decreasing on (a, “T'H’) and strictly increasing on (“T"'b, b). We also
have that ( e
. a+b b—a)"
t = =
e =0 (%57) =55
and
max o(t) = p(a) = p(b) = (b —a)™.

te(a,b]

Taking the maximum over t € [a, b] in (2.15) we deduce the second inequality
in (2.5).
For r =1 we have

t t— b —t
B(a,b;t) :—/ sin <S> ds+/ sin <8> ds
a 2 t 2
:2—2cos<t_a>—2005<b_t>+2
2 2
[ t—a b—t
=2|1— —_— 1— —_
_ cos( 5 )—I— cos< 2 )}
[ t— b—t
=2 _2sin2 <4a> + 2sin? <4>]
[ t— b—t
=4 _sinz ( 1 a) + sin? (4 )]
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for any t € [a, b].
Now, if we take the derivative in the first equality, we have

t— b—t
B'(a,b;t) = sin (2a> — sin <2>
t — atb _
= 2sin 2| cos b—a ,
2 4

for [a,b] C [0,27] and b — a # 2.
We observe that B'(a,b;t) = 0 iff t = %2, B'(a,b;t) < 0 for t € (a, %)
and B'(a,b;t) >0 for t € (“T‘H’, b). The second derivative is given by

t— atb —
B"(a,b;t) = cos (22> cos <b 1 a>

and we observe that B”(a,b;t) > 0 for t € (a,b).
Therefore the function B(a,b;-) is strictly decreasing on (a,“TH’) and

strictly increasing on (‘LTH’, b). It is also a strictly convex function on (a,b).

We have ) ;
tgfig]B(a’ b;t) =B (a, b; a—2i-> = 8sin? ( ;a)

and

h—
max B(a,b;t) = B(a,b;a) = B(a,b;b) = 4sin? ( a) .
te(a,b] 4

This proves the bound (2.7).
If a = 0 and b = 2, then

¢ or —
B(0,2m;t) = 4 [sin2 <4> +Sin2< ”4 tﬂ =4

and by (2.5) we get (2.8).
The proof is complete. 1

The following result also holds:

THEOREM 2. Let f :C(0,1) — C satisfies an H-r-Hélder’s type condition

on the circle C(0,1), where H > 0 and r € (0,1] are given. If u : [a,b] C

[0,27] — C is a function of Lipschitz type with the constant K > 0 on |a, b],

then T
2"HK 2HK (b —a)"
Cy(a,b) < (b—a)

|DC(f;u7a7b)|§ b—a = (T+1)(T+2)

(2.16)
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where

b pt b rb
t— —t
Cr(a,b) = / / sin” <S> dsdt +/ / sin” <S> dsdt
a Ja 2 a Jt 2
(b—a

- (2.17)

Sl Dt )

In particular, if f is Lipschitzian with the constant L > 0, then we have
the simpler inequality

16LK |b—a b—a
Detfiwan) < o |25 —sin (23]
<LK@—QF
J— 3 .

(2.18)

Proof. Tt is well known that if p : [¢,d] — C is a Riemann integrable
function and v : [¢,d] — C is Lipschitzian with the constant M > 0, then

the Riemann-Stieltjes integral fcd p(t)dv(t) exists and the following inequality
holds

/C ’ p(t)dv(t)‘ <M / ‘ Ip(t)]dt. (2.19)

Utilising the equality (2.9) and this property we have

Detrnani= | [ ([ 1) - ) as) autr -
< ([ - rena)|a
From (2.12) and (2.14) we have
[ - e e
< [Irey -5 @e)as -

b
< H/ ‘eis — e”‘Tds
a

t _ b _
=9"H [/ sin” <t S) ds —|—/ sin” (s t) ds}
a 2 t 2
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and by (2.20) we deduce the first part of (2.16).
Since, by (2.15), we have

Ert—s\" brs—t\" L (t—a)ytt+OB-t)!
() o [ () o=

then

Cr(a,b)g/ab[ t(t_5> ds+/tb<sgt>Tds]dt

1 _ r+1 _ 4\r+1
1 / + (-1 i@t
2" r+1

)r+2

IA

o2 1(r+1)(r+2)’

which proves the inequality (2.17).

For r = 1, we have

Ci(a,b) = /ab Uatsin <t;8> ds+/tbsin <82_t> ds] dt
:/ab [2—2005<t;a)—2008<b2_t>+2} dt
_(b—a

which, by (2.16), produces the desired inequality (2.18). 1

Remark 1. In the case b = 27 and a = 0 the inequality (2.18) produces
the simple inequality

|De(f;u,0,2r7)| < SLK. (2.22)
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The following result for monotonic integrators also holds.

THEOREM 3. Let f :C(0,1) — C satisfies an H-r-Hélder’s type condition
on the circle C(0,1), where H > 0 and r € (0,1] are given. If u : [a,b] C
[0,27] — R is a monotonic nondecreasing function on [a,b], then

2'H

|De(f3u,a,b)| < -——Dr(a,b)
L ’ —a r+1 o+l u
< (r + 1)(()—&)/(1 [(t ) +(b—1) ]d (t) (2.23)
H T
=< ) (b — a)"[u(b) — u(a)]
where
D,(a,b) := /b By(a, b; t)du(t) (2.24)

and By (a,b;t) is given by (2.6).
In particular, if f is Lipschitzian with the constant L > 0, then we have
the simpler inequality

| De(f5u,a,b)| < b8_La/ab {Sin2 <t_4a) +sin’ (b;t)] ) (2.25)

L
< 2 (b a)[u(b) - u(@)].

Proof. Tt is well known that if p : [¢,d] — C is a continuous function and
v : [¢,d] — R is monotonic nondecreasing on [c, d], then the Riemann-Stieltjes

integral fcd p(t)dv(t) exists and the following inequality holds

/ dp(t)dv@\ < [ oo, (2.26)

Utilising this property and the identity (2.9) we have
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[ De(f;u,a,b)|

(2.27)

We also have that

[ (52) s [ (551 ] o
g/ab[ at (t;‘s)rdw/tb(s;t)rds] du(t)

2" Ja r+1

du(t)

B 2<r1+1> / J N R 0

and the first part of the inequality (2.23) is proved.
Since

t— r—+1 b—t r+1 = (h— r+1
tren[%][( a)" "t (b= t)""] = (b—a)

then the last part of (2.23) is also proved
For r =1 we have

b
D1 (a,b) ::/ Bi(a,b;t)du(t)

- 4/ab [sinQ <t;a) + sin? <b;t>] du(t)

and the inequality (2.25) is obtained. |
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Remark 2. The case a = 0,b = 2w can be stated as
4L
[ De(f5u,0,2m)] < — [u(27) — u(0)]. (2.28)
T

Indeed, by (2.25) we have

L (7] t o — ¢
|De(f;5u,0,2m)] < ;/0 _sin2 (4) + sin? < W4 )] du(t)
AL (> [ t t
= — ; _sinQ (4) + sin? <72r — 4>} du(t)
4L 2w T
= — ; _sin2 (i) + cos? (i)} du(t)

_ %[u@w) — u(0)].

3. APPLICATIONS FOR FUNCTIONS OF UNITARY OPERATORS
We have the following vector inequality for functions of unitary operators.

THEOREM 4. Assume that f : C(0,1) — C satisfies an L-Lipschitz type
condition on the circle C(0,1), where L > 0 is given. If the operator
U: H — H on the Hilbert space H is unitary and {Ex}xe(o,2+] I8 its spectral
family, then

2

GWz) =5 [ it @)
2 (31)
< N (B < Liali)
0

for any z,y € H.

Proof. For given z,y € H, define the function u(\) := (Ej\z,y), A € [0, 27].
We will show that u is of bounded variation and

2 2
V(@) =\ (Egz,y) < l«llly]- (32)
0 0

It is well known that, if P is a nonnegative selfadjoint operator on H, i.e.,
(Px,x) >0 for any = € H, then the following inequality is a generalization of
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the Schwarz inequality in H
(P, )] < (Pz,2){Py.y), (3.3)

for any =,y € H.

Now, ifd: 0=ty <t; < - - <t,_1 <t, =2mis an arbitrary partition
of the interval [0, 2], then we have by Schwarz’s inequality for nonnegative
operators (3.3) that

2

V (Bozy)

0

—o{ S5, - ) 2| 5
1=0

< sup {nz: [< (Eti+1 - Eti) L, I>1/2 <(Eti+l - Eti) Y, y>1/2} } =1

d X
=0
By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers
we also have that

< (S (- ) ) N S (B m ) N

d i=0 i=0
1/2

n—1 n—1 1/2
< Sl;p [Z <(Eti+1 - Etz) €L, :L'> Sl;p [Z <(Eti+1 - Etz) Y, y>] (35)
1=0

N =0 1/2 i 1/2
- \0/<<E<.>x,x>>] \0/<<E<.>y,y>>] ~ el

for any z,y € H.
Utilising the inequality (2.8) we can write that

2w ) 2w

0 ™ 0

for any z,y € H.
On making use of the representation theorem (1.9) and the inequality (3.2)
we deduce the desired result (3.1). |1
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Remark 3. Consider the function f : C(0,1) = C, fu(z) = = with a
real and 0 < |a|] < 1. We know that this function is Lipschitzian with the
constant L = % Since |ae’| = |a| < 1, then

o0

2w ” 2w 2w
/0 f(e)dt:/o 1—ae” / Zae
0 T ) 2w
= Z a”/ (e”)n dt = / dt = 2m,
n=0 0 0

since for any natural number n > 1 we have fo%(eit)"dt =0.
Applying the inequality (3.1) we have

(= al) ) - <w7y>‘

(3.7)
4la 4la
< \/ o)) < mtrs el

for any z,y € H.

4. A QUADRATURE RULE

We consider the following partition of the interval [a, b]
Apia=20<x1 < <Tp1<Typ,=>0

Define hy, := 241 — 2k, 0 < k <n—1and v(A,) =max{hy: 0 <k <n-—1}
the norm of the partition A,,.

For the continuous function f : C(0,1) — C and the function w : [a,b] C
[0,27] — C of bounded variation on [a, b], define the quadrature rule

n—1

f,u A Z u ka:-i-l —Uu l’k) /$k+1 f (eit) dt (41)

o LTp+1 — Tk b

and the remainder R, (f,u,A,) in approximating the Riemann-Stieltjes inte-
gral ff fe®)du(t) by Dyn(f,u,A,). Then we have

b
/ 7 () du(t) = Do(fo, An) + Ru(f. 1, A). (4.2)

The following result provides a priory bounds for R, (f,u,A;) in several in-
stances of f and u as above.
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PROPOSITION 1. Assume that f : C(0,1) — C satisfies the following Lip-
schitz type condition
1f(2) = f(w)] < L]z — w]
for any w, z € C(0,1), where L > 0 is given given.
If [a,b] C [0,27] and the function u : [a,b] — C is of bounded variation on
[a,b], then for any partition Ay, :a =129 < 21 < -+ < Tp_1 < T, = b with
the norm v(A,) < 27 we have the error bound

Th+1

e B '<8LZMSIHQ<W) V @)

Tk

. (4.3)

An) \/ (w)

a

N
~

Proof. Since v(A,) < 27, then on writing inequality (2.7) on each interval
[Tk, Tp41], where 0 < k <n — 1, we have

/;Hl () du u(zpy1) — u(xy) /:Hlf(eit) dt

Th+1 — Tk X
Tr+1
8L . T —x
< ———  gin? Skl Tk \/ (u).
Tpt1 — Tk 4 o

Utilising the generalized triangle inequality we then have

‘Rn(fv u, ATL)’
(it u(z — Thett
i k U\Tk i
= [/ f(€") du(t) — ( J:—H) — z( ) / f(e") dt]
P Tk k+1 k Tl
n—1 Tha1 ulx _ Tk+1
i k UL 7
[ sy - o= )
k=0 Tk o g o
n—1 Th+1
< 8L sin? <$k+1 — xk) \/ (u)
1 . n—1 Tk41
< +1 =
< 8L 0311?21}1(71 {ka — X sin < > } Z \/

b
1 . Tk4+1 — Tk
8 og%?f_l {$k+1 - sin < 1 ) } \a/(U)
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Since

1 . Thtl — T 1
- gin? <k+1k < — (Tpy1 — )
Thyl — Tk

1 — 1
max {——sin? [ ZEHL T Tk < —v(A,)
0<k<n—1 | Tpy1 — Tk 4 16

and the last part of (4.3) also holds. 1

then

Remark 4. The above proposition has some particular cases of interest. If
we take for instance a = 0, z1 = 7 and b = 2, then we have from (4.3) that

I u(m) —u T < w(2r) —u(mw) [ -
/ f(ez't) du(t)— ( )ﬂ- (0)/ f(ezt) dt — (2 )ﬂ- ( ) f(ezt)dt'
0 0 s
2w
< %\/(u)-
0

Remark 5. We observe that the last bound in (4.3) provides a simple way
to choose a division such that the accuracy in approximation is better that a
given small € > 0. Indeed, if we want

1 b
S Lv(An) V) <e

then we need to take A,, such that

V(A < 2

V()L

The above proposition can be also utilized to approximate functions of
unitary operators as follows.
We consider the following partition of the interval [0, 27]

I'p:0=X <M< - <A1 < Ay, =27

where 0 < k <n—1.
If U is a unitary operator on the Hilbert space H and {E)\})\e[072ﬂ-], the
spectral family of U, then we can introduce the following sums:

Dn(f> U7Fn; x? y)

n—1 1 Ak+1 . (44)
= 5w / F ) dt - ((Exyr = Bx) @,9).
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COROLLARY 1. Assume that f : C(0,1) — C satisfies the following Lips-
chitz type condition

£ (2) = f(w)| < L]z = w|

for any w, z € C(0,1), where L > 0 is given. Assume also that U is a unitary
operator on the Hilbert space H and {E/\}Ae[o,27r] is the spectral family of U.

If T, is a partition of the interval [0,2x] with v(I',)) < 27 then we have
the representation

(f(U)I, y) = Dn(f7 Uz, y) =+ Rn(fy Uy x, y) (45)
with the error Ry, (f, U, Ap; x,y) satisfying the bounds

n—1 1 Aett — A Akt1
T gin2 [ 2L T R
S SLZ >\k+1 — )\k Sin < 4 ) y (<E()x,y>) (46)
k

Ly (L) |||yl

AN
N =
~
=
—
2
—
T~
=
B
<
Nt
AN
N | —

0
for any z,y € H.
Remark 6. Consider the exponential mean

exp(pz) — exp(qz)
p—q

E.(p,q) :=

defined for complex numbers z and the real numbers p, ¢ with p # q.
For the function f(z) = 2" with m an integer we have

P P 1. . 1
it wmt m m
dt = dt = — P ™) = —(p—q)E,im(p,q).
/qf(e) /qe (e = ™) = ——(p = @) Beirn(p, 4)
For a partition I';, as above, define the sum
1 n—1
Po(U,Tni 2,y) = — kzo Egim M1, M) ((Bagyy — Bxg) zy). (47)

We can approximate the power m of an unitary operator as follows:

(Umz,y) = P(U,Tn;2,y) + T, (U, Tn; 2, y) (4.8)
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where the error T,,(U,T'y; x, y) satisfies the bounds

|Tn(U7 Fn7x7 y)|
n—1 Ak41
1 . Akl — Ak
< 8|m| sin? ( ) (Boye,y))
kZ:o Akt1 — Ak 4 X ¢ (4.9)
2
1
< §|m|’/(rn)\/ (Enz,y)) < §|m”/(rn)\|$||”y”
0

for any vectors x,y € H.
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