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Tetrahedral chains and a curious semigroup
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Abstract: In 1957 Steinhaus asked for a proof that a chain of identical regular tetrahedra joined
face to face cannot be closed. Swierczkowski gave a proof in 1959. Several other proofs are known,
based on showing that the four reflections in planes though the origin parallel to the faces of the
tetrahedron generate a group R isomorphic to the free product Zg * Zgo * Z2 * Z2. We relate the
reflections to elements of a semigroup of 3 X 3 matrices over the finite field Z3, whose structure
provides a simple and transparent new proof that R is a free product. We deduce the non-existence
of a closed tetrahedral chain, prove that R is dense in the orthogonal group O(3), and show that
every R-orbit on the 2-sphere is equidistributed.
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1. INTRODUCTION

In 1957 Hugo Steinhaus contributed two related questions to the Problems
section of Colloquium Mathematicum [2I]. In loose translation from the
French, they were:

P 175. The image of a regular tetrahedron 77 (fixed in Euclidean
space of 3 dimensions) under reflection in one of its faces gives
the tetrahedron T5. Iteration gives rise to a sequence of pairwise
congruent tetrahedra {7,,}. Supposing that each face serves as a
mirror only once, demonstrate that:

(1) m # n implies T, # Tp,,
(2) Whatever the region R may be, there exists a sequence of
tetrahedra {7}, } such that the set of vertices is dense in R.

Steinhaus indicated that this problem is from the New Scottish Book,
Problem 290 1.I11.1956. The original Scottish Book was a notebook of open
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100 I. STEWART

mathematical problems compiled by regular visitors to the famous Scottish
Café in what is now Lviv, Ukraine. An English typescript is available [2§],
and the original can be viewed online as Volume 0 at [30]. When World War
IT ended, Steinhaus revived the book as the New Scottish Book, Volumes 1

and 2 at [30].

Figure 1: Closed chains of cubes, octahedra, dodecahedra, and icosa-
hedra. Adapted from [10].

As far as we are aware, statement (2) is still open. Its analogue for cubes
is clearly false, but its analogue for the other regular solids is a plausible
conjecture. In particular, their dihedral angles are not rational multiples of 7.

Statement (1) implies that a chain of identical regular tetrahedra, joined
face to face, cannot be closed. In contrast, it is easy to find closed chains for
the other four regular polyhedra, Figure [I} (One key difference is that unlike
the tetrahedron, opposite faces of these polyhedra are parallel.) Stanistaw
Swierczkowski subsequently proved that no closed chain of tetrahedra exists,
aside from trivial examples where consecutive tetrahedra coincide. In [24]
he proved that two particular rotations in R? generate a free group on two
generators, and stated as a corollary that this result disproves the existence
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of a closed chain of regular tetrahedra. He wrote: “This corollary gives a
positive answer to a question of H. STEINHAUS .... However we shall not
prove it here.” In [25] he completed the proof by explaining the connection
with chains of tetrahedra.

The rotations concerned are

1 _2v2 1 0 0
3 3 3
1 2
2oy ool |05 o
o 0 1 0 22 |

Their axes are at right angles to each other and both are rotations through
cos™1(1). Swierczkowski’s proof that these matrices generate a free group uses
induction on a sequence of integers determined by the two matrices, and his
main aim is to prove that these are not divisible by 3. In passing, we mention
that this group-theoretic result can also be used as the basis of a proof of the
famous Banach-Tarski paradox [27]: a solid ball in R? can be dissected into
finitely many disjoint subsets, which can be fitted together via rigid motions
to create two solid balls, each congruent to the original one. The free product
group discussed below can also be used in this manner.

Dekker [8] and Mason [19] sketched new proofs that no closed tetrahedral
chain exists, based on the idea that the group generated by reflections in
the four planes through the origin parallel to the faces of the tetrahedron is
isomorphic to a free product Zg x Zo * Zo x Zo. (Without loss of generality, the
barycentre of the first tetrahedron in the chain is the origin. It is important
to distinguish these linear reflections from the affine reflections in the faces of
the tetrahedron, which do not fix the origin; see Subsection ) Tomkowicz
and Wagon [27, Theorem 3.10] represents the four reflections as 4 x 4 matrices
using barycentric coordinates, and analyse an arbitrarily long product of these
matrices. The entries of such a product are polynomials, evaluated at &%, £2.
As in [24], the key step in an inductive proof again involves divisibility by a
power of 3.

Say that a chain of tetrahedra is embedded if distinct tetrahedra are dis-
joint except for the common face of consecutive members of the chain. All of
the above proofs rule out the existence of nontrivial closed chains, embedded
or not. These proofs are relatively short and simple, but none is particu-
larly transparent. In Section |3| we present a new proof, with a clear storyline
that emphasises the role of the integer 3. We use Cartesian coordinates, but
it is possible to recast the discussion using the more traditional barycentric
coordinates. With a convenient choice of the initial tetrahedron in R3, with
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vertices at four corners of the cube [—1, 1], the 3 x 3 matrices representing the
four reflections have rational entries with denominator 1 or 3; see Section
That they generate Zg * Zo x Zo * Zs is a reformulation of the statement that
the product of any nontrivial sequence of the four matrices (that is, avoiding
consecutive repetitions of the same matrix), other than the empty sequence,
can never be the identity.

For a contradiction, suppose such a sequence exists. Let the group gen-
erated by the four reflections be R, which is a subgroup of the orthogonal
group O(3) acting on R3. If each matrix is multiplied by 3 it has integer
entries, and the corresponding product must be the identity multiplied by 3*
where k > 1 is the length of the sequence. These products no longer form a
group, but together with the zero matrix they form a semigroup. Reducing
modulo 3, a nontrivial product of the corresponding matrices over Zs must be
the zero matrix. Theorem proves that the four reflection matrices (mod
3) generate an order-33 semigroup. This contains the zero matrix 0, but we
prove that no nontrivial product of its nonzero elements is zero. (As before,
‘nontrivial’ means no generator appears twice consecutively.) Indeed, every
matrix in the semigroup other than 0 has all entries equal to +1 (mod 3).
This contradiction proves that R is isomorphic to Zg * Zg % Zo x Z3. (An
isomorphic semigroup can be obtained using barycentric coordinates, and the
proof can be also be expressed in that framework.)

The non-existence of a nontrivial closed chain of regular tetrahedra follows
easily, using essentially the argument of Swierczkowski [25], which constructs
the chain using successive reflections in faces. The translations in the Eu-
clidean group E(3) form a normal subgroup and can be factored out, reducing
the geometric features required here to sequences of reflections. The four re-
flections lie in the quotient group O(3). A sequence of reflections determines a
unique chain of face-to-face tetrahedra, and a nontrivial sequence determines
a nontrivial chain. If this chain closes up, the corresponding sequence fixes the
initial tetrahedron. There is one subtlety, discussed briefly in Subsection [3.1}
this sequence can fix the tetrahedron setwise rather than pointwise. That is,
it belongs to the symmetry group of the tetrahedron, but need not be the
identity. There are two ways to deal with this possibility. One is to observe
that some power of the sequence must then be the identity (it is also necessary
to deal with possible repetitions if the sequence starts and ends with the same
reflection: this leads to a shorter chain, but after a series of such cancellations
it turns out that the result must be nontrivial if the original chain is). The
other, employed here, is to check that the semigroup proof remains valid if
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we replace the identity by a symmetry of the tetrahedron, because all such
symmetries correspond to integer matrices. After multiplying by 3 and reduc-
ing modulo 3, these all become the zero matrix and the same proof works.
Section [4] adds extra information about this semigroup.

In the absence of a closed chain, a natural question, also asked by
Swierczkowski [26], arises: can almost closed chains be formed, in the sense
that the gap between the initial and final tetrahedra can be made as small
as we please? This question is connected to Steinhaus’s statement (2), but
it involves the faces of the tetrahedra, not just individual vertices. Elgersma
and Wagon [9] give an affirmative answer for non-embedded chains, based on
Kronecker’s Theorem [I], [17] that if § is an irrational multiple of 7, the set
{e™ : n € Z} is dense in the unit circle S' € C. The most interesting case
arises when the chain is embedded. Elgersma and Wagon [10, [I1] prove the
existence of closed embedded chains with arbitrarily small gaps. Their con-
struction begins with a Boerdijk-Coxeter helix [4, [7], also named the tetrahelix
by Fuller [12]. This is a linear chain of identical regular tetrahedra, all of whose
vertices lie on a cylinder. This chain is generated by periodically repeating
reflections in four distinct faces. They then construct a ‘quadrahelix’ by join-
ing four copies of a tetrahelix of length L + 1, overlapping them at a common
end tetrahedron at the first and third joins, and attaching them face to face
at the second join, so that the overall chain has reflectional symmetry about
its midpoint. They prove that if L = g — 1 where p/q is a convergent of the
continued fraction of = cos™1(2)/(27), the quadrahelix has the approximate
form of a rhombus, and is almost closed, with the size of the gap tending to
zero as ¢ increases. For example when L = 601,944 the gap has size 1.3x1077.

Here we prove two related results, which do not prove the existence of
almost closed chains but have independent interest. Section [5| gives a simple
proof that R is dense in O(3). Steinhaus’s statement (2) asks for more: the
group generated by the affine reflections in the faces of a fixed regular tetra-
hedron has a dense orbit in R3. Taking account of the translations is more
difficult, in part because the Euclidean group E(3) in R® is non-compact.
Our density result is too weak to prove statement (2), and has no obvious
consequences for almost-closed chains of tetrahedra, because it factors out
translations.

Finally, in Section |§|, we use the Q(3) density result to prove a stronger
theorem: the R-orbit of any point of the unit 2-sphere S? is equidistributed
with respect to normalised Lebesgue surface measure on S?, where the density
of R is defined using the limit of the proportion of words in the generating
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reflections that lie in a given open subset of S?, as the length of the words
tends to infinity. The proof is an adaptation of a method of Arnold and
Krylov [2], and can be viewed in the context of ergodic theory of non-abelian
group actions; see Gorodnik and Nevo [13].

2. REFLECTIONS IN FACES OF THE TETRAHEDRON

Elgersma and Wagon [9, [10} TT] pose the problem using barycentric coor-
dinates and 4 x 4 matrices. Babiker and Janeczko [3] analyse chains of regular
tetrahedra using a tensor product representation, combining the translations
and reflections, to prove several new results. However, the reflections are again
represented using barycentric coordinates. In this paper we use Cartesian co-
ordinates and 3 x 3 matrices.

We choose a fixed reference tetrahedron A C R3 with vertices

po : (1,1,1),

p1: (1,—-1,-1),
p2 : (—1,1,-1),
ps: (—=1,—-1,1).

The barycentre is at the origin. See Figure

Figure 2: The cube [—1,1]? and the reference tetrahedron A.



TETRAHEDRAL CHAINS AND A CURIOUS SEMIGROUP 105

2.1. SYMMETRIES OF THE TETRAHEDRON. The eight points (+1, £1, +1)
are the vertices of a cube. The symmetry group of the cube consists of all
permutations of the coordinates (z,vy,z) together with sign changes on any
coordinate, so has order 48. The symmetry group Sym(A) of the tetrahedron
is the subgroup in which the number of minus signs is even, and has order 24.
It is, of course, isomorphic to the symmetric group S4, which permutes the
four vertices.

LEMMA 2.1. All matrices in the symmetry group Sym(A) have integer
entries.

Proof. All 3 x 3 matrices in the symmetry group of the cube, hence also
of the tetrahedron, are signed permutation matrices, with entries 0, £1. i

2.2. THE 3x3 MATRICES. Next, we compute the four reflection matrices
and associated translations. The faces F[p;pjpx] through vertices p;,pj, pk
have equations:

Flpipaps] : X+Y +27=-1,
Flpopipa] : X +Y -Z =1,
Flpopips] : X -Y +Z=1,
Flpopaps] + — X +Y +Z=1.

Midpoints of centres of these faces are

@ (531,
a3 -D),
w1,
gt (=35.0).

Let M; be reflection in face 7, where 0 < ¢ < 3. Then it is the identity on
that face, and reverses the line perpendicular to the face at its centre. This
line joins the midpoint of the face to the remaining vertex.

Begin with the plane P = F'[p;paps]. The perpendicular is (a,a,a) : a € R.
A general point

Y =UV,W)=(a,a,a)+ Z

where Z = (U —a,V —a,W —a) € P. Therefore

U+V+W —3a=-1
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SO

UtV W

Then, solving for Z,

-1V -
Z=|2V-1iU-
W - U -
This maps via My to Z — (a, a,a), which is
-3V - W -
MyY = | 1V —2U - 2W —

W - U -

where

Wi W= Wi

Wi Wi Wl

Ry =

Wl Wl Wi

2y _

Wi Wi wiN

W —
W —
1y —

To

W= Wl Wl

= RyY +1p,

Wi Wiy Wi

Repeating similar calculations for the other three faces, we obtain:

For face F[pop1pa]:

12
3 3
Ri=| -3 3
2 2
L 3 3
For face Flpopips]:
ro1 o2 _
3 3
Ry = i 3
_2 2
L 3 3
For face F[popaps]:
- )
3 3
Ry= |3 35 -
2 2
L 3 3

Wl Wi wiN Wl Wi Wi

W= Wi wIN

11

T

13

Wi Wiy Wi W Wi Wi

Wi Wiy Wi

The R; are orthogonal, and T; points perpendicular to
Since Sym(A) permutes the faces of A and fixes the origin, the R; are conju-

gate under symmetries of A:

URiU_l = Ro‘(i) )

the face concerned.

o € Sym(A)=Sy.
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2.3. FACTORING OUT TRANSLATIONS. The construction of chains of
tetrahedra is intimately related to the subgroup of Q(3) generated by the four
reflection matrices, and for many purposes we can ignore the translations.

DEFINITION 2.2. The group R is the subgroup of Q(3) generated by the
R; for 0 < j < 3.

The corresponding affine maps are
MY = R;Y +T;, 0<i<3.

The group E(3) of all rigid motions of R? is a semidirect product E(3) = R3 x
O(3) where R? is the normal subgroup of translations. The homomorphism
E(3) — O(3) that factors out R® maps (T}, R;) to R;. Therefore a product of
affine maps

M; M, - - My, M;,

k—1

is a map of the form
RikRik—l e Ri2Ri1 + Wikik_l...igil (21)

where Wi, i, .. .i»i, is a translation determined by the semidirect product struc-
ture, which we do not state explicitly.

The product of the reflections R; gives the orientation of the image tetra-
hedron; the translation W;,;, .., leaves the orientation invariant. The se-
quence of translations is implicit in the sequence of reflections because exactly
one pair of faces matches at each stage.

3. FREE PRODUCT STRUCTURE

We now give a simple, structural proof of the main result of Dekker [§]
and Mason [19]:

THEOREM 3.1. The group R is isomorphic to the free product Zg * Zs *
ZQ * Zz.

Our proof is based on a rather curious semigroup, and we discuss this first.
To get rid of fractions, define ); = 3R;. We can then reduce modulo 3, to get
matrices

SiZQi (modS), 0§i§3,
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which are:
(1 1 1 1 1 =17
So=1|11 1], S1 = 1 1 -1,
|1 11 | -1 -1 1 |
1 -1 1 1 —1 —17]
So = | —1 1 -1, S3=1| —1 1 1
| 1 -1 1 ! 1 1|

Here the +1 lie in Z3, but in fact the calculations reported below also apply
in Z, except when the zero matrix arises and some entries may be multiples
of 3.

The twelve products S;S; (i # j) are:

1 1 —1 1 -1 1
SoSi=1]1 1 -1 |, SoSe=1]1 -1 1|,
|1 1 -1 | |1 -1 1
[ —1 1 17 [ 1 1 17
SoS3=1| -1 1 1|, S150 = 1 1 1
| -1 1 1 ] | -1 -1 -1 |
-1 1 =17 [ 1 —1 —17]
515 = | —1 1 -1 5155 = 1 -1 -1
| 1 -1 1] | -1 1 1]
1 1 17 [ -1 —1 17
SoSp =1 -1 -1 -1 S951 = 1 1 -1
|1 1 1] | -1 -1 1]
1 =1 —17 [ -1 —1 —17]
S9S3 = | —1 1 1 S350 = 1 1 1
1 -1 -1 | |1 1 1]
1 1 =17 [ 1 —1 17
S35 =1 -1 -1 1 S35y = | —1 1 -1
| -1 -1 1] | -1 1 -1 |

Clearly QZZ = 9Rz2 = 9], so Si2 = 0. Observe that the sixteen matrices
S; and S;5; (i # j) are distinct, and distinct from their negatives —S; and
—S8;S; (1 # j). Let S be the set of these 32 matrices. Case-by-case analysis
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shows that the 5; satisfy the following relations:

SiS;S; = S; (1 #7),

N . (3.1)
SZS]Sk = —SZSk (Z 7é J, 1 7& ]{3, i 7é k) .

(Using Sym(A) we can reduce this calculation to the special case i =0, j =1,
kE=2.)

Let S be the set of all of the above 32 matrices together with the zero
matrix, so that

S=1{0, £5;, £5,5; : 0<i, j<3, i #j}.

THEOREM 3.2. (a) The set S is a semigroup.

(b) The product of two nonzero members of S is nonzero, except for the
trivial cases

SiSi=0,  Si(8S;) =0,  (85;)9 =0,  (5:5;)(S;S%) =0,
and similar products involving minus signs.

Proof. For (a) we must show that all products of nonzero elements of S
lie in S. For (b) we must also show these products are nonzero. Both follow
from a case-by-case check.

For products S;S; this is clear. Products of the form S;(5;Sy) and (S;5;)Sk
are taken care of directly by the relations (3.1). Those relations also imply
that when i # j, k # [ we have

0 if j=k,
(5iS55).(SkS1) = Si if j#k, k=1,
=S5 it j#k, k#i.

When j = k the string S;5;5,.5; = S5;5;5;95; is trivial. 1
Note in particular that when i # j
(S:iS;)% = (S:5;8:)S; = SiS;

which is nonzero, unlike squares of the 5.
We are now ready to give the:
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Proof of Theorem [31] The four free factors Zs are generated respectively
by Ry, R1, R2, R3. We claim that the only relations between these generators
are Rf = I, where [ is the identity.

Using the relations R? = I we can write any element v € R in the form

v =Ry Riy_, - Riy Ri

Tk—1

where R;; # R for all 1 < 5 <k —1. We claim this representation as a
word is unique.

If not, some nontrivial word is equal to the identity /. The correspond-
ing nontrivial word in the @Q; of length [ is equal to 3'7. Modulo 3, this
word becomes zero. Consider the corresponding word in the S;, which is also

nontrivial:

ij+1

w = SikSik_l s SiQSil .

By Theorem w lies in S\ {0}, so all of its entries are £1 (mod 3). There-
fore w # 0, so no nontrivial word in the R; can be the identity. [

3.1. NON-EXISTENCE OF A CLOSED CHAIN. It is well known that Theo-
rem [3.1] implies the non-existence of a nontrivial closed chain of regular tetra-
hedra. For completeness, we give a proof.

THEOREM 3.3. No nontrivial closed chain of tetrahedra exists.

Proof. Suppose, for a contradiction, that there is such a chain. Consider
the corresponding product of reflections R; in R.

Because each reflection R; fixes the origin, the construction of the chain
of tetrahedra corresponding to a given element

R; Rj, .- Rj,R;, € R

does not add successive tetrahedra to an otherwise stationary chain. Instead,
the chain corresponding to Rj, | --- Rj, R, is reflected by R;, , and then trans-
lated by an appropriate amount so that it joins to the corresponding face of
the reference tetrahedron A. Thus the chain at stage k has the structure

A — RjkA — Rijjk—l

o G R

A= Rj,R;, Rj, ,A—---

Jk—1""Jk—2

Ry Ry A

k-1

where the arrow indicates ‘joins at a face’. (An alternative approach, in which
each new face is added to a growing but otherwise static chain, is geometrically
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more natural but involves conjugates of the R;, so this convention is a little
simpler algebraically.)
A necessary condition for the chain to close up is then that there some
nontrivial product of reflections is a symmetry of the tetrahedron:
Rj Rj, - RpRjy = A

k-1
where A € Sym(A). Then the corresponding nontrivial product in S satisfies
SOy =SS = 3FA=0

by Lemma This yields the same contradiction as in the proof of
Theorem [3.1} 1§

4. PROPERTIES OF THE SEMIGROUP

The semigroup S has a lot of structure, which the calculations do not
explain. We briefly investigate some of its features. The results of this section
are not used later, but they help to explain some aspects of the structure of
S from a different point of view.

The £S; are symmetric matrices, whereas the £5;5; are not symmetric.
There are 2° = 512 matrices of size 3 x 3 with entries +1. The 32 such matrices
in &\ {0} are distinguished by the following properties:

(1) All entries are £1.

(2) The matrix has a repeated row, and the remaining row is either the
same as the repeated row or the negative of the repeated row.

(3) The same goes for columns.

It is easy to prove that for matrices satisfying (1), condition (2) holds if and
only if (3) does. We omit the proof.

PROPOSITION 4.1. The equivalent conditions (1)+(2) or (1)+(3) charac-
terise the 32 nonzero elements of the semigroup S.

Proof. This follows from the list of elements, but we now give an indepen-
dent proof avoiding case-by-case checking. We count now many such matrices
exist. Observe that there are 8 possibilities for the first row R;. The second
and third rows R, R3 are all possible choices of Ry = £R;, R3 = + Ry, with
four choices of the + signs, so in total there are 8 x 4 = 32 such matrices.
In other words, the equivalent conditions (1)+(2) or (1)4(3) characterise the
elements of S that are not 0. |
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Proposition [£.1] lets us give an alternative proof that S is a semigroup,
without listing all products:

THEOREM 4.2. The collection of matrices satisfying (1)4(2), together with
the zero matrix, is a semigroup.

Proof. As observed, conditions (1) and (2) also imply (3). Redefine S
to be the set of matrices satisfying these conditions, together with 0. Let
A, B e S. Clearly 0 = 0.0 = 0.A = A.0. It remains to show that AB € S
when A, B # 0. Permuting rows we can write

X
A=P| X |, e==1,
eX

where P is a permutation matrix, and X = [z,y, z| is a row vector. Dually,
permuting columns we can write

B=[Y Y 6V ]Q, §=+1,

where @Q is a permutation matrix, and Y = [u, v, w]" is a column vector. Then

XY XY XY
AB=P| XY XY 6X'Y |Q.
eX Y XY XY

Either X -Y = 0 and AB is the zero matrix, or X - Y = 41 and the matrix in
the middle clearly also satisfies (1) and (2). Now P and @ permute its rows
and columns, leaving properties (1) and (2) unchanged. il

Remark 4.3. As stated above, the four matrices S; are distinguished from
the twelve matrices S;S; (i # j) by symmetry. For the symmetric matrices S;,
we have X =Y and X.Y = X.X = (£1)?2 4 (£1)?2 4 (£1)> =0 (mod 3). For
the asymmetric matrices S;S; (i # j) this does not happen, and X.Y = +1
(mod 3). This is consistent with the relations S? = 0 but (5;S;)? # 0.

The semigroup S exhibits a lot of symmetry. We find its automorphism
group. Some automorphisms are inherited from the symmetry group X of the
tetrahedron A, which has order 24 and is isomorphic to S4. Since ¥ permutes
the faces of A, it permutes the .S; by conjugation:

Si — USZ‘J_l.
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This action extends to —95; since conjugation commutes with the negative
of the identity, and hence the action extends uniquely to any element of S.
Clearly this action defines automorphisms & of S, given by

a(S;) = Sg(i) , 0(=S;) = —SU(Z-) , T0ES, 0<e<3. (4.1)

Define )
84 = {& 10 € 84}

which is isomorphic to S4;. We now prove that the 6 are the only automor-
phisms.

PROPOSITION 4.4. The automorphism group of S is the group Sy with

action (4.1)).

Proof. Suppose that « is an automorphism not in S4. The elements in the
subset 7 = {£S; : 1 < i < 4} are the only nonzero elements with square
0, so any automorphism « permutes them. Moreover, within this set the
annihilator of S; is

{UGT: USiZOZSZ‘U} = {Si,—Si : 1§i§4}.

Therefore if o maps S; to £S5; then it must map —S; to FS5;. Composing
with a suitable permutation in Sy we can assume a(S;) = £5; for all i. Since
aé §4, we have a(S;) = —5; for some i. For all j # i the relation S;5;5; = S;
in implies that (—5;)(a(S;))(—=S;) = —S;, so a(S;) = —S; for all j. But
this contradicts the second relation S;5;S; = —S;Sk in which applies
when all 7, j, k are different. Thus every automorphism lies in Ss. 1

Remark 4.5. Without using the above result, it is clear that the elements
+S; satisfy (£S5;)> = 0. The products S;S; for i # j are idempotent:
(S;Sj)* = S;S;. The elements —S;5; for i # j are not idempotent, but their
squares are: (—5;5;)? = 5;S;. Thus these three classes are distinguished by
simple automorphism-invariant properties.

5. DENSITY

We now use the classification of closed subgroups of O(3) to prove a den-
sity theorem for R. This result is too weak to imply the result of [9] that
almost closed non-embedded chains with arbitrarily small gaps exist, because
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it factors out the translations in the affine reflections, but it leads to the
equidistribution theorem of Section [f]and is of independent interest. Here the
notations SO(2),S0O(3),0(3) refer to Lie groups defined over the real num-
bers. The full classification is not required explicitly; we just need a simple
consequence:

LEMMA 5.1. Let G be a closed subgroup of Q(3). Then one of the follow-
ing conditions is valid:

(a) G is finite.

(b) The subgroup of G consisting of elements with determinant +1 is con-
jugate to SO(2).

(¢) G=0(3) or G =S0(3).

Proof. This can be read off from the classification of closed subgroups of
O(3); see for example [14, Theorem XII1.9.2]. 1

THEOREM 5.2. The group R is dense in O(3).

Proof. Let R be the closure of R. This is a closed subgroup of Q(3), so
Lemma [5.1] applies. We consider the three cases in turn.

(a) This case does not apply: the group R is infinite since it is a free
product.

(b) This case also does not apply. Since SO(2) is abelian, elements of R
with determinant 1 commute. In particular RyR; and ReR3 commute. So

RoR1R2R3 = RoR3RoRq

contrary to Theorem
(c) This is the only remaining case. The generators R; do not belong to
SO(3), so R = O(3). Therefore R is dense in O(3).

COROLLARY 5.3. The subgroup R?> C R generated by all products RiR;
(0 <i#j<3) is dense in SO(3).

Proof. Since det R; = —1, the subgroup R? consists precisely of the ele-
ments of R that have determinant 1. Therefore R? = R N SO(3), which is
dense in SO(3). I



TETRAHEDRAL CHAINS AND A CURIOUS SEMIGROUP 115

6. EQUIDISTRIBUTION

In this section we prove that the orbit of any point of the unit 2-sphere
S? for the action of the group R is equidistributed in S?, in a sense made
precise in Definition below. This is a natural analogue of the theorem
of Arnold and Krylov [2], and we prove it using similar methods, including
simplifications suggested by one reviewer that eliminate the use of spherical
harmonics.

Figure 3: The Cayley graph of R (schematic). Dots (nodes) indicate
group elements, with the identity being at the centre. Each edge
represents left multiplication by a reflection R;. Since R? = I these
edges are bidirectional. There are four types of edge, for 0 < i < 3, and
each node lies on one edge of each type. The tree structure continues
recursively to infinity.

It is convenient to motivate the method in terms of the Cayley graph C(R)
of R, for the generating set { Ry, R1, R, R3}, see [5l, [I8]. The nodes of C(R)
correspond to elements of R. Edges (of type i) join node v to R;y. The
graph C(R) is an infinite tree, every node of which has valence 4, indicated
schematically in Figure [3] Right multiplication by an element v € R induces
an automorphism of C(R) that preserves edge types, because

Ri(d7) = (Rid)y

for all § € R, so an edge of type ¢ from ¢ to R;0 maps to an edge of type
i from 6 to R;(d7). In particular, C(R) is homogeneous in the sense that
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its automorphism group acts transitively. This is a hint that orbits might be
equidistributed.

If x € S?, the orbit Rz wraps the nodes of C(R) around S?, sending v € R
to yx. We can therefore use the structure of C(R) to represent the orbit. The
length n of a product of reflections R; R;, ,---R;, =y € R corresponds to
the length of a path in C(R) from the identity to that element. Such paths
may intersect themselves, or repeat edges.

Consider a random walk on the Cayley graph of R, where each edge of
type ¢ occurs with equal probability; for 0 < i < 3. After n steps the random
walk reaches the group element

Ry R;, | - Ry (6.1)

where successive R;, are chosen randomly from {0, 1,2, 3}, each with proba-
bility 1.

Let J,, be the set of all index sequences j = ji,...,Jn, where 0 < jp < 3
for k=1,...,n. For j € J, define

R; = R;,Rj, - Rj

and let the length of the sequence be A(j) = n.

Assume that the random walk starts at the identity of R. Let U be an
open (or, more generally, measurable) subset of S%. For fixed but arbitrary
r € S?, let P,(U) be the probability that after n steps of the random walk
the point

R, R;, | - Rz

belongs to U. Let p be normalised surface Lebesgue measure on S?, that is,
Lebesgue measure divided by 4, so that u(S?) = 1. Heuristically, the orbit
of x is equidistributed provided that

lim P,(U) = u(U) (6.2)
n—oo
for all U. This motivates the following discussion, leading to the definition of
equidistribution that we employ in this paper, Definition [6.1
Let C(S?) be the space of all continuous maps f : S? — R with inner
product

<f,g>=/S2fgdu.
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The integral is finite because S? is compact, and the inner product gives C(S?)
a Hilbert space structure, inducing the norm

11 =VA{f: £)- (6.3)

The group O(3) of rotations in R3 has a natural action as isometries (norm-
preserving maps) of C(S?), defined as follows. Suppose that v € Q(3). The
natural action of O(3) on R3 leaves S? invariant, so for each v € O(3) there is
an operator &., on C(S?) defined by

(&,f)(z) = f(v"'x). (6.4)

The inverse ensures that this is a left action: &.,5f = &,Bsf. Since p is
O(3)-invariant,

165 f11 = 171l (6.5)

for all v € O(3). Therefore every &, is an isometry of C(S?).
In particular, there are isometries R; (0 < i < 3) of C(S?) such that

(Rif)(z) = f(R;'z) = f(Rix)
where the latter equality follows from R? = I. If we define

Ro + NR1 +Ra +NR3

R = 1

then the powers R correspond bijectively to paths of length n through the
Cayley graph, weighted by the probability 4" of each such path. This moti-
vates the following definition:

DEFINITION 6.1. Let z € S?, and let
. 1
fal2) = R )@) = 5 > f(Rya)
j€Tn

be the average value of f evaluated at images of x under elements of R having
length n (corresponding to paths of length n in the Cayley graph). Then the
R-orbit of x € S? is equidistributed if and only if

lim f,(z) = /S fau (6.6)

n—o0

for any f € C(S?).
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Recall that the norm of a linear operator A on a Banach space B is defined
by

IA]l = P, [Az] (€ B).

Immediate consequences are:
[Az| < [[Allll<ll, — [AB] < [|A[[[|B]|- (6.7)
As in Arnold and Krylov [2], we also need the following lemma:

LEMMA 6.2. Let vy,...,vs € C(S?). Suppose that ||v;|| #0 for 1 <i <s,
and
[o1 4 -+ +os|l = lloall + -+ Jlosll - (6.8)

Then there exists v € C(S?) and positive real numbers r; (1 < i < s) such
that v; = r;v.

Proof. The triangle inequality implies that
lor+ -+ +osll < Jloafl + -+ o]l

for any v; € C(S?). We claim that the conditions of the lemma imply that
this is an equality with the stated properties of the v;. To prove the claim,
recall that a normed vector space is strictly convex if z,y # 0 and ||z + y|| =
|z + [|y|| imply that 2 = cy for some real constant ¢ > 0. The space C(S?) is
a Hilbert space, hence strictly convex |16} [6]. For such spaces, equality occurs
in the triangle inequality if and only if all v; are multiples of each other by
nonnegative real numbers. A simple induction completes the proof. |

COROLLARY 6.3. If |jv;]| =1 for 1 <i < s, and holds, then
V] = =g (6.9)
We can now state and prove the main theorem of this section:

THEOREM 6.4. If x € S? then the orbit Rz is equidistributed in the

sense of .

Proof. Define a polynomial function in C(S?) to be the restriction to S
of a polynomial function R?* — R in Cartesian coordinates (z,y,z). By the
Stone-Weierstrass Theorem [20], 22, 23, 29], polynomial functions are dense
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in C(S?) with the topology of uniform convergence. Therefore it is enough to
prove when f is polynomial.

This equality is obvious when f is constant, so it suffices to prove that
lim(%R" f)(z) = 0 for any polynomial function whose integral over S? is zero.

Let P, be the vector space of polynomial functions p : S — R of degree
< [ such that fSQ pdyp = 0. Since this space is finite-dimensional, any two
Hausdorff vector topologies coincide, so the topology of pointwise convergence
is the same as as that given by the norm . It is therefore sufficient to
show that

lim [R"f]| = 0

for all f € P.

Consider the linear operators R : P, — P,. We have |9 f|| = |||, since
reflections preserve . Hence ||| < 1, so [|R"|| < 1 for any n € N.

Suppose that some ||| = k < 1 where m > 1. Then implies that

18" £ < KL,

Therefore lim,,—,~ fn(z) = 0, proving .

Otherwise we must have ||| = 1 for all n € N. We will show that
this cannot occur. For a contradiction, suppose it does. The unit ball of P,
is compact, so there exists f, € P, with |R"f.|| = ||/l = 1; hence also

|9R" ful| = 1 for all i < n. A subsequence of the f,, converges to a polynomial
f e P with |R"f|| = ||If]| =1 for all n.
Now Lemma with the v; being all R; f for j € J,,, implies that

Rof = Rif = Rof = R3f, RoRif= RoRaof =---= RaR3f,
and more generally,
R;f =Ryf forall j, k € J,. (6.10)

Let
K ={Rj : \(j) =m}

be the set of all words in the R; of length m, allowing consecutive repetitions.
Since R? = I, we have
KyCKyCKyC---CKyppC-vv.

Applying these group elements to = € S?,

Kor C Kox C Kyr € -+- C Kopw C -+ .
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Therefore the orbit of # under R? C SO(3) is the union

Rz = U Ko,z .

Now implies that
F(Rj'w) = f(Ry'z)

for all R;j, Ry € K2, and all n € N. Thus f is constant on the R2-orbit of z.
By Corollary R? is dense in SO(3), so by continuity f is constant on the
SO(3)-orbit of . By definition, elements of P, have zero integral over S?, so
this contradicts ||f|| =1. 1

Remark 6.5. (a) It is also plausible that R is equidistributed in O(3) with
respect to Haar measure [I5]. Equivalently, R? is equidistributed in SO(3).
However, we have not sought a proof.

(b) A similar argument shows that if G is a subgroup of O(n) generated by
finitely many reflections, and the orbit Gz of some point = in the unit sphere
S"~1 is dense, then all orbits are equidistributed in S*~! in the sense of the
obvious generalisation of Definition [6.1
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