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Abstract: Let F be a field of zero characteristic, let Ny, (F) denote the algebra of n X n strictly upper
triangular matrices with entries in F, and let f : Ny, (F) — Ny (F) be a non-additive Lie centralizer
of Np(F), that is, a map satisfying that f([X,Y]) = [f(X),Y] for all X,Y € N, (F). We prove that
f(X) =AX +n(X) where A € F and 7 is a map from N, (F) into its center Z (N, (F)) satisfying
that n([X,Y]) = 0 for every X,Y in Nn(F).

Key words: Lie centralizer, strictly upper triangular matrices, commuting map.

AMS Subject Class. (2010): 16S50, 15A27,16U80, 15B99, 47B47, 16R60.

1. INTRODUCTION

Consider a ring R. An additive mapping T : R — R is called a left
(respectively right) centralizer if T'(ab) = T'(a)b (respectively T'(ab) = aT'(b))
for all a,b € R. The map T is called a centralizer if it is a left and a right
centralizer. The characterization of centralizers on algebras or rings has been
a widely discussed subject in various areas of mathematics.

In [I3] Zalar proved the following interesting result: if R is a 2-torsion
free semiprime ring and 7" is an additive mapping such that T'(a?) = T(a)a
(or T(a?) = aT(a)), then T is a centralizer. Vukman [12] considered additive
maps satisfying similar conditions, namely 27'(a?) = T'(a)a + aT(a) for any
a € R, and showed that if R is a 2-torsion free semiprime ring then T is also
a centralizer. Since then, the centralizers have been intensively investigated
by many mathematicians (see, e.g., [3|, 4, [ 6] [§]).

Let R be a ring. An additive map f : R — R, is called a Lie centralizer of
R if

(o) = [f(@)y]  foralla,ye R, (1.1)
where [x,y] is the Lie product of z and y.
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Recently, Ghomanjani and Bahmani [9] dealt with the structure of Lie
centralizers of trivial extension algebras, whereas Fosner and Jing [7] studied
Lie centralizers of triangular rings.

The inspiration of this paper comes from the articles [I} [5, [7] in which the
authors deal with the Lie centralizer maps of triangular algebras and rings.
In this note we will consider non-additive Lie centralizers on strictly upper
triangular matrices over a field of zero characteristic.

Throughout this article, F is a field of zero characteristic. Let M, (F)
and N, (F) denote the algebra of all n x n matrices and the algebra of
all n x n strictly upper triangular matrices over JF, respectively. We use
diag(ay,as, . . . ,ay) to represent a diagonal matrix with diagonal (aq, as, ..., a,)
where a; € F. The set of all n x n diagonal matrices over F is denoted by

n—1
D, (F). Let I,, be the identity in M,,(F), J = > Ejir1and {E;j : 1 <1i,j < n}
i=1
the canonical basis of M, (F), where E;; is the matrix with 1 in the (4, j) po-
sition and zeros elsewhere. By Cy, (r)(X) we will denote the centralizer of
the element X in the ring N, (F).

The notation f : N,(F) — N,(F) means a non-additive map satisfying
F[X,Y]) =[f(X),Y] for all X,Y € N, (F.

Notice that it is easy to check that Z (N, (F)) = FEi,.

The main result in this paper is the following:

THEOREM 1.1. Let F be a field of zero characteristic. If f : Nyp(F) —
N, (F) is a non-additive Lie centralizer then there exists A\ € F and a map
n : Np(F) = Z(Nn(F)) satistying n([X,Y]) = 0 for every X,Y in N,(F)
such that f(X) = AX +n(X) for all X in N, (F).

Notice that the converse is trivially true: every map f(X) = AX + 7 (X)
with 7 satisfying the condition in Theorem is a (non-additive) Lie central-
izer.

2. PROOFsS
Let’s start with some basic properties of Lie centralizers.
LEMMA 2.1. Let f be a non-additive Lie centralizer of N,,(F). Then:

(1) £(0) =0;
(2) for every X,Y € Ny(F), we have f([X,Y]) = [X, f(Y)];
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(3) f is a commuting map, i.e., f(X)X = X f(X) for all X € N,(F).
Proof. To prove (1) it suffices to notice that
f(0) = £([0,0]) = [£(0),0] = 0.
(2) Observe that if f([X,Y]) = [f(X),Y], then we have
FIXY —YX) = f(X)Y — Y f(X).
Interchanging X and Y in the above identity, we have
FYX = XY) = f(Y)X — Xf(Y).

Replacing X with —X in the above relation, we arrive at f(XY — Y X) =
Xf(Y)— f(Y)X which can be written as f([X,Y]) = [X, f(Y)].
From (1) one also gets (3):

[f(X), X] = f([X, X]) = £(0) = 0.
1

Remark 2.1. Let f be a non-additive Lie centralizer of N, (F) and X €
Cn,7)(Y). Then f(X) € Cn,7)(Y). Indeed, if X € Cy,(5)(Y), then
[X,Y] =0 and

0=f(0) = f(IX,Y]) = [f(X),Y].

LEMMA 2.2. Let f be a non-additive Lie centralizer of N,,(F). Then:

n—1 n—1
1) f (ZaiEz',i+1) = 2 biEiit;
i=1 i=1
(2) there exists A € F such that f(J) = AJ.

n

Proof. Let Dy = > (n—1) E;;.
i=1
(1) Consider A € M, (F). It is well known that [Dg, A] = A if and only if

n—1

A= Z aiEi’i_H.
i=1

n—1
Hence, it A = ) a;E;;+1, we have [Do, A] = A. Thus f([Dy,A]) =
i=1
n—1
[Do, f (A)] = f (A). Therefore f(A) = > biEj;t1.

=1
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n—1
(2) Asin (1), consider A = )" a;E; ;41 for some a; € F. Then [J, A] =0
i=1
if and only if A = aJ for some a € F.
n—1
Indeed, f(J) = 2 aiFz4n by (1). Thus, 0 = £(0) = £(1J,J]) = |/, f ()]
=1

Hence, there exists A € F such that f()y=XM. 1

We will need the following lemma.

LEMMA 2.3. (LEMMA 2.1, [14]) Suppose that F is an arbitrary field. If
G,H € UT,(F) are such that g; ;41 = hjj+1 # 0 forall 1 <i <n—1, then G
and H are conjugated in UT, (F).

Here UT,,(F) is the multiplicative group of n x n upper triangular matrices
with only 1’s in the main diagonal. From the lemma above we obtain the
following corollary.

COROLLARY 2.1. Let F be a field. For every A = ). a;jE;;, where
1<i<j<n

aii+1 # 0 for all 1 <i <n—1, there exists B € T,,(F) such that B 'AB=1J
and T, (F) is the ring of upper triangular matrices.

Proof. Let A be a matrix in N, (F) of the mentioned form. Then I,, + A
is a unitriangular matrix. Let’s notice first that there exists By € D, (F)
such that (BflABl)i7i+1 =1 for all i € N. We can construct By € D, (F)
recursively by:

(B1)1 =1, (B1)it1,i41 = (B1)ii - (Aijg1) ™t fori > 1.

Consider the matrix I, + B{'AB € UT,(F). The unitriangular matrices
I, +J and I, + By L AB fulfill the condition in Lemma Hence, there
exists By € UT,,(F) such that

I, +J = By'(I, + B{ "ABy)Bs.

Then J = By (B 'AB;)By. Taking B = By By € T,,(F), we get J = B~'AB
as wanted. 1

LEMMA 2.4. Let A = Ziq a;jE;; be a matrix in Ny (F) with a;;11 # 0
for every i =1,...,n — 1. Then there exists Ay € F such that f(A) = A4A.
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Proof. Since A=) a;jE;j, where a; ;11 # 0, there exists T' € T),(F)
1<i<j<n

such that TAT~! = J by the previous corollary. Define h : Ny, (F) — N, (F)

by h(X) = Tf(T71XT)T~L. Then h is a non-additive Lie centralizer. Indeed,

for all A, B € N,,(F) we have:

h([A,B]) = Tf(T'[A BIT) T
=Tf(T'(AB-BA)T)T™*
=Tf (T 'ATT'BT - T 'BTT 'AT)T!
= Tf([T7'AT, T7'BT]) !
[f (T7'AT), 7 'BT|T!
(f(T'AT)T'BT —T'BTf (T'AT)) T
=Tf(T'AT)T7'B - BTf (T 'AT) T
= [Tf(T7'AT) T, B]
= [n(A), B].
Hence, h(J) = AaJ by Lemma[2.2] Then

THAT =TT TATHT)T™! = h(J) = AaJ = MaTAT L,

NN

Multiplying the left and right sides by 7' and T respectively yields
f(A)=2aA. 1

Now we wish to extend Lemma to all elements of N, (F). In order to
do this, let’s introduce the following set:

S:{B: (bZ]) GNn(./_") : bi,i+1 750 Vi= 1,...,n—1}.
This set has an important property that is established below.

LEMMA 2.5. Let F be a field. Every element of Ny (F) can be written as
a sum of at most two elements of S.

Proof. If a; ;41 # 0 for all i = 1,...,n — 1, then A belongs to S, so there
is nothing to prove. If A is not in S, then we can define By and Bs as follows:

(Bl)": ai7i+1—bi ifj=i4+1, (32)“: b; ifj=i4+1,
“ a;j ifj>i+1, Y 0 otherwise,

where b; is an element in F different from a; ;1. It is easy to see that By, Ba
are in S, and A = By + Bs, so we wanted. |
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LEMMA 2.6. Let F be a field. For arbitrary elements A, B of Ny,(F), there
exists Aa g € F' such that

f(A+ B) = f(A) + f(B) + A,BE1n.
Proof. For any A, B, X of N,(F), we have
[f(A+B),X] = f([A+ B, X])
= [A+ B, f(X)]
f(X)]+[B
X]+1

= [4, o f
= [f(A f(B
= [f(A) + f(B), X],

);
which implies that f(A+ B) — f(A) — f(B) € Z (N, (F)). Thus, there exists
Aa,B € F such that f(A+ B) = f(A) + f(B) + AasEn- 1

X)]

(
); X]

Now we can prove the main theorem.

Proof of Theorem [1.1l Let A, B € S be two non-commuting elements.
By Lemma [2.4] f(A) = MaA, f(B) = AgB, Aa, A\ € F.
Since f is a non-additive Lie centralizer, we get,

F([A, B]) = [f (A), B] = AalA, B]
= [A, f(B)] = AslA, B].

Then, [A, B] # 0 implies that A4 = Ap.

If A, B € § commute, then we take C' € § that does not commute neither
with A nor with B. As we have just seen, Ay = A¢ and Ap = A¢. So
A4 = Ap = A for arbitrary elements A, B € S. Given X € N,(F) we know,
by Lemma that there exists A, B € S such that X = A+ B (we can
assume that X ¢ S). Then f(X) — f(A) — f(B) € Z (N, (F)) by Lemma [2.6]

That is f(X) — AaA — ApB = f(X) — AX € Z(N,(F)) for A € F such
that f(A) = AA for each A € S.

We can define n : Np(F) — Z (Np(F)) such that n(X) = f(X) — A\X,
that is, f(X) = AX +n(X).

Notice that n(A) = 0 for each A € S. Furthermore, if X, Y € N, (F), then

FOAXY]) = AX Y]+ (X, Y]) = [f(X),Y]
= [MX +n(X),Y] = NX,Y],

since n (X) € Z (Np(F)).
Consequently, 1 ([X,Y]) = 0 and Theorem is proved. 1
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