Hypo-q-norms on cartesian products of algebras of bounded linear operators on Hilbert spaces

S.S. Dragomir ^{1,2}

 Mathematics, College of Engineering & Science Victoria University, Melbourne City 8001, Australia
 DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences School of Computer Science & Applied Mathematics University of the Witwatersrand, Johannesburg 2050, South Africa

sever.dragomir@vu.edu.au, http://rgmia.org/dragomir

Received March 6, 2019 Accepted May 14, 2019 Presented by Horst Martini

Abstract: In this paper we introduce the hypo-q-norms on a Cartesian product of algebras of bounded linear operators on Hilbert spaces. A representation of these norms in terms of inner products, the equivalence with the q-norms on a Cartesian product and some reverse inequalities obtained via the scalar reverses of Cauchy-Buniakowski-Schwarz inequality are also given. Several bounds for the norms δ_p , ϑ_p and the real norms $\eta_{r,p}$ and $\theta_{r,p}$ are provided as well.

Key words: Hilbert spaces, bounded linear operators, operator norm and numerical radius, n-tuple of operators, operator inequalities.

AMS Subject Class. (2010): 46C05, 26D15.

1. Introduction

In [13], the author has introduced the following norm on the Cartesian product $B^{(n)}(H) := B(H) \times \cdots \times B(H)$, where B(H) denotes the Banach algebra of all bounded linear operators defined on the complex Hilbert space H:

$$\|(T_1,\ldots,T_n)\|_{n,e} := \sup_{(\lambda_1,\ldots,\lambda_n)\in\mathbb{B}_n} \|\lambda_1 T_1 + \cdots + \lambda_n T_n\|,$$
 (1.1)

where $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and

$$\mathbb{B}_n := \left\{ (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \sum_{i=1}^n |\lambda_i|^2 \le 1 \right\}$$

is the Euclidean closed ball in \mathbb{C}^n . It is clear that $\|\cdot\|_{n,e}$ is a norm on $B^{(n)}(H)$ and for any $(T_1,\ldots,T_n)\in B^{(n)}(H)$ we have

$$\|(T_1,\ldots,T_n)\|_{n,e} = \|(T_1^*,\ldots,T_n^*)\|_{n,e},$$
 (1.2)

where T_i^* is the adjoint operator of T_i , $i \in \{1, ..., n\}$.

It has been shown in [13] that the following inequality holds true:

$$\frac{1}{\sqrt{n}} \left\| \sum_{j=1}^{n} T_j T_j^* \right\|^{\frac{1}{2}} \le \| (T_1, \dots, T_n) \|_{n,e} \le \left\| \sum_{j=1}^{n} T_j T_j^* \right\|^{\frac{1}{2}}$$
 (1.3)

for any *n*-tuple $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and the constants $\frac{1}{\sqrt{n}}$ and 1 are best possible.

In the same paper [13] the author has introduced the Euclidean operator radius of an n-tuple of operators (T_1, \ldots, T_n) by

$$w_{n,e}(T_1,...,T_n) := \sup_{\|x\|=1} \left(\sum_{j=1}^n |\langle T_j x, x \rangle|^2 \right)^{\frac{1}{2}}$$
 (1.4)

and proved that $w_{n,e}(\cdot)$ is a norm on $B^{(n)}(H)$ and satisfies the double inequality:

$$\frac{1}{2} \| (T_1, \dots, T_n) \|_{n,e} \le w_{n,e} (T_1, \dots, T_n) \le \| (T_1, \dots, T_n) \|_{n,e}$$
 (1.5)

for each *n*-tuple $(T_1, \ldots, T_n) \in B^{(n)}(H)$.

As pointed out in [13], the Euclidean numerical radius also satisfies the double inequality:

$$\frac{1}{2\sqrt{n}} \left\| \sum_{j=1}^{n} T_j T_j^* \right\|^{\frac{1}{2}} \le w_{n,e} (T_1, \dots, T_n) \le \left\| \sum_{j=1}^{n} T_j T_j^* \right\|^{\frac{1}{2}}$$
 (1.6)

for any $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and the constants $\frac{1}{2\sqrt{n}}$ and 1 are best possible.

Now, let $(E, \|\cdot\|)$ be a normed linear space over the complex number field \mathbb{C} . On \mathbb{C}^n endowed with the canonical linear structure we consider a norm $\|\cdot\|_n$. As an example of such norms we should mention the usual *p-norms*

$$\|\lambda\|_{n,p} := \begin{cases} \max\left\{|\lambda_1|, \dots, |\lambda_n|\right\} & \text{if } p = \infty, \\ \left(\sum_{k=1}^n |\lambda_k|^p\right)^{\frac{1}{p}} & \text{if } p \in [1, \infty). \end{cases}$$

The Euclidean norm is obtained for p = 2, i.e.,

$$\|\lambda\|_{n,2} := \left(\sum_{k=1}^{n} |\lambda_k|^2\right)^{\frac{1}{2}}.$$

It is well known that on $E^n := E \times \cdots \times E$ endowed with the canonical linear structure we can define the following *p-norms*:

$$||x||_{n,p} := \begin{cases} \max\{|x_1|, \dots, |x_n|\} & \text{if } p = \infty, \\ \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} & \text{if } p \in [1, \infty). \end{cases}$$

where $x = (x_1, \dots, x_n) \in E^n$.

Following the paper [5], for a given norm $\|\cdot\|_n$ on \mathbb{C}^n , we define the functional $\|\cdot\|_{h,n}: E^n \to [0,\infty)$ by

$$||x||_{h,n} := \sup_{\|\lambda\|_n \le 1} \left\| \sum_{j=1}^n \lambda_j x_j \right\|,$$
 (1.7)

where $x = (x_1, ..., x_n) \in E^n$ and $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{C}^n$. It is easy to see that [5]:

- (i) $||x||_{h,n} \ge 0$ for any $x \in E^n$,
- (ii) $||x+y||_{h,n} \le ||x||_{h,n} + ||y||_{h,n}$ for any $x, y \in E^n$,
- (iii) $\|\alpha x\|_{h,n} = |\alpha| \|x\|_{h,n}$ for each $\alpha \in \mathbb{C}$ and $x \in E^n$,

and therefore $\|\cdot\|_{h,n}$ is a semi-norm on E^n . This will be called the hypo-semi-norm generated by the norm $\|\cdot\|_n$ on E^n .

We observe that $||x||_{h,n} = 0$ if and only if $\sum_{j=1}^n \lambda_j x_j = 0$ for any $(\lambda_1, \ldots, \lambda_n) \in B(||\cdot||_n)$. If there exists $\lambda_1^0, \ldots, \lambda_n^0 \neq 0$ such that $(\lambda_1^0, 0, \ldots, 0)$, $(0, \lambda_2^0, \ldots, 0), \ldots, (0, 0, \ldots, \lambda_n^0) \in B(||\cdot||_n)$ then the semi-norm generated by $||\cdot||_n$ is a norm on E^n .

If $p \in [1, \infty]$ and we consider the *p*-norms $\|\cdot\|_{n,p}$ on \mathbb{C}^n , then we can define the following *hypo-q-norms* on E^n :

$$||x||_{h,n,q} := \sup_{\|\lambda\|_{n,p} \le 1} \left\| \sum_{j=1}^{n} \lambda_j x_j \right\|,$$
 (1.8)

with $q \in [1, \infty]$. If p = 1, then $q = \infty$; if $p = \infty$, then q = 1; if $p \in (1, \infty)$, then $\frac{1}{p} + \frac{1}{q} = 1$.

For p = 2, we have the hypo-Euclidean norm on E^n , i.e.,

$$||x||_{h,n,e} := \sup_{\|\lambda\|_{n,2} \le 1} \left\| \sum_{j=1}^{n} \lambda_j x_j \right\|.$$
 (1.9)

If we consider now E = B(H) endowed with the operator norm $\|\cdot\|$, then we can obtain the following hypo-q-norms on $B^{(n)}(H)$

$$\|(T_1,\ldots,T_n)\|_{h,n,q} := \sup_{\|\lambda\|_{n,p} \le 1} \left\| \sum_{j=1}^n \lambda_j T_j \right\| \quad \text{where } p,q \in [1,\infty], \quad (1.10)$$

with the convention that if p = 1, $q = \infty$, if $p = \infty$, q = 1 and if p > 1, then

 $\frac{1}{p}+\frac{1}{q}=1.$ For p=2 we obtain the hypo-Euclidian norm $\|(\cdot,\dots,\cdot)\|_{n,e}$ defined

If we consider now E = B(H) endowed with the operator numerical radius $w(\cdot)$, which is a norm on B(H), then we can obtain the following hypo-qnumerical radius of $(T_1, \ldots, T_n) \in B^{(n)}(H)$ defined by

$$w_{h,n,q}(T_1,\ldots,T_n) := \sup_{\|\lambda\|_{n,p} \le 1} w\left(\sum_{j=1}^n \lambda_j T_j\right) \quad \text{with } p,q \in [1,\infty], \quad (1.11)$$

with the convention that if p = 1, $q = \infty$, if $p = \infty$, q = 1 and if p > 1, then $\frac{1}{p} + \frac{1}{q} = 1.$ For p = 2 we obtain the hypo-Euclidian norm

$$w_{h,n,e}(T_1,\ldots,T_n) := \sup_{\|\lambda\|_{n,2} \le 1} w\left(\sum_{j=1}^n \lambda_j T_j\right)$$
 (1.12)

and will show further that it coincides with the Euclidean operator radius of an *n*-tuple of operators (T_1, \ldots, T_n) defined in (1.4).

Using the fundamental inequality between the operator norm and numerical radius $w(T) \leq ||T|| \leq 2w(T)$ for $T \in B(H)$ we have

$$w\left(\sum_{j=1}^{n} \lambda_j T_j\right) \le \left\|\sum_{j=1}^{n} \lambda_j T_j\right\| \le 2w\left(\sum_{j=1}^{n} \lambda_j T_j\right)$$

for any $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and any $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$. By taking the supremum over λ with $\|\lambda\|_{n,p} \leq 1$ we get

$$w_{h,n,q}(T_1,\ldots,T_n) \le \|(T_1,\ldots,T_n)\|_{h,n,q} \le 2w_{h,n,q}(T_1,\ldots,T_n)$$
 (1.13)

with the convention that if p=1, $q=\infty$, if $p=\infty$, q=1 and if p>1, then $\frac{1}{p} + \frac{1}{q} = 1.$

For p = q = 2 we recapture the inequality (1.5).

In 2012, [8] (see also [9, 10]) the author have introduced the concept of s-q-numerical radius of an n-tuple of operators (T_1, \ldots, T_n) for $q \ge 1$ as

$$w_{s,q}(T_1,\ldots,T_n) := \sup_{\|x\|=1} \left(\sum_{j=1}^n \left| \langle T_j x, x \rangle \right|^q \right)^{1/q}$$
 (1.14)

and established various inequalities of interest. For more recent results see also [12, 14].

In the same paper [8] we also introduced the concept of s-q-norm of an n-tuple of operators (T_1, \ldots, T_n) for $q \ge 1$ as

$$||(T_1, \dots, T_n)||_{s,q} := \sup_{\|x\| = \|y\| = 1} \left(\sum_{j=1}^n |\langle T_j x, y \rangle|^q \right)^{1/q}.$$
 (1.15)

In [8], [9] and [10], by utilising Kato's inequality [11]

$$\left|\left\langle Tx,y\right\rangle \right|^{2} \le \left\langle \left|T\right|^{2\alpha}x,x\right\rangle \left\langle \left|T^{*}\right|^{2(1-\alpha)}y,y\right\rangle$$
 (1.16)

for any $x, y \in H$, $\alpha \in [0, 1]$, where "absolute value" operator of A is defined by $||A|| := \sqrt{A^*A}$, the authors have obtained several inequalities for the s-q-numerical radius and s-q-norm.

In this paper we investigate the connections between these norms and establish some fundamental inequalities of interest in multivariate operator theory.

2. Representation results

We start with the following lemma:

LEMMA 1. Let $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{C}^n$.

(i) If p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\sup_{\|\alpha\|_{n,p} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| = \|\beta\|_{n,q}. \tag{2.1}$$

In particular,

$$\sup_{\|\alpha\|_{n,2} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| = \|\beta\|_{n,2}. \tag{2.2}$$

(ii) We have

$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| = \|\beta\|_{n,1} \text{ and } \sup_{\|\alpha\|_{n,1} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| = \|\beta\|_{n,\infty}.$$
 (2.3)

Proof. (i) Using Hölder's discrete inequality for p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$ we have

$$\left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \le \left(\sum_{j=1}^{n} |\alpha_j|^p \right)^{1/p} \left(\sum_{j=1}^{n} |\beta_j|^q \right)^{1/q},$$

which implies that

$$\sup_{\|\alpha\|_{n,p} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \le \|\beta\|_{n,q} \tag{2.4}$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ are *n*-tuples of complex numbers. For $(\beta_1, \dots, \beta_n) \neq 0$, consider $\alpha = (\alpha_1, \dots, \alpha_n)$ with

$$\alpha_j := \frac{\overline{\beta_j} |\beta_j|^{q-2}}{\left(\sum_{k=1}^n |\beta_k|^q\right)^{1/p}}$$

for those j for which $\beta_j \neq 0$ and $\alpha_j = 0$, for the rest.

We observe that

$$\left| \sum_{j=1}^{n} \alpha_{j} \beta_{j} \right| = \left| \sum_{j=1}^{n} \frac{\overline{\beta_{j}} |\beta_{j}|^{q-2}}{\left(\sum_{k=1}^{n} |\beta_{k}|^{q} \right)^{1/p}} \beta_{j} \right| = \frac{\sum_{j=1}^{n} |\beta_{j}|^{q}}{\left(\sum_{k=1}^{n} |\beta_{k}|^{q} \right)^{1/p}}$$
$$= \left(\sum_{j=1}^{n} |\beta_{j}|^{q} \right)^{1/q} = \|\beta\|_{n,q}$$

and

$$\|\alpha\|_{n,p}^{p} = \sum_{j=1}^{n} |\alpha_{j}|^{p} = \sum_{j=1}^{n} \frac{\left|\overline{\beta_{j}} |\beta_{j}|^{q-2} \right|^{p}}{\left(\sum_{k=1}^{n} |\beta_{k}|^{q}\right)} = \sum_{j=1}^{n} \frac{\left(|\beta_{j}|^{q-1}\right)^{p}}{\left(\sum_{k=1}^{n} |\beta_{k}|^{q}\right)}$$
$$= \sum_{j=1}^{n} \frac{|\beta_{j}|^{qp-p}}{\left(\sum_{k=1}^{n} |\beta_{k}|^{q}\right)} = \sum_{j=1}^{n} \frac{|\beta_{j}|^{q}}{\left(\sum_{k=1}^{n} |\beta_{k}|^{q}\right)} = 1.$$

Therefore, by (2.4) we have the representation (2.1).

(ii) Using the properties of the modulus, we have

$$\left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \le \max_{j \in \{1, \dots, n\}} |\alpha_j| \sum_{j=1}^{n} |\beta_j|,$$

which implies that

$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \le \|\beta\|_{n,1}, \tag{2.5}$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$.

For $(\beta_1, \ldots, \beta_n) \neq 0$, consider $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_j := \frac{\overline{\beta_j}}{|\beta_j|}$ for those j for which $\beta_j \neq 0$ and $\alpha_j = 0$, for the rest.

We have

$$\left| \sum_{j=1}^{n} \alpha_j \beta_j \right| = \left| \sum_{j=1}^{n} \frac{\overline{\beta_j}}{|\beta_j|} \beta_j \right| = \sum_{j=1}^{n} |\beta_j| = \|\beta\|_{n,1}$$

and

$$\|\alpha\|_{n,\infty} = \max_{j \in \{1,\dots,n\}} |\alpha_j| = \max_{j \in \{1,\dots,n\}} \left| \frac{\overline{\beta_j}}{|\beta_j|} \right| = 1$$

and by (2.5) we get the first representation in (2.3).

Moreover, we have

$$\left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \leq \sum_{j=1}^{n} |\alpha_j| \max_{j \in \{1, \dots, n\}} |\beta_j|,$$

which implies that

$$\sup_{\|\alpha\|_{n,1} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \le \|\beta\|_{n,\infty},\tag{2.6}$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$.

For $(\beta_1, \ldots, \beta_n) \neq 0$, let $j_0 \in \{1, \ldots, n\}$ such that

$$\|\beta\|_{\infty} = \max_{j \in \{1,\dots,n\}} |\beta_j| = |\beta_{j_0}|.$$

Consider $\alpha = (\alpha_1, \dots, \alpha_n)$ with $\alpha_{j_0} = \frac{\overline{\beta_{j_0}}}{|\beta_{j_0}|}$ and $\alpha_j = 0$ for $j \neq j_0$. For this choice we get

$$\sum_{j=1}^{n} |\alpha_j| = \frac{\left|\overline{\beta_{j_0}}\right|}{|\beta_{j_0}|} = 1 \quad \text{and} \quad \left|\sum_{j=1}^{n} \alpha_j \beta_j\right| = \left|\frac{\overline{\beta_{j_0}}}{|\beta_{j_0}|} \beta_{j_0}\right| = |\beta_{j_0}| = \|\beta\|_{n,\infty},$$

therefore by (2.6) we obtain the second representation in (4).

THEOREM 2. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $x, y \in H$, then for p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$ we have

$$\sup_{\|\alpha\|_{n,p} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| = \left(\sum_{j=1}^{n} \left| \left\langle T_j x, y \right\rangle \right|^q \right)^{1/q}$$
 (2.7)

and in particular

$$\sup_{\|\alpha\|_{n,2} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| = \left(\sum_{j=1}^{n} \left| \left\langle T_j x, y \right\rangle \right|^2 \right)^{1/2}. \tag{2.8}$$

We also have

$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| = \sum_{j=1}^{n} |\langle T_j x, y \rangle| \tag{2.9}$$

and

$$\sup_{\|\alpha\|_{n,1} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| = \max_{j \in \{1, \dots, n\}} \left\{ \left| \left\langle T_j x, y \right\rangle \right| \right\}. \tag{2.10}$$

Proof. If we take $\beta = (\langle T_1 x, y \rangle, \dots, \langle T_n x, y \rangle) \in \mathbb{C}^n$ in (2.1), then we get

$$\left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q\right)^{1/q} = \|\beta\|_{n,q} = \sup_{\|\alpha\|_p \le 1} \left|\sum_{j=1}^{n} \alpha_j \beta_j\right|$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left|\sum_{j=1}^{n} \alpha_j \langle T_j x, y \rangle\right| = \sup_{\|\alpha\|_{n,p} \le 1} \left|\left\langle\sum_{j=1}^{n} \alpha_j T_j x, y\right\rangle\right|,$$

which proves (2.7).

The equalities (2.9) and (2.10) follow by (2.3).

COROLLARY 3. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $x \in H$, then for p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$ we have

$$\sup_{\|\alpha\|_{n,p} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| = \left(\sum_{j=1}^{n} \left| \left\langle T_j x, x \right\rangle \right|^q \right)^{1/q} \tag{2.11}$$

and, in particular

$$\sup_{\|\alpha\|_{n,2} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| = \left(\sum_{j=1}^{n} \left| \left\langle T_j x, x \right\rangle \right|^2 \right)^{1/2}. \tag{2.12}$$

We also have

$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| = \sum_{j=1}^{n} |\langle T_j x, x \rangle|$$
 (2.13)

and

$$\sup_{\|\alpha\|_{n,1} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| = \max_{j \in \{1, \dots, n\}} \left\{ \left| \left\langle T_j x, x \right\rangle \right| \right\}. \tag{2.14}$$

COROLLARY 4. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $x \in H$, then for p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$ we have

$$\sup_{\|\alpha\|_{n,p} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| = \sup_{\|y\|=1} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q \right)^{1/q}$$
 (2.15)

and in particular

$$\sup_{\|\alpha\|_{n,2} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| = \sup_{\|y\|=1} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^2 \right)^{1/2}.$$
 (2.16)

We also have

$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| = \sup_{\|y\|=1} \sum_{j=1}^{n} |\langle T_j x, y \rangle|$$
 (2.17)

and

$$\sup_{\|\alpha\|_{n,1} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| = \max_{j \in \{1, \dots, n\}} \{ \|T_j x\| \}.$$
 (2.18)

Proof. By the properties of inner product, we have for any $u \in H$, $u \neq 0$ that

$$||u|| = \sup_{||y||=1} |\langle u, y \rangle|.$$

Let $x \in H$, then by taking the supremum over ||y|| = 1 in (2.7) we get for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ that

$$\sup_{\|y\|=1} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q \right)^{1/q} = \sup_{\|y\|=1} \left(\sup_{\|\alpha\|_{n,p} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| \right)$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left(\sup_{\|y\|=1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| \right)$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left\| \left(\sum_{j=1}^{n} \alpha_j T_j \right) x \right\|,$$

which proves the equality (2.15).

The other equalities can be proved in a similar way by using Theorem 2, however the details are omitted. \blacksquare

We can state and prove our main result.

THEOREM 5. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$.

(i) For $q \ge 1$ we have the representation for the hypo-q-norm

$$||(T_1, \dots, T_n)||_{h,n,q} = \sup_{\|x\| = \|y\| = 1} \left(\sum_{j=1}^n |\langle T_j x, y \rangle|^q \right)^{1/q}$$

$$= ||(T_1, \dots, T_n)||_{s,q}$$
(2.19)

and in particular

$$||(T_1, \dots, T_n)||_{n,e} = \sup_{\|x\| = \|y\| = 1} \left(\sum_{j=1}^n |\langle T_j x, y \rangle|^2 \right)^{1/2}.$$
 (2.20)

We also have

$$||(T_1, \dots, T_n)||_{h,n,\infty} = \max_{j \in \{1, \dots, n\}} \{||T_j||\}.$$
 (2.21)

(ii) For $q \ge 1$ we have the representation for the hypo--numerical radius

$$w_{h,n,q}(T_1, \dots, T_n) = \sup_{\|x\|=1} \left(\sum_{j=1}^n |\langle T_j x, x \rangle|^q \right)^{1/q}$$

$$= w_{s,q}(T_1, \dots, T_n)$$
(2.22)

and in particular

$$w_{n,e}(T_1,\ldots,T_n) := \sup_{\|x\|=1} \left(\sum_{j=1}^n |\langle T_j x, x \rangle|^2\right)^{1/2}.$$
 (2.23)

We also have

$$w_{h,n,\infty}(T_1,\ldots,T_n) = \max_{j \in \{1,\ldots,n\}} \{w(T_j)\}.$$
 (2.24)

Proof. (i) By using the equality (2.15) we have for $(T_1, \ldots, T_n) \in B^{(n)}(H)$ that

$$\sup_{\|x\|=\|y\|=1} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q \right)^{1/q} = \sup_{\|x\|=1} \left(\sup_{\|y\|=1} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q \right)^{1/q} \right)$$

$$= \sup_{\|x\|=1} \left(\sup_{\|\alpha\|_{n,p} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| \right)$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left(\sup_{\|x\|=1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| \right)$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j \right\|$$

$$= \|(T_1, \dots, T_n)\|_{h,n,q},$$

which proves (2.19). The rest is obvious.

(ii) By using the equality (2.11) we have for $(T_1, \ldots, T_n) \in B^{(n)}(H)$ that

$$\sup_{\|x\|=1} \left(\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^q \right)^{1/q} = \sup_{\|x\|=1} \left(\sup_{\|\alpha\|_{n,p} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| \right) \\
= \sup_{\|\alpha\|_{n,p} \le 1} \left(\sup_{\|x\|=1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| \right) \\
= \sup_{\|\alpha\|_{n,p} \le 1} w \left(\sum_{j=1}^{n} \alpha_j T_j \right) = w_{h,n,q}(T_1, \dots, T_n),$$

which proves (2.22). The rest is obvious.

Remark 6. The case q=2 was obtained in a different manner in [5] by utilising the rotation-invariant normalised positive Borel measure on the unit sphere.

We can consider on $B^{(n)}(H)$ the following usual operator and numerical radius q-norms, for $q \geq 1$

$$\|(T_1, \dots, T_n)\|_{n,q} := \left(\sum_{j=1}^n \|T_j\|^q\right)^{1/q},$$

$$w_{n,q}(T_1, \dots, T_n) := \left(\sum_{j=1}^n w^q(T_j)\right)^{1/q},$$

where $(T_1, \ldots, T_n) \in B^{(n)}(H)$. For $q = \infty$ we put

$$||(T_1, \dots, T_n)||_{n,\infty} := \max_{j \in \{1, \dots, n\}} \{||T_j||\},$$
$$w_{n,\infty}(T_1, \dots, T_n) := \max_{j \in \{1, \dots, n\}} \{w(T_j)\}.$$

COROLLARY 7. With the assumptions of Theorem 5 we have for $q \geq 1$ that

$$\frac{1}{n^{1/q}} \| (T_1, \dots, T_n) \|_{n,q} \le \| (T_1, \dots, T_n) \|_{h,n,q} \le \| (T_1, \dots, T_n) \|_{n,q}$$
 (2.25)

and

$$\frac{1}{n^{1/q}}w_{n,q}(T_1,\ldots,T_n) \le w_{h,n,q}(T_1,\ldots,T_n) \le w_{n,q}(T_1,\ldots,T_n)$$
 (2.26)

for any $(T_1, ..., T_n) \in B^{(n)}(H)$.

In particular, we have [5]

$$\frac{1}{\sqrt{n}} \| (T_1, \dots, T_n) \|_{n,2} \le \| (T_1, \dots, T_n) \|_{h,n,e} \le \| (T_1, \dots, T_n) \|_{n,2}$$
 (2.27)

and

$$\frac{1}{\sqrt{n}}w_{n,2}(T_1,\dots,T_n) \le w_{h,n,e}(T_1,\dots,T_n) \le w_{n,2}(T_1,\dots,T_n)$$
 (2.28)

for any $(T_1, ..., T_n) \in B^{(n)}(H)$.

Proof. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $x, y \in H$ with ||x|| = ||y|| = 1. Then by Schwarz's inequality we have

$$\left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q\right)^{1/q} \le \left(\sum_{j=1}^{n} ||T_j x||^q ||y||^q\right)^{1/q} = \left(\sum_{j=1}^{n} ||T_j x||^q\right)^{1/q}.$$

By the operator norm inequality we also have

$$\left(\sum_{j=1}^{n} \|T_j x\|^q\right)^{1/q} \le \left(\sum_{j=1}^{n} \|T_j\|^q \|x\|^q\right)^{1/q} = \|(T_1, \dots, T_n)\|_{n,q}.$$

Therefore

$$\left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q\right)^{1/q} \le \|(T_1, \dots, T_n)\|_{n,q}$$

and by taking the supremum over ||x|| = ||y|| = 1 we get the second inequality in (2.25).

By the properties of complex numbers, we have

$$\max_{j \in \{1, \dots, n\}} \left\{ |\langle T_j x, y \rangle| \right\} \le \left(\sum_{j=1}^n |\langle T_j x, y \rangle|^q \right)^{1/q}$$

 $x, y \in H \text{ with } ||x|| = ||y|| = 1.$

By taking the supremum over ||x|| = ||y|| = 1 we get

$$\sup_{\|x\|=\|y\|=1} \left(\max_{j \in \{1,\dots,n\}} \left\{ |\langle T_j x, y \rangle| \right\} \right) \le \|(T_1, \dots, T_n)\|_{h,n,q}$$
 (2.29)

and since

$$\sup_{\|x\|=\|y\|=1} \left(\max_{j \in \{1,\dots,n\}} \left\{ |\langle T_j x, y \rangle| \right\} \right) = \max_{j \in \{1,\dots,n\}} \left\{ \sup_{\|x\|=\|y\|=1} |\langle T_j x, y \rangle| \right\} \\
= \max_{j \in \{1,\dots,n\}} \left\{ \|T_j\| \right\} = \|(T_1,\dots,T_n t)\|_{n,\infty},$$

then by (2.29) we get

$$\|(T_1, \dots, T_n)\|_{n,\infty} \le \|(T_1, \dots, T_n)\|_{h,n,q}$$
 (2.30)

for any $(T_1, \ldots, T_n) \in B^{(n)}(H)$. Since

$$\|(T_1, \dots, T_n)\|_{n,q} := \left(\sum_{j=1}^n \|T_j\|^q\right)^{1/q} \le \left(n\|(T_1, \dots, T_n)\|_{n,\infty}^q\right)^{1/q}$$

$$= n^{1/q}\|(T_1, \dots, T_n)\|_{n,\infty},$$
(2.31)

then by (2.30) and (2.31) we get

$$\frac{1}{n^{1/q}} \| (T_1, \dots, T_n) \|_{n,q} \le \| (T_1, \dots, T_n) \|_{h,n,q}$$

for any $(T_1, ..., T_n) \in B^{(n)}(H)$.

The inequality (2.26) follows in a similar way and we omit the details.

Corollary 8. With the assumptions of Theorem 5 we have for $r \geq q \geq 1$ that

$$\|(T_1, \dots, T_n)\|_{h,n,r} \le \|(T_1, \dots, T_n)\|_{h,n,q} \le n^{\frac{r-q}{rq}} \|(T_1, \dots, T_n)\|_{h,n,r}$$
 (2.32)

and [14]

$$w_{h,n,r}(T_1,\ldots,T_n) \le w_{h,n,q}(T_1,\ldots,T_n) \le n^{\frac{r-q}{rq}} w_{h,n,r}(T_1,\ldots,T_n)$$
 (2.33) for any $(T_1,\ldots,T_n) \in B^{(n)}(H)$.

Proof. We use the following elementary inequalities for the nonnegative numbers a_j , j = 1, ..., n and $r \ge q > 0$ (see for instance [14])

$$\left(\sum_{j=1}^{n} a_j^r\right)^{1/r} \le \left(\sum_{j=1}^{n} a_j^q\right)^{1/q} \le n^{\frac{r-q}{rq}} \left(\sum_{j=1}^{n} a_j^r\right)^{1/r}.$$
 (2.34)

Let $(T_1, ..., T_n) \in B^{(n)}(H)$ and $x, y \in H$ with ||x|| = ||y|| = 1. Then by (2.34) we get

$$\left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^r\right)^{1/r} \le \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q\right)^{1/q} \le n^{\frac{r-q}{rq}} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^r\right)^{1/r}.$$

By taking the supremum over ||x|| = ||y|| = 1 we get (2.32).

The inequality (2.33) follows in a similar way and we omit the details.

Remark 9. For $q \ge 2$ we have by (2.32) and (2.33)

$$\|(T_1,\ldots,T_n)\|_{h,n,q} \le \|(T_1,\ldots,T_n)\|_{h,n,e} \le n^{\frac{q-2}{2q}} \|(T_1,\ldots,T_n)\|_{h,n,q}$$
 (2.35)

and

$$w_{h,n,q}(T_1,\ldots,T_n) \le w_{h,n,e}(T_1,\ldots,T_n) \le n^{\frac{q-2}{2q}} w_{h,n,q}(T_1,\ldots,T_n)$$
 (2.36)

and for $1 \le q \le 2$ we have

$$\|(T_1,\ldots,T_n)\|_{h,n,e} \le \|(T_1,\ldots,T_n)\|_{h,n,q} \le n^{\frac{2-q}{2q}} \|(T_1,\ldots,T_n)\|_{h,n,e}$$
 (2.37)

and

$$w_{h,n,e}(T_1,\ldots,T_n) \le w_{h,n,e}(T_1,\ldots,T_n) \le n^{\frac{2-q}{2q}} w_{h,n,e}(T_1,\ldots,T_n)$$
 (2.38)

for any $(T_1, ..., T_n) \in B^{(n)}(H)$.

Also, if we take q = 1 and $r \ge 1$ in (2.32) and (2.33), then we get

$$\|(T_1,\ldots,T_n)\|_{h,n,r} \le \|(T_1,\ldots,T_n)\|_{h,n,1} \le n^{\frac{r-1}{r}} \|(T_1,\ldots,T_n)\|_{h,n,r}$$
 (2.39)

and

$$w_{h,n,r}(T_1,\ldots,T_n) \le w_{h,n,1}(T_1,\ldots,T_n) \le n^{\frac{r-1}{r}} w_{h,n,r}(T_1,\ldots,T_n)$$
 (2.40)

for any $(T_1, ..., T_n) \in B^{(n)}(H)$.

In particular, for r = 2 we get

$$||(T_1, \dots, T_n)||_{h,n,e} \le ||(T_1, \dots, T_n)||_{h,n,1} \le \sqrt{n}||(T_1, \dots, T_n)||_{h,n,e}$$
 (2.41)

and

$$w_{n,e}(T_1,\ldots,T_n) \le w_{h,n,1}(T_1,\ldots,T_n) \le \sqrt{n}w_{n,e}(T_1,\ldots,T_n)$$
 (2.42)

for any $(T_1, ..., T_n) \in B^{(n)}(H)$.

We have:

PROPOSITION 10. For any $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then we have

$$\|(T_1,\ldots,T_n)\|_{h,n,q} \ge \frac{1}{n^{1/p}} \left\| \sum_{j=1}^n T_j \right\|$$
 (2.43)

and

$$w_{h,n,q}(T_1,\ldots,T_n) \ge \frac{1}{n^{1/p}} w \left(\sum_{j=1}^n T_j\right).$$
 (2.44)

Proof. Let $\lambda_j = \frac{1}{n^{1/p}}$ for $j \in \{1, \dots, n\}$, then $\sum_{j=1}^n |\lambda_j|^p = 1$. Therefore by (1.8) we get

$$\|(T_1,\ldots,T_n)\|_{h,n,q} = \sup_{\|\lambda\|_{n,p} \le 1} \left\| \sum_{j=1}^n \lambda_j T_j \right\| \ge \left\| \sum_{j=1}^n \frac{1}{n^{1/p}} T_j \right\| = \frac{1}{n^{1/p}} \left\| \sum_{j=1}^n T_j \right\|.$$

The inequality (2.44) follows in a similar way.

We can also introduce the following norms for $(T_1, \ldots, T_n) \in B^{(n)}(H)$,

$$\|(T_1,\ldots,T_n)\|_{s,n,p} := \sup_{\|x\|=1} \left(\sum_{j=1}^n \|T_j x\|^p\right)^{1/p}$$

where $p \ge 1$ and

$$\|(T_1,\ldots,T_n)\|_{s,n,\infty} := \sup_{\|x\|=1} \left(\max_{j\in\{1,\ldots,n\}} \|T_j x\| \right) = \max_{j\in\{1,\ldots,n\}} \{\|T_j\|\}.$$

The triangle inequality $\|\cdot\|_{s,n,q}$ follows by Minkowski inequality, while the other properties of the norm are obvious.

PROPOSITION 11. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$.

(i) We have for $p \ge 1$, that

$$||(T_1, \dots, T_n)||_{h,n,p} \le ||(T_1, \dots, T_n)||_{s,n,p}$$

$$\le ||(T_1, \dots, T_n)||_{n,p},$$
(2.45)

(ii) For $p \geq 2$ we also have

$$\|(T_1,\ldots,T_n)\|_{s,n,p} = \left[w_{h,n,p/2}(|T_1|^2,\ldots,|T_n|^2)\right]^{1/2},$$
 (2.46)

where the absolute value |T| is defined by $|T| := (T^*T)^{1/2}$.

Proof. (i) We have for $p \ge 2$ and $x, y \in H$ with ||x|| = ||y|| = 1, that

$$|\langle T_j x, y \rangle|^p \le ||T_j x||^p ||y||^p$$

= $||T_j x||^p \le ||T_j||^p ||x||^p = ||T_j||^p$

for $j \in \{1, ..., n\}$.

This implies

$$\sum_{j=1}^{n} |\langle T_j x, y \rangle|^p \le \sum_{j=1}^{n} ||T_j x||^p \le \sum_{j=1}^{n} ||T_j||^p,$$

namely

$$\left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^p\right)^{1/p} \le \left(\sum_{j=1}^{n} ||T_j x||^p\right)^{1/p} \le \left(\sum_{j=1}^{n} ||T_j||^p\right)^{1/p}, \tag{2.47}$$

for any $x, y \in H$ with ||x|| = ||y|| = 1.

Taking the supremum over ||x|| = ||y|| = 1 in (2.47), we get the desired result (2.45).

(ii) We have

$$||(T_1,\ldots,T_n)||_{s,n,p}$$

$$\begin{split} &= \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \|T_{j}x\|^{p} \right)^{1/p} = \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \left(\|T_{j}x\|^{2} \right)^{p/2} \right)^{1/p} \\ &= \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \langle T_{j}x, T_{j}x \rangle^{p/2} \right)^{1/p} = \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \langle T_{j}^{*}T_{j}x, x \rangle^{p/2} \right)^{1/p} \\ &= \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \left\langle |T_{j}|^{2}x, x \right\rangle^{p/2} \right)^{1/p} = \left[\sup_{\|x\|=1} \left(\sum_{j=1}^{n} \left\langle |T_{j}|^{2}x, x \right\rangle^{p/2} \right)^{1/(p/2)} \right]^{1/2} \\ &= \left[w_{h,n,p/2} \left(|T_{1}|^{2}, \dots, |T_{n}|^{2} \right) \right]^{1/2}, \end{split}$$

which proves the equality (2.46).

3. Some reverse inequalities

Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality [2] (see also [3, Theorem 5.14]):

LEMMA 12. Let $a, A \in \mathbb{R}$ and $\mathbf{z} = (z_1, \dots, z_n)$, $\mathbf{y} = (y_1, \dots, y_n)$ be two sequences of real numbers with the property that:

$$ay_j \le z_j \le Ay_j$$
 for each $j \in \{1, \dots, n\}$. (3.1)

Then for any $\mathbf{w} = (w_1, \dots, w_n)$ a sequence of positive real numbers, one has the inequality

$$0 \le \sum_{j=1}^{n} w_j z_j^2 \sum_{j=1}^{n} w_j y_j^2 - \left(\sum_{j=1}^{n} w_j z_j y_j\right)^2 \le \frac{1}{4} (A - a)^2 \left(\sum_{j=1}^{n} w_j y_j^2\right)^2.$$
 (3.2)

The constant $\frac{1}{4}$ is sharp in (3.2).

O. Shisha and B. Mond obtained in 1967 (see [15]) the following counterparts of (CBS)—inequality (see also [3, Theorem 5.20 & 5.21]):

LEMMA 13. Assume that $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$ are such that there exists a, A, b, B with the property that:

$$0 \le a \le a_j \le A$$
 and $0 < b \le b_j \le B$ for any $j \in \{1, \dots, n\},$ (3.3)

then we have the inequality

$$\sum_{j=1}^{n} a_j^2 \sum_{j=1}^{n} b_j^2 - \left(\sum_{j=1}^{n} a_j b_j\right)^2 \le \left(\sqrt{\frac{A}{b}} - \sqrt{\frac{a}{B}}\right)^2 \sum_{j=1}^{n} a_j b_j \sum_{j=1}^{n} b_j^2. \tag{3.4}$$

and

LEMMA 14. Assume that **a**, **b** are nonnegative sequences and there exists γ , Γ with the property that

$$0 \le \gamma \le \frac{a_j}{b_j} \le \Gamma < \infty \quad \text{for any } j \in \{1, \dots, n\}.$$
 (3.5)

Then we have the inequality

$$0 \le \left(\sum_{j=1}^{n} a_j^2 \sum_{j=1}^{n} b_j^2\right)^{\frac{1}{2}} - \sum_{j=1}^{n} a_j b_j \le \frac{(\Gamma - \gamma)^2}{4(\gamma + \Gamma)} \sum_{j=1}^{n} b_j^2.$$
 (3.6)

We have:

THEOREM 15. Let $(T_1, ..., T_n) \in B^{(n)}(H)$.

(i) We have

$$0 \le \|(T_1, \dots, T_n)\|_{h,n,e}^2 - \frac{1}{n} \|(T_1, \dots, T_n)\|_{h,n,1}^2$$

$$\le \frac{1}{4} n \|(T_1, \dots, T_n)\|_{n,\infty}^2$$
(3.7)

and

$$0 \le w_{n,e}^{2}(T_{1}, \dots, T_{n}) - \frac{1}{n}w_{h,n,1}^{2}(T_{1}, \dots, T_{n})$$

$$\le \frac{1}{4}n\|(T_{1}, \dots, T_{n})\|_{n,\infty}^{2}.$$
(3.8)

(ii) We have

$$0 \le \|(T_1, \dots, T_n)\|_{h,n,e}^2 - \frac{1}{n} \|(T_1, \dots, T_n)\|_{h,n,1}^2$$

$$\le \|(T_1, \dots, T_n)\|_{h,\infty} \|(T_1, \dots, T_n)\|_{h,n,1}$$
(3.9)

and

$$0 \le w_{n,e}^2(T_1, \dots, T_n) - \frac{1}{n} w_{h,n,1}^2(T_1, \dots, T_n)$$

$$\le \|(T_1, \dots, T_n)\|_{n,\infty} w_{h,n,1}(T_1, \dots, T_n).$$
(3.10)

(iii) We have

$$0 \leq \|(T_1, \dots, T_n)\|_{h,n,e} - \frac{1}{\sqrt{n}} \|(T_1, \dots, T_n)\|_{h,n,1}$$

$$\leq \frac{1}{4} \sqrt{n} \|(T_1, \dots, T_n)\|_{n,\infty}$$
(3.11)

and

$$0 \leq w_{n,e}(T_1, \dots, T_n) - \frac{1}{\sqrt{n}} w_{h,n,1}(T_1, \dots, T_n)$$

$$\leq \frac{1}{4} \sqrt{n} \| (T_1, \dots, T_n) \|_{n,\infty}.$$
(3.12)

Proof. (i) Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and put

$$R = \max_{j \in \{1, \dots, n\}} \{ ||T_j|| \} = ||(T_1, \dots, T_n)||_{n, \infty}.$$

If $x, y \in H$, with ||x|| = ||y|| = 1 then $|\langle T_j x, y \rangle| \le ||T_j x|| \le ||T_j x|| \le R$ for any $j \in \{1, ..., n\}$.

If we write the inequality (3.2) for $z_j = |\langle T_j x, y \rangle|$, $w_j = y_j = 1$, A = R and a = 0, we get

$$0 \le n \sum_{j=1}^{n} |\langle T_j x, y \rangle|^2 - \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle| \right)^2 \le \frac{1}{4} n^2 R^2$$

for any $x, y \in H$, with ||x|| = ||y|| = 1.

This implies that

$$\sum_{j=1}^{n} |\langle T_j x, y \rangle|^2 \le \frac{1}{n} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle| \right)^2 + \frac{1}{4} n R^2$$
 (3.13)

for any $x, y \in H$, with ||x|| = ||y|| = 1 and, in particular

$$\sum_{j=1}^{n} |\langle T_j x, x \rangle|^2 \le \frac{1}{n} \left(\sum_{j=1}^{n} |\langle T_j x, x \rangle| \right)^2 + \frac{1}{4} n R^2$$
 (3.14)

for any $x \in H$, with ||x|| = 1.

Taking the supremum over ||x|| = ||y|| = 1 in (3.13) and ||x|| = 1 in (3.14), then we get (3.7) and (3.8).

(ii) Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$. If we write the inequality (3.4) for $a_j = |\langle T_j x, y \rangle|$, $b_j = 1$, b = B = 1, a = 0 and A = R, then we get

$$0 \le n \sum_{j=1}^{n} |\langle T_j x, y \rangle|^2 - \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle| \right)^2 \le nR \sum_{j=1}^{n} |\langle T_j x, y \rangle|,$$

for any $x, y \in H$, with ||x|| = ||y|| = 1.

This implies that

$$\sum_{j=1}^{n} |\langle T_j x, y \rangle|^2 \le \frac{1}{n} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle| \right)^2 + R \sum_{j=1}^{n} |\langle T_j x, y \rangle|, \tag{3.15}$$

for any $x, y \in H$, with ||x|| = ||y|| = 1 and, in particular

$$\sum_{j=1}^{n} |\langle T_j x, x \rangle|^2 \le \frac{1}{n} \left(\sum_{j=1}^{n} |\langle T_j x, x \rangle| \right)^2 + R \sum_{j=1}^{n} |\langle T_j x, x \rangle|, \tag{3.16}$$

for any $x \in H$ with ||x|| = 1.

Taking the supremum over ||x|| = ||y|| = 1 in (3.15) and ||x|| = 1 in (3.16), then we get (3.9) and (3.10).

(iii) If we write the inequality (3.6) for $a_j = |\langle T_j x, y \rangle|$, $b_j = 1$, b = B = 1, $\gamma = 0$ and $\Gamma = R$ we have

$$0 \le \left(n\sum_{j=1}^{n} |\langle T_j x, y \rangle|^2\right)^{\frac{1}{2}} - \sum_{j=1}^{n} |\langle T_j x, y \rangle| \le \frac{1}{4} nR,$$

for any $x, y \in H$, with ||x|| = ||y|| = 1.

This implies that

$$\left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^2\right)^{\frac{1}{2}} \le \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |\langle T_j x, y \rangle| + \frac{1}{4} \sqrt{n} R, \tag{3.17}$$

for any $x, y \in H$, with ||x|| = ||y|| = 1 and, in particular

$$\left(\sum_{j=1}^{n} |\langle T_j x, x \rangle|^2\right)^{\frac{1}{2}} \le \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |\langle T_j x, x \rangle| + \frac{1}{4} \sqrt{n} R, \tag{3.18}$$

for any $x \in H$ with ||x|| = 1.

Taking the supremum over ||x|| = ||y|| = 1 in (3.17) and ||x|| = 1 in (3.18), then we get (3.11) and (3.12).

Before we proceed with establishing some reverse inequalities for the hypo-Euclidean numerical radius, we recall some reverse results of the Cauchy-Bunyakovsky-Schwarz inequality for complex numbers as follows:

If $\gamma, \Gamma \in \mathbb{C}$ and $\alpha_j \in \mathbb{C}$, $j \in \{1, ..., n\}$ with the property that

$$0 \le \operatorname{Re}\left[\left(\Gamma - \alpha_{j}\right)\left(\overline{\alpha_{j}} - \overline{\gamma}\right)\right]$$

$$= \left(\operatorname{Re}\Gamma - \operatorname{Re}\alpha_{j}\right)\left(\operatorname{Re}\alpha_{j} - \operatorname{Re}\gamma\right) + \left(\operatorname{Im}\Gamma - \operatorname{Im}\alpha_{j}\right)\left(\operatorname{Im}\alpha_{j} - \operatorname{Im}\gamma\right)$$

or, equivalently,

$$\left|\alpha_j - \frac{\gamma + \Gamma}{2}\right| \le \frac{1}{2} \left|\Gamma - \gamma\right| \tag{3.20}$$

for each $j \in \{1, ..., n\}$, then (see for instance [4, p. 9])

$$n\sum_{j=1}^{n} |\alpha_j|^2 - \left|\sum_{j=1}^{n} \alpha_j\right|^2 \le \frac{1}{4}n^2 |\Gamma - \gamma|^2.$$
 (3.21)

In addition, if Re $(\Gamma \bar{\gamma}) > 0$, then (see for example [4, p. 26]):

$$n\sum_{j=1}^{n} |\alpha_{j}|^{2} \leq \frac{1}{4} \frac{\left\{ \operatorname{Re}\left[\left(\overline{\Gamma} + \overline{\gamma}\right) \sum_{j=1}^{n} \alpha_{j}\right]\right\}^{2}}{\operatorname{Re}} (\Gamma \overline{\gamma})$$

$$\leq \frac{1}{4} \frac{|\Gamma + \gamma|^{2}}{\operatorname{Re}} (\Gamma \overline{\gamma}) \left| \sum_{j=1}^{n} \alpha_{j} \right|^{2}.$$
(3.22)

Also, if $\Gamma \neq -\gamma$, then (see for instance [4, p. 32]):

$$\left(n\sum_{j=1}^{n}|\alpha_{j}|^{2}\right)^{\frac{1}{2}}-\left|\sum_{j=1}^{n}\alpha_{j}\right|\leq\frac{1}{4}n\frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|}.$$
(3.23)

Finally, from [7] we can also state that

$$n\sum_{j=1}^{n}|\alpha_{j}|^{2}-\left|\sum_{j=1}^{n}\alpha_{j}\right|^{2}\leq n\left[\left|\Gamma+\gamma\right|-2\sqrt{\operatorname{Re}\left(\Gamma\overline{\gamma}\right)}\right]\left|\sum_{j=1}^{n}\alpha_{j}\right|,\tag{3.24}$$

provided Re $(\Gamma \overline{\gamma}) > 0$.

We notice that a simple sufficient condition for (3.19) to hold is that

$$\operatorname{Re} \Gamma \ge \operatorname{Re} \alpha_j \ge \operatorname{Re} \gamma$$
 and $\operatorname{Im} \Gamma \ge \operatorname{Im} \alpha_j \ge \operatorname{Im} \gamma$ (3.25)

for each $j \in \{1, \ldots, n\}$.

THEOREM 16. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $\gamma, \Gamma \in \mathbb{C}$ with $\Gamma \neq \gamma$. Assume that

$$w\left(T_j - \frac{\gamma + \Gamma}{2}I\right) \le \frac{1}{2}|\Gamma - \gamma|$$
 for any $j \in \{1, \dots, n\}$. (3.26)

(i) We have

$$w_{h,n,e}^2(T_1,\ldots,T_n) \le \frac{1}{n} w^2 \left(\sum_{j=1}^n T_j\right) + \frac{1}{4} n |\Gamma - \gamma|^2.$$
 (3.27)

(ii) If $\operatorname{Re}(\Gamma \overline{\gamma}) > 0$, then

$$w_{h,n,e}(T_1,\ldots,T_n) \le \frac{1}{2\sqrt{n}} \frac{|\Gamma+\gamma|}{\sqrt{(\Gamma\overline{\gamma})}} w\left(\sum_{j=1}^n T_j\right)$$
 (3.28)

and

$$w_{h,n,e}^{2}(T_{1},\ldots,T_{n})$$

$$\leq \left[\frac{1}{n}w\left(\sum_{j=1}^{n}T_{j}\right) + \left[|\Gamma+\gamma| - 2\sqrt{(\Gamma\overline{\gamma})}\right]\right] \cdot w\left(\sum_{j=1}^{n}T_{j}\right).$$
(3.29)

(iii) If $\Gamma \neq -\gamma$, then

$$w_{h,n,e}(T_1,\ldots,T_n) \le \frac{1}{\sqrt{n}} \left(w \left(\sum_{j=1}^n T_j \right) + \frac{1}{4} \frac{|\Gamma - \gamma|^2}{|\Gamma + \gamma|} \right). \tag{3.30}$$

Proof. Let $x \in H$ with ||x|| = 1 and $(T_1, \ldots, T_n) \in B^{(n)}(H)$ with the property (3.26). By taking $\alpha_j = \langle T_j x, x \rangle$ we have

$$\left| \alpha_{j} - \frac{\gamma + \Gamma}{2} \right| = \left| \langle T_{j}x, x \rangle - \frac{\gamma + \Gamma}{2} \langle x, x \rangle \right| = \left| \left\langle \left(T_{j} - \frac{\gamma + \Gamma}{2} I \right) x, x \right\rangle \right|$$

$$\leq \sup_{\|x\| = 1} \left| \left\langle \left(T_{j} - \frac{\gamma + \Gamma}{2} I \right) x, x \right\rangle \right|$$

$$= w \left(T_{j} - \frac{\gamma + \Gamma}{2} \right) \leq \frac{1}{2} |\Gamma - \gamma|$$

for any $j \in \{1, ..., n\}$.

(i) By using the inequality (3.21), we have

$$\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \le \frac{1}{n} \left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right|^2 + \frac{1}{4} n |\Gamma - \gamma|^2$$

$$= \frac{1}{n} \left| \left\langle \sum_{j=1}^{n} T_j x, x \right\rangle \right|^2 + \frac{1}{4} n |\Gamma - \gamma|^2$$
(3.31)

for any $x \in H$ with ||x|| = 1.

By taking the supremum over ||x|| = 1 in (3.31) we get

$$\sup_{\|x\|=1} \left(\sum_{j=1}^{n} |\langle T_j x, x \rangle|^2 \right) \le \frac{1}{n} \sup_{\|x\|=1} \left| \left\langle \sum_{j=1}^{n} T_j x, x \right\rangle \right|^2 + \frac{1}{4} n |\Gamma - \gamma|^2$$
$$= \frac{1}{n} w^2 \left(\sum_{j=1}^{n} T_j \right) + \frac{1}{4} n |\Gamma - \gamma|^2,$$

which proves (3.27).

(ii) If Re $(\Gamma \overline{\gamma}) > 0$, then by (3.22) we have for $\alpha_j = \langle T_j x, x \rangle$, $j \in \{1, \ldots, n\}$ that

$$\sum_{j=1}^{n} |\langle T_j x, x \rangle|^2 \le \frac{1}{4n} \frac{|\Gamma + \gamma|^2}{\operatorname{Re}(\Gamma \overline{\gamma})} \left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right|^2$$

$$= \frac{1}{4n} \frac{|\Gamma + \gamma|^2}{\operatorname{Re}(\Gamma \overline{\gamma})} \left| \left\langle \sum_{j=1}^{n} T_j x, x \right\rangle \right|^2$$
(3.32)

for any $x \in H$ with ||x|| = 1.

On taking the supremum over ||x|| = 1 in (3.32) we get (3.32). Also, by (3.24) we get

$$\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \le \frac{1}{n} \left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right|^2 + \left[\left| \Gamma + \gamma \right| - 2\sqrt{\operatorname{Re}\left(\Gamma \overline{\gamma}\right)} \right] \left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right|,$$

for any $x \in H$ with ||x|| = 1.

By taking the supremum over ||x|| = 1 in this inequality, we have

$$\sup_{\|x\|=1} \sum_{j=1}^{n} |\langle T_{j}x, x \rangle|^{2}$$

$$\leq \sup_{\|x\|=1} \left[\frac{1}{n} \left| \sum_{j=1}^{n} \langle T_{j}x, x \rangle \right|^{2} + \left[|\Gamma + \gamma| - 2\sqrt{(\Gamma \overline{\gamma})} \right] \left| \sum_{j=1}^{n} \langle T_{j}x, x \rangle \right| \right]$$

$$\leq \frac{1}{n} \sup_{\|x\|=1} \left| \left\langle \sum_{j=1}^{n} T_{j}x, x \right\rangle \right|^{2} + \left[|\Gamma + \gamma| - 2\sqrt{(\Gamma \overline{\gamma})} \right] \sup_{\|x\|=1} \left| \left\langle \sum_{j=1}^{n} T_{j}x, x \right\rangle \right|$$

$$= \frac{1}{n} w^{2} \left(\sum_{j=1}^{n} T_{j} \right) + \left[|\Gamma + \gamma| - 2\sqrt{(\Gamma \overline{\gamma})} \right] w \left(\sum_{j=1}^{n} T_{j} \right),$$

which proves (3.29).

(iii) By the inequality (3.23) we have

$$\left(\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \right)^{\frac{1}{2}} \le \frac{1}{\sqrt{n}} \left(\left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right| + \frac{1}{4} \frac{|\Gamma - \gamma|^2}{|\Gamma + \gamma|} \right)$$

$$= \frac{1}{\sqrt{n}} \left(\left| \left\langle \sum_{j=1}^{n} T_j x, x \right\rangle \right| + \frac{1}{4} \frac{|\Gamma - \gamma|^2}{|\Gamma + \gamma|} \right)$$

for any $x \in H$ with ||x|| = 1.

By taking the supremum over ||x|| = 1 in this inequality, we get (3.30).

Remark 17. By the use of the elementary inequality $w(T) \leq ||T||$ that holds for any $T \in B(H)$, a sufficient condition for (3.26) to hold is that

$$\left\| T_j - \frac{\gamma + \Gamma}{2} \right\| \le \frac{1}{2} \left| \Gamma - \gamma \right| \quad \text{for any } j \in \{1, \dots, n\}.$$
 (3.33)

4. Inequalities for δ_p and ϑ_p norms

For $T \in B(H)$ and $p \ge 1$ we can consider the functionals

$$\delta_p(T) := \sup_{\|x\| = \|y\| = 1} \left(\left| \langle Tx, y \rangle \right|^p + \left| \langle T^*x, y \rangle \right|^p \right)^{1/p} = \|(T, T^*)\|_{h, 2, p}$$
 (4.1)

and

$$\vartheta_p(T) := \sup_{\|x\|=1} \left(\|Tx\|^p + \|T^*x\|^p \right)^{1/p} = \|(T, T^*)\|_{s, 2, p}. \tag{4.2}$$

It is easy to see that both δ_p and ϑ_p are norms on B(H). The case p=2 for the norm $\delta := \delta_2$ was considered and studied in [5].

Observe that, for any $T \in B(H)$ and $p \ge 1$, we have

$$w_{h,2,p}((T,T^*)) = \sup_{\|x\|=1} \left(|\langle Tx, x \rangle|^p + |\langle T^*x, x \rangle|^p \right)^{1/p}$$

$$= \sup_{\|x\|=1} \left(|\langle Tx, x \rangle|^p + |\langle Tx, x \rangle|^p \right)^{1/p}$$

$$= 2^{1/p} \sup_{\|x\|=1} |\langle Tx, x \rangle| = 2^{1/p} w(T).$$
(4.3)

Using the inequality (1.13) we have

$$2^{1/p}w(T) \le \delta_p(T) \le 2^{1+1/p}w(T) \tag{4.4}$$

for any $T \in B(H)$ and $p \ge 1$.

For p = 2, we get

$$\sqrt{2}w(T) \le \delta(T) \le \sqrt{8}w(T) \tag{4.5}$$

while for p = 1 we get

$$2w(T) \le \delta_1(T) \le 4w(T) \tag{4.6}$$

for any $T \in B(H)$.

We have for any $T \in B(H)$ and $p \ge 1$ that

$$\|(T,T^*)\|_{2,p} = (\|T\|^p + \|T^*\|^p)^{1/p} = 2^{1/p}\|T\|$$

and by (2.25) we get

$$||T|| \le \delta_p(T) \le 2^{1/p} ||T|| \tag{4.7}$$

for any $T \in B(H)$ and $p \ge 1$.

For p = 2, we get

$$||T|| \le \delta(T) \le \sqrt{2}||T|| \tag{4.8}$$

while for p = 1 we get

$$||T|| \le \delta_1(T) \le 2||T||$$
 (4.9)

for any $T \in B(H)$.

From (2.32) we get for $r \ge q \ge 1$ that

$$\delta_r(T) \le \delta_q(T) \le 2^{\frac{r-q}{rq}} \delta_r(T) \tag{4.10}$$

for any $T \in B(H)$.

For any $T \in B(H)$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then by (2.43) we have

$$\delta_q(T) \ge \frac{1}{2^{1/p}} \|T + T^*\|. \tag{4.11}$$

In particular, for p = q = 2 we get

$$\delta(T) \ge \frac{\sqrt{2}}{2} \|T + T^*\|,\tag{4.12}$$

for any $T \in B(H)$.

By using the inequality (2.45) we get

$$\delta_p(T) \le \vartheta_p(T) \le 2^{1/p} ||T|| \tag{4.13}$$

for any $T \in B(H)$ and $p \ge 1$.

For p = 1 we get

$$\delta_1(T) \le \vartheta_1(T) \le 2\|T\| \tag{4.14}$$

for any $T \in B(H)$.

For $p \geq 2$, by employing the equality (2.46) we get

$$\vartheta_p(T) = \left[w_{h,2,p/2} \left(|T|^2, |T^*|^2 \right) \right]^{1/2} = \left[2^{2/p} w \left(|T|^2 \right) \right]^{1/2} = 2^{1/p} ||T|| \quad (4.15)$$

for any $T \in B(H)$.

On utilising (3.7), (3.9) and (3.11) we get

$$0 \le \delta^{2}(T) - \frac{1}{2}\delta_{1}^{2}(T) \le \frac{1}{2}||T||^{2}, \tag{4.16}$$

$$0 \le \delta^{2}(T) - \frac{1}{2}\delta_{1}^{2}(T) \le ||T||\delta_{1}(T)$$
(4.17)

and

$$0 \le \delta(T) - \frac{1}{\sqrt{2}}\delta_1(T) \le \frac{\sqrt{2}}{4} ||T|| \tag{4.18}$$

for any $T \in B(H)$.

Observe, by (4.3) we have that

$$w_{h,2,e}((T,T^*)) = \sqrt{2}w(T),$$

for any $T \in B(H)$.

Assume that $T \in B(H)$ and $\gamma, \Gamma \in \mathbb{C}$ with $\Gamma \neq \gamma$ such that

$$w\left(T - \frac{\gamma + \Gamma}{2}I\right), \ w\left(T^* - \frac{\gamma + \Gamma}{2}I\right) \le \frac{1}{2}|\Gamma - \gamma|,$$
 (4.19)

then by (3.27) we get

$$w^{2}(T) \leq \|\operatorname{Re}(T)\|^{2} + \frac{1}{4}|\Gamma - \gamma|^{2},$$
 (4.20)

where $\operatorname{Re}(T):=\frac{T+T^*}{2}$. If $\operatorname{Re}(\Gamma\overline{\gamma})>0$, then by (3.28) and (3.29)

$$w(T) \le \frac{1}{2} \frac{|\Gamma + \gamma|}{\sqrt{\operatorname{Re}(\Gamma \overline{\gamma})}} \|\operatorname{Re}(T)\| \tag{4.21}$$

and

$$w^2(T) \le \left[\|\operatorname{Re}\left(T\right)\| + \left[|\Gamma + \gamma| - 2\sqrt{(\Gamma\overline{\gamma})} \right] \right] \|\operatorname{Re}\left(T\right)\|. \tag{4.22}$$

If $\Gamma \neq -\gamma$, then by (3.30) we get

$$w(T) \le \|\operatorname{Re}(T)\| + \frac{1}{8} \frac{|\Gamma - \gamma|^2}{|\Gamma + \gamma|}.$$
(4.23)

Due to the fact that $w(A) = w(A^*)$ for any $A \in B(H)$, the condition (4.19) can be simplified as follows.

If m, M are real numbers with M > m and if

$$w\left(T - \frac{m+M}{2}I\right) \le \frac{1}{2}(M-m),$$

then

$$w^{2}(T) \le \|\operatorname{Re}(T)\|^{2} + \frac{1}{4}(M-m)^{2}.$$
 (4.24)

If m > 0, then

$$w(T) \le \frac{1}{2} \frac{m+M}{\sqrt{mM}} \|\operatorname{Re}(T)\| \tag{4.25}$$

and

$$w^{2}(T) \leq \left[\|\operatorname{Re}(T)\| + \left(\sqrt{M} - \sqrt{m}\right)^{2} \right] \|\operatorname{Re}(T)\|.$$
 (4.26)

If $M \neq -m$, then

$$w(T) \le \|\operatorname{Re}(T)\| + \frac{1}{8} \frac{(M-m)^2}{m+M}.$$
 (4.27)

For other numerical radius and norm inequalities, the interested reader may also consult [1] and [6] and compare these results. The details are not provided here.

5. Inequalities for real norms

If X is a complex linear space, then the functional $\|\cdot\|$ is a real norm, if the homogeneity property in the definition of the norms is satisfied only for real numbers, namely we have

$$\|\alpha x\| = |\alpha| \|x\|$$
 for any $\alpha \in \mathbb{R}$ and $x \in X$.

For instance if we consider the complex linear space of complex numbers $\mathbb C$ then the functionals

$$|z|_p := (|\operatorname{Re}(z)|^p + |\operatorname{Im}(z)|^p)^{1/p}, \quad p \ge 1,$$

$$|z|_{\infty} := \max\{|\operatorname{Re}(z)|, |\operatorname{Im}(z)|\}, \qquad p = \infty,$$

are real norms on \mathbb{C} .

For $T \in B(H)$ we consider the Cartesian decomposition

$$T = \operatorname{Re}(T) + i\operatorname{Im}(T)$$

where the selfadjoint operators $\operatorname{Re}(T)$ and $\operatorname{Im}(T)$ are uniquely defined by

$$\operatorname{Re}(T) = \frac{T + T^*}{2}$$
 and $\operatorname{Im}(T) = \frac{T - T^*}{2i}$.

We can introduce the following functionals

$$||T||_{r,p} := (||\operatorname{Re}(T)||^p + ||\operatorname{Im}(T)||^p)^{1/p}, \quad p \ge 1,$$

and

$$||T||_{r,\infty} := \max \{ ||\text{Re}(T)||, ||\text{Im}(T)|| \}, \qquad p = \infty,$$

where $\|\cdot\|$ is the usual operator norm on B(H). The definition can be extended for any other norms on B(H) or its subspaces.

Using the properties of the norm $\|\cdot\|$ and the Minkowski's inequality

$$(|a+b|^p + |c+d|^p)^{1/p} \le (|a|^p + |c|^p)^{1/p} + (|b|^p + |d|^p)^{1/p}$$

for $p \geq 1$ and $a, b, c, d \in \mathbb{C}$, we observe that $\|\cdot\|_{r,p}$, $p \in [1, \infty]$ is a real norm on B(H).

For $p \geq 1$ and $T \in B$ we can introduce the following functionals

$$\eta_{r,p}(T) := \sup_{\|x\| = \|y\| = 1} \left(|\operatorname{Re} \langle Tx, y \rangle|^p + |\operatorname{Im} \langle Tx, y \rangle|^p \right)^{1/p}$$

$$= \sup_{\|x\| = \|y\| = 1} \left(|\langle \operatorname{Re} Tx, y \rangle|^p + |\langle \operatorname{Im} Tx, y \rangle|^p \right)^{1/p}$$

$$= \|(\operatorname{Re} T, \operatorname{Im} T)\|_{h,2,p},$$

$$\theta_{r,p}(T) := \sup_{\|x\|=1} \left(|\operatorname{Re} \langle Tx, x \rangle|^p + |\operatorname{Im} \langle Tx, x \rangle|^p \right)^{1/p}$$

$$= \sup_{\|x\|=1} \left(|\langle \operatorname{Re} Tx, x \rangle|^p + |\langle \operatorname{Im} Tx, x \rangle|^p \right)^{1/p}$$

$$= w_{h,2,p}(\operatorname{Re} T, \operatorname{Im} T)$$

and

$$\kappa_{r,p}(T) := \sup_{\|x\|=1} \left(\|\operatorname{Re} Tx\|^p + \|\operatorname{Im} Tx\|^p \right)^{1/p} = \|(\operatorname{Re} T, \operatorname{Im} T)\|_{s,2,p}.$$

The case p=2 is of interest since for $T \in B(H)$ we have

$$\eta_{r,2}(T) := \sup_{\|x\| = \|y\| = 1} \left(|\operatorname{Re} \langle Tx, y \rangle|^2 + |\operatorname{Im} \langle Tx, y \rangle|^2 \right)^{1/2} \\
= \sup_{\|x\| = \|y\| = 1} |\langle Tx, y \rangle| = \|T\|, \\
\theta_{r,2}(T) := \sup_{\|x\| = 1} \left(|\operatorname{Re} \langle Tx, x \rangle|^2 + |\operatorname{Im} \langle Tx, x \rangle|^2 \right)^{1/2} \\
= \sup_{\|x\| = 1} |\langle Tx, x \rangle| = w(T)$$

and

$$\kappa_{r,2}(T) := \sup_{\|x\|=1} \left(\|\operatorname{Re} Tx\|^2 + \|\operatorname{Im} Tx\|^2 \right)^{1/2}$$

$$= \sup_{\|x\|=1} \left(\left\langle (\operatorname{Re} T)^2 x, x \right\rangle + \left\langle (\operatorname{Im} T)^2 x, x \right\rangle \right)^{1/2}$$

$$= \sup_{\|x\|=1} \left(\left\langle \left[(\operatorname{Re} T)^2 + (\operatorname{Im} T)^2 \right] x, x \right\rangle \right)^{1/2}$$

$$= \left\| (\operatorname{Re} T)^2 + (\operatorname{Im} T)^2 \right\|^{1/2} = \left\| \frac{|T|^2 + |T^*|^2}{2} \right\|^{1/2}.$$

For $p = \infty$ we have

$$\begin{split} \eta_{r,\infty}(T) &:= \sup_{\|x\| = \|y\| = 1} \Big(\max \big\{ \left| \operatorname{Re} \left\langle Tx, y \right\rangle \right|, \left| \operatorname{Im} \left\langle Tx, y \right\rangle \right| \big\} \Big) \\ &= \max \left\{ \sup_{\|x\| = \|y\| = 1} \left| \left\langle \operatorname{Re} Tx, y \right\rangle \right|, \sup_{\|x\| = \|y\| = 1} \left| \left\langle \operatorname{Im} Tx, y \right\rangle \right| \right\} \\ &= \max \big\{ \|\operatorname{Re} T\|, \|\operatorname{Im} T\| \big\}, \end{split}$$

and in a similar way

$$\theta_{r,\infty}(T) = \kappa_{r,\infty}(T) = \max\left\{\|\operatorname{Re} T\|, \|\operatorname{Im} T\|\right\} = \|T\|_{r,\infty}.$$

The functionals $\eta_{r,p}$, $\theta_{r,p}$ and $\kappa_{r,p}$ with $p \in [1, \infty]$ are real norms on B(H). We have

$$\eta_{r,p}(T) = \sup_{\|x\| = \|y\| = 1} \left(|\operatorname{Re} \langle Tx, y \rangle|^p + |\operatorname{Im} \langle Tx, y \rangle|^p \right)^{1/p} \\
\leq \left(\sup_{\|x\| = \|y\| = 1} |\operatorname{Re} \langle Tx, y \rangle|^p + \sup_{\|x\| = \|y\| = 1} |\operatorname{Im} \langle Tx, y \rangle|^p \right)^{1/p} \\
= (\|\operatorname{Re} (T)\|^p + \|\operatorname{Im} (T)\|^p)^{1/p} = \|T\|_{r,p}$$

and

$$||T||_{r,\infty} = \sup_{\|x\| = \|y\| = 1} \left(\max \left\{ |\operatorname{Re} \langle Tx, y \rangle|, |\operatorname{Im} \langle Tx, y \rangle| \right\} \right)$$

$$\leq \sup_{\|x\| = \|y\| = 1} \left(|\operatorname{Re} \langle Tx, y \rangle|^p + |\operatorname{Im} \langle Tx, y \rangle|^p \right)^{1/p} = \eta_{r,p}(T)$$

for any $p \ge 1$ and $T \in B(H)$.

In a similar way we have

$$||T||_{r,\infty} \le \theta_{r,p}(T) \le ||T||_{r,p}$$

and

$$||T||_{r,\infty} \le \kappa_{r,p}(T) \le ||T||_{r,p}$$

for any $p \ge 1$ and $T \in B(H)$.

If we write the inequality (1.13) for n=2, $T_1=\operatorname{Re} T$ and $T_2=\operatorname{Im} T$ then we get

$$\theta_{r,p}(T) \le \eta_{r,p}(T) \le 2\theta_{r,p}(T) \tag{5.1}$$

for any $p \ge 1$ and $T \in B(H)$.

Using the inequalities (2.25) and (2.26) for $n=2,\,T_1={\rm Re}\,T$ and $T_2={\rm Im}\,T$ then we get

$$\frac{1}{2^{1/p}} \|T\|_{r,p} \le \eta_{r,p}(T) \le \|T\|_{r,p} \tag{5.2}$$

and

$$\frac{1}{2^{1/p}} \|T\|_{r,p} \le \theta_{r,p}(T) \le \|T\|_{r,p}$$
(5.3)

for any $p \ge 1$ and $T \in B(H)$.

If we use the inequalities (2.32) and (2.33) for $n=2, T_1=\operatorname{Re} T$ and $T_2=\operatorname{Im} T$ then we get for $t\geq p\geq 1$ that

$$\eta_{r,t}(T) \le \eta_{r,p}(T) \le 2^{\frac{t-p}{tp}} \eta_{r,t}(T)$$
(5.4)

and

$$\theta_{r,t}(T) \le \theta_{r,p}(T) \le 2^{\frac{t-p}{tp}} \theta_{r,t}(T) \tag{5.5}$$

for any $T \in B(H)$.

For p = 1 we have the functionals

$$\eta_{r,1}(T) = \sup_{\|x\| = \|y\| = 1} \left(\left| \left\langle \operatorname{Re} Tx, y \right\rangle \right| + \left| \left\langle \operatorname{Im} Tx, y \right\rangle \right| \right) \\ = \left\| \left(\operatorname{Re} T, \operatorname{Im} T \right) \right\|_{h,2,1},$$

$$\theta_{r,1}(T) := \sup_{\|x\|=1} \left(\left| \langle \operatorname{Re} Tx, x \rangle \right| + \left| \langle \operatorname{Im} Tx, x \rangle \right| \right) = w_{h,2,1}(\operatorname{Re} T, \operatorname{Im} T)$$

and

$$\kappa_{r,1}(T) := \sup_{\|x\|=1} \left(\|\operatorname{Re} Tx\| + \|\operatorname{Im} Tx\| \right) = \|(\operatorname{Re} T, \operatorname{Im} T)\|_{s,2,1}.$$

By utilising the inequalities (3.7), (3.9) and (3.11) for n = 2, $T_1 = \operatorname{Re} T$ and $T_2 = \operatorname{Im} T$, then

$$0 \le \|T\|^2 - \frac{1}{2}\eta_{r,1}^2(T) \le \frac{1}{2} \left(\max \{ \|\operatorname{Re} T\|, \|\operatorname{Im} T\| \} \right)^2, \tag{5.6}$$

$$0 \le ||T||^2 - \frac{1}{2}\eta_{r,1}^2(T) \le \max\{||\operatorname{Re} T||, ||\operatorname{Im} T||\}\eta_{r,1}(T)$$
 (5.7)

and

$$0 \le ||T|| - \frac{\sqrt{2}}{2} \eta_{r,1}(T) \le \frac{\sqrt{2}}{4} \max \{ ||\operatorname{Re} T||, ||\operatorname{Im} T|| \}$$
 (5.8)

for any $T \in B(H)$.

Also, by utilising the inequalities (3.8), (3.10) and (3.12) for n = 2, $T_1 = \text{Re } T$ and $T_2 = \text{Im } T$, then

$$0 \le w^{2}(T) - \frac{1}{2}\theta_{r,1}^{2}(T) \le \frac{1}{2} \left(\max \{ \|\operatorname{Re} T\|, \|\operatorname{Im} T\| \} \right)^{2}, \tag{5.9}$$

$$0 \le w^{2}(T) - \frac{1}{2}\theta_{r,1}^{2}(T) \le \max \{ \|\operatorname{Re} T\|, \|\operatorname{Im} T\| \} \theta_{r,1}(T)$$
 (5.10)

and

$$0 \le w(T) - \frac{\sqrt{2}}{2}\theta_{r,1}(T) \le \frac{\sqrt{2}}{4} \max \left\{ \|\operatorname{Re} T\|, \|\operatorname{Im} T\| \right\}$$
 (5.11)

for any $T \in B(H)$.

If m, M are real numbers with M > m and if

$$\left\| \operatorname{Re} T - \frac{m+M}{2} I \right\|, \left\| \operatorname{Im} T - \frac{m+M}{2} I \right\| \le \frac{1}{2} (M-m),$$
 (5.12)

then by (3.27) we get

$$w^{2}(T) \le \frac{1}{2} \|\operatorname{Re} T + \operatorname{Im} T\|^{2} + \frac{1}{2} (M - m)^{2}.$$
 (5.13)

If m > 0, then (3.28) and (3.29) we have

$$w(T) \le \frac{1}{2\sqrt{2}} \frac{m+M}{\sqrt{mM}} \|\operatorname{Re} T + \operatorname{Im} T\| \tag{5.14}$$

and

$$w^{2}(T) \leq \left[\frac{1}{2}\|\operatorname{Re} T + \operatorname{Im} T\| + \left(\sqrt{M} - \sqrt{m}\right)^{2}\right] \|\operatorname{Re} T + \operatorname{Im} T\|.$$
 (5.15)

If $M \neq -m$, then by (3.30) we get

$$w(T) \le \frac{1}{\sqrt{2}} \left(\|\operatorname{Re} T + \operatorname{Im} T\| + \frac{1}{4} \frac{(M-m)^2}{M+m} \right).$$
 (5.16)

Finally, we observe that a simple sufficient condition for (5.12) to hold, is that

$$mI \leq \operatorname{Re} T$$
, $\operatorname{Im} T \leq MI$

in the operator order of B(H).

Acknowledgements

The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

References

- [1] M. Bakherad, K. Shebrawi, Upper bounds for numerical radius inequalities involving off-diagonal operator matrices, *Ann. Funct. Anal.* **9** (3) (2018), 297–309.
- [2] S.S. DRAGOMIR, A counterpart of Schwarz's inequality in inner product spaces, East Asian Math. J. **20**(1) (2004), 1-10, preprint RGMIA Res. Rep. Coll. **6** (2003), http://rgmia.org/papers/v6e/CSIIPS.pdf.
- [3] S.S. DRAGOMIR, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, *J. Inequal. Pure Appl. Math.* 4(3) (2003), Article 63, 142 pp., https://www.emis.de/journals/JIPAM/article301.html?sid=301.
- [4] S.S. Dragomir, "Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces", Nova Science Publishers Inc., NY, 2005.
- [5] S.S. DRAGOMIR, The hypo-Euclidean norm of an *n*-tuple of vectors in inner product spaces and applications, *J. Ineq. Pure & Appl. Math.* 8 (2) (2007), Article 52, 22 pp., https://www.emis.de/journals/JIPAM/article854.html?sid=854.
- [6] S.S. DRAGOMIR, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, *Linear Algebra Appl.* 419 (1) (2006), 256–264.
- [7] S.S. Dragomir, Reverses of the Schwarz inequality generalising the Klamkin-McLeneghan result, *Bull. Austral. Math. Soc.* **73** (1) (2006), 69–78.
- [8] S. S. DRAGOMIR, Some inequalities of Kato type for sequences of operators in Hilbert spaces, Publ. Res. Inst. Math. Sci. 48 (4) (2012), 937-955.
- [9] S. S. DRAGOMIR, Y. J. CHO, Y.-H. KIM, Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (I), J. Inequal. Appl. 2013:21 (2013), 16pp.
- [10] S. S. DRAGOMIR, Y. J. CHO, Y.-H. KIM, Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (II), J. Inequal. Appl. 2013:464 (2013), 20 pp.
- [11] T. Kato, Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208-212.
- [12] M.S. Moslehian, M. Sattari, K. Shebrawi, Extensions of Euclidean operator radius inequalitie, *Math. Scand.* **120** (1) (2017), 129–144.
- [13] G. Popescu, "Unitary Invariants in Multivariable Operator Theory", Mem. Amer. Math. Soc. no. 941, 2009.
- [14] A. Sheikhhosseini, M.S. Moslehian, K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young's inequality. *J. Math. Anal. Appl.* **445** (2) (2017), 1516–1529.
- [15] O. SHISHA, B. MOND, Bounds on differences of means, in "Inequalities", Academic Press Inc., New York, 1967, 293-308.