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Abstract : We show that some derived L1 full groups provide examples of non simple Polish groups

with the topological bounded normal generation property. In particular, it follows that there are
Polish groups with the topological bounded normal generation property but not the bounded normal

generation property.
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1. Introduction

The study of how quickly the conjugacy class of a non-central element
generates the whole group has often turned out to be useful in understanding
both the algebraic and topological structure of the given group. For example,
such results on involutions by Broise [2] were crucial in de la Harpe’s proof of
simplicity of projective unitary groups of some von Neumann factors [3], while
analogous results by Ryzhikov [12] are used to prove automatic continuity of
homomorphisms for full groups of measure-preserving equivalence relations by
Kittrell and Tsankov [9].

A group G has bounded normal generation (BNG) if the union of the
conjugacy classes of any nontrivial element and of its inverse generate G in
finitely many steps. Observe that any group with bounded normal generation
is simple. Bounded normal generation already appears in Fathi’s result that
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the group of measure-preserving transformations of a standard probability
space is simple [7], but the name was only given recently in [4, 5].

Obtaining bounded normal generation with a sharp number of steps is
a crucial point of the seminal article [11] by Liebeck and Shalev concerning
bounds on the diameter of the Cayley graph of a finite simple group. Other
applications of bounded normal generation can be found in the first named
author’s work together with Thom [4, 5] concerning invariant automatic con-
tinuity and the uniqueness of Polish group topologies for projective unitary
groups of certain operator algebras, in particular for separable type II1 von
Neumann factors.

The notion of bounded normal generation can be topologized: a topological
group G has topological bounded normal generation if the conjugacy classes
of every nontrivial element and of its inverse generate a dense subset of G
in finitely many steps. This definition was introduced in [4] to give a clean
structure to the proof of bounded normal generation for projective unitary
groups of II1 factors: prove topological bounded normal generation via some
finite-dimensional approximation methods in the strong operator topology,
then use some commutator tricks and results on symmetries to obtain bounded
normal generation.

However, it is a priori not clear whether bounded normal generation and
topological bounded normal generation are the same properties. Basic exam-
ples of non simple topologically simple groups such as the symmetric group
over an infinite set or the projective unitary group of an infinite dimen-
sional Hilbert space actually fail topological bounded normal generation (see
Corollary 2.6). In fact, this problem was left open in [4] and is the main point
of this article: we provide examples that separate bounded normal genera-
tion from its topological counterpart. Actually, we show that there are Polish
groups which have topological bounded normal generation but which are not
even simple.

The groups that serve our purposes are called derived L1 full groups, in-
troduced by the second named author in [10] as a measurable analogue the
derived groups of small topological full groups. Let us now state our main
result, see Section 2 for definitions.

Theorem A. (See Theorem 4.4) The derived L1 full group of any hyper-
finite ergodic graphing has topological bounded normal generation.

In the above theorem we can moreover estimate how many products of
conjugacy classes of a non-trivial element and its inverse in the derived L1 full
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group we need to generate a dense subset, see Theorem 4.4.
We do not know wether one can remove the hyperfiniteness asumption

in Theorem A. As a concrete example of this result, one can consider the
derived L1 full group of a measure-preserving ergodic transformation, which
was already known to be non-simple but topologically simple [10]. Using
reconstruction-type results, we can show that this provides many examples of
non simple groups with topological bounded normal generation.

Theorem B. (See Corollary 5.4) There are uncountably many pairwise
non-isomorphic Polish groups which have topological bounded normal genera-
tion but fail to be simple (in particular they fail bounded normal generation).

The article is structured as follows: in Section 2 we provide preliminaries
around bounded normal generation and define derived L1 full groups of graph-
ings, in Section 3 we show that for hyperfinite graphings these groups contain
a dense subgroup in which every element is a product of two involutions, in
Section 4 we use this to prove Theorem A (see Theorem 4.4) and finally in
Section 5 we prove a reconstruction theorem for derived L1 full groups and
use it to prove Theorem B (see Corollary 5.4).

2. Preliminaries

2.1. Topological bounded normal generation.
If G is a group and g ∈ G, we write

g±G =
{
hgh−1 : h ∈ G

}
∪
{
hg−1h−1 : h ∈ G

}
.

Given a subset A of G, we moreover write A·n for the set of products of n
elements of A, that is

A·n = {a1 · · · an : a1, . . . , an ∈ A}.

The following definitions are taken from [4, 5].

Definition 2.1. A group G has bounded normal generation (BNG) if for
every non-trivial g ∈ G, there is n(g) ∈ N such that(

g±G
)·n(g)

= G.

A function n : G \ {1} → N satisfying the above assumption is then called a
normal generation function.
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Observe that BNG implies simplicity. An example of a simple group with-
out BNG is given by finitely supported permutations of signature 1 on an
infinite set. Let us now define the topological version of BNG.

Definition 2.2. A topological group G has topological bounded normal
generation (TBNG) if for every non-trivial g ∈ G, there is n(g) ∈ N such that

(g±G)·n(g) = G.

We still call a function n : G \ {1} → N satisfying the above assumption a
normal generation function.

The purpose of this paper is to exhibit examples of non-simple topological
groups with TBNG. Let us first explain why the first examples of non simple
topologically simple groups which come to mind actually fail TBNG.

Definition 2.3. Let G be a topological group. A lower semi-continuous
invariant length function on G is a map l : G→ [0,+∞] such that

(i) l(1G) = 0;

(ii) l(g−1) = l(g) for all g ∈ G;

(iii) l(gh) ≤ l(g) + l(h) for all g, h ∈ G;

(iv) l(ghg−1) = l(h) for all g, h ∈ G;

(v) for all r ≥ 0, the set l−1([0, r]) is closed.

Such a function is unbounded if for all K ∈ N there is g ∈ G such that
l(g) ∈]K,+∞[.

Example 2.4. On the symmetric group over a discrete set X endowed
with the pointwise convergence topology, one can let l(g) be the cardinality of
the support of g. If X is infinite, then such a length function is unbounded.

On the unitary group of a Hilbert space endowed with the strong topology,
one can let l(g) be the minimum over λ ∈ S1 of the rank of (g − λidH) or of
the trace class norm of (g−λidH). If the Hilbert space is infinite dimensional,
then such a length function is unbounded and quotients down to an unbounded
lower semi-continuous length function on the projective unitary group.

Observe that if we have an invariant length function on G then the group
of elements of finite length is a Fσ normal subgroup of G. Moreover, we have
the following straightforward proposition.
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Proposition 2.5. If a topological group G admits an unbounded lower
semi-continuous invariant length function, then it fails TBNG.

Proof. Let l be an unbounded lower semi-continuous invariant length func-
tion on G. By unboundness we find g ∈ G with l(g) ∈]0,+∞[ (in particular
g is non-trivial). Fix n ∈ N and let N = n · l(g). Observe that (g±G)·n ⊆
l−1([0, N ]), and since the latter is closed we also have (g±G)·n ⊆ l−1([0, N ]).
Since l is unbounded, l−1([0, N ]) is not equal to G and we conclude that for
every n ∈ N we have (g±G)·n 6= G. So G fails TBNG.

Applying this proposition to our two examples, we get the following.

Corollary 2.6. The symmetric group over an infinite discrete set fails
TBNG for the topology of pointwise convergence. The projective unitary
group of an infinite-dimensional Hilbert space fails TBNG for the strong op-
erator topology.

Remark. The fact that the projective unitary group of an infinite-dimen-
sional Hilbert space fails TBNG can also be seen via generalized projective
s-numbers as in [4, pp. 80-81].

Let us conclude this section by introducing another natural topological ver-
sion of BNG. Define strong topological bounded normal generation (STBNG)
for a topological group G by asking that for every non-trivial g ∈ G, there is
n(g) ∈ N such that (

g±G
)·n(g)

= G.

Since we always have
(
g±G

)·n
⊆ (g±G)·n, STBNG implies TBNG. In a com-

pact group finite pointwise products of closed subsets are compact hence

closed, so we actually always have
(
g±G

)·n
= (g±G)·n. Hence STBNG is

equivalent to TBNG for compact groups. However it is not true in gen-
eral that products of closed sets are closed (for instance in G = R consider
A = B = N ∪ −

√
2N), so the following question is natural.

Question 2.7. Is it true in general that TBNG is equivalent to STBNG?

2.2. Derived L1 full groups.
Let (X,µ) be a standard probability space. We will ignore null sets, in

particular we identify two Borel functions on (X,µ) if they are the same up
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to a null set. Given A,B Borel subsets of X, a partial isomorphism of (X,µ)
of domain A and range B is a Borel bijection f : A → B which is measure
preserving for the measures induced by µ on A and B respectively. We denote
by dom f = A its domain, and by rng f = B its range. Note that in particular,
µ(dom f) = µ(rng f). When dom f = rng f = X we say that f is a measure-
preserving transformation and we denote by Aut(X,µ) the group of such
transformations. A measure-preserving transformation is periodic when all
its orbits are finite.

Given a measure-preserving transformation T and a Borel T -invariant sub-
set A of X, we denote by TA the measure-preserving transformation defined
by

TA(x) =

{
T (x) if x ∈ A ,
x otherwise .

A graphing is a countable set Φ of partial isomorphisms of (X,µ). It
generates a measure preserving equivalence relation RΦ, defined to be the
smallest equivalence relation such that ϕ(x) RΦ x for every ϕ ∈ Φ.

Every graphing Φ induces a natural graph structure onX where we connect
x to y whenever there is ϕ ∈ Φ such that y = ϕ(x). The connected components
of this graph are precisely the RΦ classes, and we thus have a graph metric
dΦ : RΦ → N given by

dΦ(x, y) = min
{
n ∈ N : ∃ϕ1, . . . , ϕn ∈ Φ, ε1, . . . , εn ∈ {−1,+1},

y = ϕεnn ◦ · · · ◦ ϕ
ε1
1 (x)

}
.

The full group of the measure-preserving equivalence relation RΦ is the
group of all measure-preserving transformations T such that for all x ∈ X we
have (x, T (x)) ∈ RΦ. We denote it by [RΦ].

The L1 full group of the graphing Φ is the group of all T ∈ [RΦ] such that∫
X
dΦ(x, T (x))dµ(x) < +∞ .

It is denoted by [Φ]1. It has a natural complete separable right-invariant
metric d̃Φ given by

d̃Φ(T,U) =

∫
X
dΦ(T (x), U(x))dµ(x) .

We refer the reader to [10] for proofs and more background.
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For the next definition, recall that the derived group of a group G is the
subgroup generated by elements of the form ghg−1h−1 where g, h ∈ G. It is
the smallest normal subgroup N of G such that G/N is abelian.

Definition 2.8. The derived L1 full group of a graphing Φ is the closure
of the derived group of the L1 full group of Φ. It is denoted by [Φ]′1.

The derived L1 full group of a graphing Φ is by construction the smallest
closed normal subgroup N of [Φ]1 such that [Φ]1/N is abelian.

A graphing is aperiodic if all its connected components are infinite. An
important fact is that as soon as Φ is an aperiodic graphing, every periodic
element of the L1 full group of Φ actually belongs to the derived L1 full group
of Φ (see [10, Lemma 3.11]). Moreover, we have the following result which
will be strengthened in the next section for hyperfinite graphings.

Theorem 2.9. ([10, Theorem 3.13]) Let Φ be an aperiodic graphing.
Then its derived L1 full group [Φ]′1 is topologically generated by involutions.

3. Products of two involutions in the derived L1

full group of hyperfinite graphings

Definition 3.1. A measure-preserving equivalence relation is called finite
if all its equivalence classes are finite.

It is hyperfinite if it can be written as an increasing union of measure-
preserving equivalence relations Rn whose equivalence classes are finite.

A graphing Φ is hyperfinite if the equivalence relation it generates is hy-
perfinite.

Let Φ be a hyperfinite graphing, our aim is to show that its derived L1 full
group contains a dense subgroup all of whose elements are products of two
involutions.

Lemma 3.2. Let Φ be an aperiodic graphing and suppose that RΦ is writ-
ten as an increasing union of equivalence relations Rn. Then

⋃
n∈N[Rn]∩ [Φ]′1

is dense in [Φ]′1.

Proof. By Theorem 2.9 we only need to be able to approximate involutions
from [Φ]′1 by elements from

⋃
n∈N[Rn] ∩ [Φ]′1. Let U ∈ [Φ]′1 be an involution,

then the U -invariant sets An = {x ∈ X : xRnU(x)} satisfy
⋃
n∈NAn = X

since
⋃
nRn = RΦ. By the dominated convergence theorem, we then have



92 p.a. dowerk, f. le mâıtre

UAn → U . Moreover UAn is an involution so UAn ∈ [Φ]′1 and by construction
UAn ∈ [Rn] so UAn ∈ [Rn] ∩ [Φ]′1 and the lemma is proved.

Definition 3.3. Given a graphing Φ, we say that the RΦ-classes have a
uniformly bounded Φ-diameter if there is N ∈ N such that for any (x, y) ∈ RΦ

we have dΦ(x, y) ≤ N .

Lemma 3.4. Let Φ be an aperiodic graphing, let R be a finite subequiv-
alence relation of RΦ whose equivalence classes have a uniformly bounded
Φ-diameter. Then [R] is a subgroup of [Φ]′1.

Proof. The fact that there is a uniform bound M on the diameter of the
R-classes ensures that [R] is a subgroup of [Φ]1. Moreover all the elements of
[R] are periodic and hence belong to [Φ]′1.

Lemma 3.5. Let R be an equivalence relation. Suppose that there is
n ∈ N such that all the R-classes have cardinality at most n. Then [R] is
locally finite.

Proof. Let U1, . . . , Uk ∈ [R] for some arbitrary k ∈ N. By using a Borel
linear order onX, we can identify in anR-invariant manner theR orbit of each
x ∈ X with a set of the form {1, . . . ,mx} with mx ≤ n. For each x ∈ X there
are only finitely many ways that the marked group generated by 〈U1, . . . , Uk〉
can act on the finite set {1, . . . ,mx}. So we get a finite partition of X into
R-invariant sets such that on each atom of this partition, the marked group
〈U1, . . . , Uk〉 acts on each orbit the same way, and we thus embed 〈U1, . . . , Uk〉
in a finite product of finite permutation groups.

Theorem 3.6. Let Φ be a hyperfinite graphing. Then [Φ]′1 contains a
dense locally finite subgroup, all whose elements are products of two involu-
tions.

Proof. By definition we may write RΦ as an increasing union of finite
equivalence relations Rn. It is well known that we can moreover assume that
each Rn has equivalence classes of size at most n. Let us show that we can
also assume each Rn has equivalence classes of uniformly bounded Φ-diameter
and cardinality.

We first find an increasing sequence of integers (ϕ(n))n∈N such that for all
n ∈ N,

µ
({
x ∈ X :

∣∣[x]Rn

∣∣ > ϕ(n) or diamΦ

(
[x]Rn

)
> ϕ(n)

})
<

1

2n
.
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Then by the Borel-Cantelli lemma, for almost all x ∈ X there are only finitely
many n ∈ N such that |[x]Rn | > ϕ(n) or diamΦ([x]Rn) > ϕ(n). So if we define
new equivalence relations Sn by (x, y) ∈ Sn if (x, y) ∈ Rn and diamΦ([x]Rn) ≤
ϕ(n) and |[x]Rn | ≤ ϕ(n), we still have

⋃
n∈N Sn = R and the Sn-classes have

a uniformly bounded diameter and cardinality as wanted.

By Lemma 3.2,
⋃
n∈N[Sn] ∩ [Φ]′1 is dense in [Φ]′1. But Lemma 3.4 yields

that [Sn]∩ [Φ]′1 = [Sn]. Since Sn is finite and all its classes have cardinality at
most ϕ(n), [Sn] is locally finite by Lemma 3.5. Finally each element of [Sn] is
a product of two involutions by [8, Sublemma 4.3]. So the subgroup

⋃
n∈N[Sn]

is as wanted.

4. Topological bounded normal generation
for derived L1 full groups

In this section we will prove that derived L1 full groups of ergodic amenable
graphings have TBNG. A key tool will be Theorem 3.6, but we also need a
better understanding of products of conjugates of involutions.

Lemma 4.1. ([10, Lemma 3.22]) Let Φ be an ergodic graphing, and let
U ∈ [Φ]1 be an involution whose support has measure α ≤ 1/2. Then the
closure of the [Φ]′1 conjugacy class of U contains all involutions in [Φ]1 whose
support has measure α and is disjoint from the support of U .

Lemma 4.2. Let Φ be an ergodic graphing, let U ∈ [Φ]1 be an involution
whose support has measure α < 1/3. Then the closure of the [Φ]′1 conjugacy
class of U contains all involutions in [Φ]1 whose support has measure α.

Proof. Let V ∈ [Φ]1 have a support of measure α. Observe that µ(suppU∪
suppV ) < 2/3. By ergodicity, we find an involution W ∈ [RΦ] whose support
has measure 1/3 and is disjoint from suppU ∪ suppV . By shrinking down W ,
we may actually assume that W ∈ [Φ]1 and that µ(suppW ) = α.

By the previous lemma W belongs to the closure of the conjugacy class of
U and V belongs to the closure of the conjugacy class of W so V belongs to
the closure of the conjugacy class of U .

Lemma 4.3. Let Φ be an ergodic graphing and let U ∈ [Φ]1 be an in-
volution whose support has measure α < 1/3. Then every involution whose
support has measure ≤ 2α is the product of 2 elements from the closure of
the [Φ]′1 conjugacy class of U .
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Proof. Let V ∈ [Φ]1 be an involution whose support has measure β ≤ 2α.
Cut the support of V into two disjoint V -invariant sets A1 and A2 of measure
β/2, and let W ∈ [Φ]1 be an involution with support of measure α − β/2
disjoint from the support of V (in particular, W commutes with V ).

Then V = VA1VA2 = (VA1W )(VA2W ) and by the previous lemma both
VA1W and VA2W belong to the closure of the conjugacy class of U .

Theorem 4.4. Let Φ be a hyperfinite ergodic graphing. Then [Φ]′1 has
TBNG. A normal generation function is given by n(T ) = 2 + 2d 7

2µ(suppT )e.

Proof. Let T ∈ [Φ]′1. Let A ⊆ suppT be a maximal subset such that A
and T (A) are disjoint. Then by maximality suppT ⊆ T−1(A)∪A∪T (A), and
thus µ(A) ≥ µ(suppT )/3.

We may now find an involution U ∈ [Φ]1 whose support is contained in A
and has measure µ(suppT )/7. Now [T,U ] is an involution whose support has
measure µ(supp[T,U ]) = 2µ(suppT )/7 < 1/3.

Let V be an arbitrary involution, we cut down its support into V -invariant
pieces of measure µ(supp[T,U ]) plus a remaining piece of measure less than
µ(supp[T,U ]). Observe that V is equal to the product of the transformations
it induces on these pieces. There are at most d 1

µ(supp[T,U ])e = d 7
2µ(suppT )e such

pieces, and by Lemma 4.2 and Lemma 4.3 applied to the involutions induced
by V on the pieces, we can then write V as a product of at most 1+d 7

2µ(suppT )e
elements of the closure of the conjugacy class of [T,U ].

Since there is a dense subgroup of [Φ]′1 whose elements are products of
2 involutions, we have a dense subgroup of [Φ]′1 all whose elements are in

(T±[Φ]′1)k where

k = 2

(
1 +

⌈ 7

2µ(suppT )

⌉)
.

So [Φ]′1 has TBNG.

Remark. To get STBNG via the same approach, we would need to know
that each element of [Φ]′1 is a product of at most k involutions for some fixed
k. We do not know wether this is true, and we also cannot exclude that every
element of the derived L1 full group is a product of two involutions.

Corollary 4.5. Let T be an ergodic measure-preserving transformation.
Then [T ]′1 has TBNG but is not simple.
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Proof. By [6, Theorem 1] the graphing {T} is hyperfinite, so by Theorem
4.4 the derived L1 full group [Tα]′1 has TBNG. But by [10, Theorem 4.26] we
also have that [T ]′1 is not simple.

5. Reconstruction for the derived L1 full group

Recall that two measure-preserving transformations T and T ′ are flip
conjugate if there is a measure-preserving transformation S such that T =
ST ′S−1 or T−1 = ST ′S−1. In [10] it was shown that when the L1 full groups
of two ergodic measure-preserving transformations T and T ′ are isomorphic,
then T and T ′ are flip conjugate. The purpose of this section is to prove the
same result for the derived L1 full group.

Let us first note that by [10, Propoposition 3.17] and a reconstruction
theorem of Fremlin as stated in [10, Theorem 3.18], we have the following
result:

Lemma 5.1. Let Φ and Ψ be a aperiodic graphings, and let ρ : [Φ]′1 → [Ψ]′1
be a group isomorphism. Then there is a non-singular transformation S such
that for all U ∈ [Φ]′1 we have ρ(U) = SUS−1.

In the ergodic case, we can upgrade this as in [10, Corollary 3.19].

Corollary 5.2. Let Φ and Ψ be a ergodic graphings, and let ρ : [Φ]′1 →
[Ψ]′1 be a group isomorphism. Then there is a measure-preserving transfor-
mation S such that for all U ∈ [Φ]′1 we have ρ(U) = SUS−1.

Proof. Same as the proof of [10, Corollary 3.18].

We then have the following reconstruction theorem, whose proof is inspired
from a similar result of Bezuglyi and Medynets for topological full groups [1,
Lemma 5.12].

Theorem 5.3. Let Ta and Tb be two ergodic measure-preserving trans-
formations. Then the following are equivalent:

(i) Ta and Tb are flip conjugate;

(ii) [Ta]
′
1 and [Tb]

′
1 are topologically isomorphic;

(iii) [Ta]
′
1 and [Tb]

′
1 are abstractly isomorphic.
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Proof. The only non-trivial implication is (iii)⇒(i). Let ρ : [Ta]
′
1 → [Tb]

′
1 be

a group isomorphism. By the previous corollary we find a measure-preserving
transformation S such that for all U ∈ [Ta]

′
1 one has

ρ(U) = SUS−1.

We then find A,B ⊆ X such that

X = A t Ta(A) tB t Ta(B) t T 2
a (B)

(see e.g. [10, Proposition 2.7]) and let

A1 = A , A2 = Ta(A) , A3 = B , A4 = Ta(B) , A5 = T 2
a (B) .

Consider then the involutions U1, · · · , U5 defined by

Ui(x) =


Ta(x) if x ∈ Ai ,
T−1
a (x) if x ∈ Ta(Ai) ,
x else .

These involutions all belong to the L1 full group of Ta, so they actually belong
to [Ta]

′
1 by [10, Lemma 3.10]. Now for every x ∈ Ai we have Ta(x) = Ui(x)

so for every x ∈ S(Ai) we have STaS
−1(x) = SUiS

−1(x). Since for each
i ∈ {1, . . . , 5} we have SUiS

−1 ∈ [Tb]
′
1 ≤ [Tb]1, we conclude that STaS

−1

can be obtained by cutting and pasting finitely many elements of [Tb]1, hence
STaS

−1 ∈ [Tb]1.

By the same argument we also have Tb ∈ [STaS
−1]1 so Tb and STaS

−1

share the same orbits. Belinskaya’s theorem (as stated in [10, Theorem 4.1])
now implies that Ta and Tb are flip conjugate.

Corollary 5.4. There is a continuum of pairwise non-isomorphic non-
simple Polish groups having TBNG. In particular, TBNG does not imply
BNG.

Proof. Consider, for an irrational α ∈]0, 1/2[, the rotation Tα(x) = x
mod 1. By Corollary 4.5 the derived L1 full groups [Tα]′1 have TBNG and
are not simple. Moreover all those groups are non-isomorphic by the previous
theorem and the fact that two irrational rotations Tα and Tβ are conjugate iff
α = ±β mod 1.
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