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1. INTRODUCTION

Kamei and Fujii [6, 7] defined the relative operator entropy S(A|B), for
positive invertible operators A and B, by

S(A|B) := A2 (1n <A*%BA*%>)A%, (1.1)

which is a relative version of the operator entropy considered by Nakamura-
Umegaki [12].
In general, we can define for positive operators A, B

S(A|B) :=s — 6l_1)I(r)1_FAS'(z4 +¢elg|B)

if it exists, here 1y is the identity operator.
For the entropy function n(t) = —tInt, the operator entropy has the
following expression:

n(A)=—-AlnA = S(A|lg) >0

for positive contraction A. This shows that the relative operator entropy (1.1)
is a relative version of the operator entropy.
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Following [8, pp. 149-155], we recall some important properties of relative
operator entropy for A and B positive invertible operators:

(i) We have the equalities
S(A|B) = —Al/Q(lnAl/QB_1A1/2>A1/2

_ Bl/2n<B_1/2AB_1/2)Bl/2.

(ii) We have the inequalities

S(A|B) < A(In||B|| -InA) and S(A|B)<B-A. (1.3)

(iii) For any C, D positive invertible operators we have that

S(A+ B|C + D) > S(A|C) + S(B|D).

(iv) If B < C then
S(A|B) < S(A|C).

(v) If B,, | B then
S(A[B.) | S(A|B).

(vi) For o > 0 we have
S(aAlaB) = aS(A|B).

(vii) For every operator T we have
T*S(A|B)T < S(T*AT|T*BT).

The relative operator entropy is jointly concave, namely, for any positive
invertible operators A, B, C, D we have

S(tA+ (1—t)B[tC+ (1 —t)D) > tS(A|C) + (1 —t)S(B|D)
for any ¢ € [0, 1].

For other results on the relative operator entropy see [1, 4, 9, 10, 11, 13].
Observe that, if we replace in (1.2) B with A, then we get

S(B|A) _ A1/277(A_1/2BA_1/2)A1/2
_ A1/2( - A*l/QBAfl/Z In (A71/2BA71/2))A1/2’
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therefore we have
AV2(ATV2BATY 210 (A712BATY2)) AV? = —S(B|A) (1.4)

for positive invertible operators A and B.

It is well know that, in general S(A|B) is not equal to S(B|A).

In [15], A. Uhlmann has shown that the relative operator entropy S(A|B)
can be represented as the strong limit

S(A|B) = s — lim AnB -4

t—0 t ’ (1‘5)

where
A, B = AV2(ATPBATVE A2y e 0, 1],

is the weighted geometric mean of positive invertible operators A and B. For
V= % we denote AfB.

This definition of the weighted geometric mean can be extended for any
real number v with v # 0.

For t > 0 and the positive invertible operators A, B we define the Tsallis
relative operator entropy (see also [3]) by

AfB — A
T,(A|B) = ﬁtf

The following result providing upper and lower bounds for relative operator
entropy in terms of T3(-|-) has been obtained in [6] for 0 < ¢ < 1. However, it
hods for any t > 0.

THEOREM 1. Let A, B be two positive invertible operators, then for any
t > 0 we have

T,(A|B)(Af;B) "' A < S(A|B) < T;(A|B). (1.6)
In particular, we have for ¢ = 1 that
(lg —AB A< S(A|B)<B-A, [6] (1.7)

and for ¢t = 2 that

1(11{ ~ (AB™)?)A < S(AIB) <

5 (BA™'B - A). (1.8)

(NN
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The case t = % is of interest as well. Since in this case we have
Ty5(A|B) = 2(A4B — A)

and
T1/2(AlB)(A12B) A = 2(1y — A(AfB) ') A

hence by (1.6) we get

2(1y — A(AEB) ')A < S(A|B) < 2(AtB - A) < B - A.

(1.9)

Motivated by the above results, in this paper we obtain new inequalities for
the relative operator entropy in the case of operators satisfying the condition

mA < B<MA, with 0 <m < M.
2. INEQUALITIES FOR LOG-FUNCTION

We have:

THEOREM 2. For any a,b > 0 we have the inequalities

1 b—a 1

— = (b-a)?>Ilnb—Ina— > —a)?
2bmin{a, b} (b-a)"zInb—Ina b~ 2bmax{a,b} (b—a)
and
1 b— 1
—_(b—a)?> —Inb+lna>————(b—a).
2amin{a,b}( a)” 2 a notina = 2amax{a,b}( 2

Proof. We have

/dt—b/ Sdt — /dt—blnb Ina) — (b— a)

giving that
Inb— / — dt

for any a,b > 0.
Let b > a > 0, then

1 [P bh—t 1
— —t)dt > —_— > — —t)dt
a/G(b )d_/a tdt_b/aa) )d

(2.1)

(2.2)

(2.3)
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giving that
1
/ —_— dt > —b(b —a)? (2.4)

Let a > b > 0, then

b/ (t — b) dt>/dt /dt> /ba(t—b)dt

giving that
— T dt> —(b— 2.
b a / dt % (b a) (2.5)

Therefore, by (2 4) and (2.5) we get

_ 1 ey >/bb_tdt> _ b a2
2min{a, b} —J. ot ~ 2max{a, b} ’

for any a,b > 0.
By utilising the equality (2.3) we get the desired result (2.1). 1

COROLLARY 1. For any y > 0 we have

1 y—1

T (y=1)%>1 - > —1)2 2.

2ymin{1,y}(y J' =1y y o 2yma><{1,y}(y A (26)
1

—  (y=1)2>y—-1-1 > = (y—1)% 2.7

2min{1,y}(y )’ zy ny = 2max{1,y}(y ) (2.7)

Remark 1. Since for any a,b > 0 we have max{a, b} min{a, b} = ab, then
(2.1) and (2.2) can also be written as

1 b—a\’ b—
— max{a, b} i >Inb—1Ina— a
2a b
) (2.8)
> imin{a b} b-a
~ 2a ’ b
and
1 —a\?_ b—
max{a, b} b=a Zb ¢ nb+lna
2b a a
(2.9)

1 b—a)\?
S Lo
2 o min{a, b}< - )
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for any a,b > 0.
The inequalities can also be written as

1 y—1\2 -1_1 . y—1\2
5 max{1l,y} <y> >lny — e > 5 min{1,y} <y> (2.10)
and
1 9 . 2
égmwﬂwﬁ@—l)Zy—l—myzigmmﬂwﬂy—U, (2.11)
for any y > 0.

In the recent paper [2] we obtained the following inequalities that provide

upper and lower bounds for the quantity Inb —Ina — ”_Ta:
1 (b—a)? b—a 1 (b—a)
— > —Inb+Ina > -—————— 2.12
2min%{a,b} = a nodina = 2 max2{a,b}’ (2.12)
where a,b > 0 and
—a)? _
(b—a) > b-a_ Inb+1Ina (2.13)
ab a

for any a,b > 0.
It is natural to ask, which of the upper bounds for the quantity

b= | bima

as provided by (2.2), (2.12) and (2.13) is better?
It has been shown in [2] that neither of the upper bounds in (2.12) and
(2.13) is always best.
Consider now the difference
Difa,b) i= g (b )
18,0) = 2a min{a, b} “
(b—a)’
amin?{a, b}

_1 e
2 min?{a, b}
1
=3 (min{a,b} —a) <0,

which shows that upper bound in (2.2) is always better than the upper bound
in (2.12).
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Consider the difference

—a)?
Daa,b) := ml{ab}(b—a)? _ (zb)
1

= m(b —a)?(b — 2min{a, b}),

which can take both positive and negative values for a,b > 0, showing that
neither of the bounds (2.2) and (2.13) is always best.

Now, consider the difference

1 1 (b—a)?
0= e Sl
1

= m(b — a)*(max{a,b} —a) >0,

which shows that lower bound in (2.2) is always better than the lower bound
in (2.12).

COROLLARY 2. If y € [k, K] C (0,00), then we have the local inequalities

1 (y—1? y—1 1 (-2
>Iny — > 2.14
2min{1, k} =y y ~ 2max{l,K} y '’ (2.14)
1 1
— (y—1P2>y—-1-lny>— (y—1)? 2.15
(5] ¢ "D 2 M2 ey Y @19
1 y—1>2 y—1_1 . (y—1>2
—max{l,K}|—— | >ny——— > —min{l,k}| — | , 2.16
jmax(1 k(1 1> S, (2 (2.16)
1 — 1) 1 —1)?
2max{1,K}(y)Zy—l—lnyZQmin{l,k‘}(y ) . (2.17)
Y Y

Proof. If y € [k, K] C (0,00), then by analyzing all possible locations of
the interval [k, K] and 1 we have

min{1, £} < min{l,y} < min{l, K},
max{1,k} <max{l,y} < max{l, K}.
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By using the inequalities (2.6) and (2.7) we have

2yminl{1,k}(y L= M(?J - 1)
>lny- L= zymai{l,y}@‘ 1y
2 2ynmx1{1,K}(y - 1)?
and
ml{l’k}(y -1)?> M(y— 1)°
Zy—l—lnyzw(y—l)Q
2 m(fy - 1)

for any y € [k, K], that prove (2.14) and (2.15).
The inequalities (2.16) and (2.17) follows by (2.16) and (2.17). 1

If we consider the function f(y) = %, y > 0, then we observe that

21 2
Fy) =2 o oand )=

which shows that f is strictly decreasing on (0, 1), strictly increasing on [1, c0)
and strictly convex for y > 0. We also have f(%) = f(y) for y > 0.
By the properties of f we then have that

2 (k—1)” K <1,
(y—1) (k—1)2 (K-1)? .
- , fk<1<K, 2.18
Bt R S S (2.19)
2
EA if 1<k,

= Uk, K)
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and

UKP K <1,

min Y =<0 ifk<1<K,

G2 if 1 <,

= u(k,K).

We can provide now some global bounds as follows.
From (2.14) we then get for any y € [k, K| that

1 y—1 1
. UMk K)>lny- >
{1 iy 0 e ) = Iy = S max{L, K}

u(k, K),
while from (2.17) we get for any y € [k, K] that

1 1.

3 max{1l, K}U(k,K) >y—1—1Iny > 3 min{1, k}u(k, K).

Consider

Z(k K):= —1)?
(k,K) ;gf,iaz](y )

(1—k)? ifK <1,
={max{(1-k)? (K -1)?} ifk<1<K,
(K —1)? if 1<k,
and
1-K)? ifK<1,
2(k,K):= min (y—1)2=<0 ifk<1<K,
ye(k,K]
(k-1 ifl<k.

By making use of (2.15) we get

1

. (kL K)>y-—
2min{1, k} (k. K) >y

1
l-Iny> ———2(k, K
ny_Qmax{l,K}z(’ )

for any y € [k, K].

175
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(2.22)
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Consider the function g(y) = (y—_l)Q, y > 0, then we observe that

Y

gm»=%25” and  g¢"(y) =

28-2y)
y

4 9

which shows that g is strictly decreasing on (0, 1), strictly increasing on [1, c0)
strictly convex for y € (0,3/2) and strictly concave on (3/2, c0).

Consider
y—1)’
W(k,K):= max ()
yelk,K] Y
(k)2 if K <1,
= {max { (155)%, (51)*} k<1<,
(E-1)? if 1<k,
and
_KN\2
N (%) if K <1,
w(k, K):= min (y> =<0 ifk<1<K,
y€E[k, K] Y 2
(22) if1<k

Then by (2.16) we get
Yy

1 -1 _1
§max{1,K}W(k,K) >lny—>— > imin{l,k}w(k:,K)
Y

for any y € [k, K].

3. OPERATOR INEQUALITIES
We have the following:
LEMMA 1. Let x € [k, K] and t > 0, then we have

1 -1 1—27t
2min{1, k*} t t

11—z~
t

t
>Ilnz —

11—z~

S 1 |
~ 2max{1, K} t

t

t
)

(2.25)

(2.26)

(2.27)
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and

1 1—at\? 1—a~
2max{1,Kt}t< tx > >Inz — tx (3.2)

— o t\ 2
E;min{l,kt}t<1 = ) >0,

Proof. Let y = z' € [k', K']. By using the inequality (2.14) we have

1 " ¢ |

> (#t42x7t—-2)>
= Zmax{l,Kt}(x tat=2) 20

that is equivalent to (3.1).
From the inequality (2.16) we have for y = z!

xt—1
2t

%max{l,Kt}(l — 2zt +m_2t) >tlne —

> ~min {1,k'}(1 - 227" +272) >0

N | =

that is equivalent to (3.2). 1

We have:

THEOREM 3. Let A, B be two positive invertible operators and the
constants M > m > 0 with the property that

mA<B<MA. (3.3)

Then for any t > 0 we have

zmm{ll,mt} Ty(AIB)(A™" — (A5, B) ')A
> S(AIB) — Ty(A|B)(A%,B) A -
1

> WTt(A|B) (A_l o (AﬂtB)_l)A =0
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and
5 max {1, M J(T(A|B)(A5,B) ™) A

> S(A|B) — T(A|B)(At: B) ™" A (3.5)

[

> min {1,m"}¢(Ty(A|B)(A8;B)"1)?A > 0.

Proof. Since mA < B < MA and A is invertible, then by multiplying
both sides with A=1/2 we get mlyg < A-12BA-1/2 < M. Denote X =
A~1Y2BA~1/2 and by using the functional calculus for X that has its spectrum
contained in the interval [m, M] and the inequality (3.1), we get

| [(A2BATR) Z 1y 1y — (AV2BAYZ)
2min{1l, m?} t t

1y — (A12BA-1/2)

>1In (A1/2BATY?) - - (3.6)
- L ((Al/zBAm)t ~ly  ly- (A1/2BA1/2)t>
~ 2max{1, M} t t
>0

for any t > 0.

Now, if we multiply both sides of (3.6) by A2, then we get

1 Al/z(u-wBA-lﬂ)t Sy Ly (A_I/QBA_I/Q)_t>A1/z

2min{1, m*} t t

> AY2(In (A7Y2BATY2)) A2 — AV? 1y — (A—1/2BA,1/2),tA1/2
_ t
> ;Al/Q (A—l/QBA—uz)t 1y

~ 2max{1, Mt} -

(3.7)

s
t .

for any t > 0.
Observe that

AV21n (ATV2BATY2)AY? = S(A|B),
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_ RN
A1/2 (A~2BAT2) 1A1/2 _AuB-A

: = Ti(A|B),
- _ —t
w8 1/152 BT e (3.8)
_ A2 (AV2BA-12) (A-1/2BA-Y2) " _ (4-1/2pA-1/2) o

t
(A_l/zBA_l/Q)t 1y
t
(A—l/zBA—l/z)t 1y
t
= T,(A|B)(At,B) 1A

_ A1/2

(A’l/QBA*I/Q)_tAI/z

— Al/2 A1/2A71/2(A71/2BA71/2)—15A71/2A

and then by (3.7) we get

me{let}Tt(A]B)(lH — (A§:B)~'A)
> S(A|B) — T,(A|B) (A, B) A
1

> WTt(A‘B)(lH — (Af:B)"'4) > 0

that is equivalent to (3.4).

From the inequality (3.2) we also have

1y — (Al/QBAl/Z)t> ’
/

;max{l,Mt}t<
1y — (A-12BA-1/2)
t
Iy (A‘l/QBA—l/Q)_t> :
t

>1In (A7V2BATY?) -

> > 0.

min{1, mt}t<

N
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Now, if we multiply both sides of (3.9) by A'/2, then we get

1o — (A-12BA-1/2)"t\ 2
L a1, MtyeAl/2 | 22 ( ) ) a2 (3.10)
2 t
_ _ —t
> AY2(In (A‘l/QBA‘l/Q))A”Q—Al/QlH_ (ATPBATR) 7 1o
= t
1y — (A712BA-1U2) 7
> ;min{l,mt}tA1/2< = . )\ 4 > 0.

From (3.8) we have, by multiplying both sides by A~1/2 that

1y — (Afl/zBAq/z)*t
t

= A7'2T,(A|B) (A4, B)~* A2,
Then

_ _ —t\ 2
A1/2 <1H B (A 1/2BA 1/2) ) A1/2
t

— 4l/2 (A’l/QTt(A|B)(Ajth)*lAl/Q)2A1/2
= AV2ATV2T,(A|B) (A8, B) " AV2 ATV2T,(A|B) (Af, B) T A2 A2
= T,(A|B)(A#:B) ' T:(A|B) (A% B) ' A
= (Ty(A|B)(At,B)1)*A,
which together with (3.10) produces the desired result (3.5).

There are some particular inequalities of interest as follows.
For ¢t = 1 we get from (3.4) and (3.5) that

1

2min{1,m} (B-A)a™ - B4

> S(A|B) — (1g — AB™1) A (3.11)

> S max (130 (B-A)(A'=BHA >0
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and
1 172
§max{1,M}(lH — AB7Y)"A
> S(A|B) — (1g — AB™1)A (3.12)
> %min{l,m}(lH —AB™)%A > 0.

For t = 1/2 we get from (3.4) and (3.5) that

1
min{1,/m}
> S(A|B) —2(1y — A(AtB)™ 1A (3.13)

(AfB — A)(A™!' — (AtB) 1) A

1 1 _
zm(AﬁB—A)(A —(AfB) ™A >0

and
max{1, VM} (15 — A(AtB)~")*A
> S(A|B) —2(1g — A(A4B) 1A (3.14)
> min{1, vm}(1xg — A(4B)")?4 > 0.
For t = 2 we get from (3.4) and (3.5) that

1

—1n —1_ p-1y4p-1
4min{LmQ}(BA B—A)(A™ = B'AB)A

> S(AIB) — %(1}1 ~(4B™)?)A (3.15)

1

—1p —1_ p-1yp-1
24max{1’M2}(BA B—A)(A"' =B 'AB YA >0

and
1 2 —1y2)?
Zmax{l,M} ly — (AB™) ) A

> 5(A1B) — 3 (14— (4B7)%) A (3.16)

We have the following:
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LEMMA 2. Let x € [m, M] and t > 0, then we have

2
1 zt—1 2t —1
- t > —Inzx
2min{1, m!} t t

2
S 1 ; zt—1
~ 2max{1, Mt} t

and

AV

t

1 R
2min{1,mt}<xt — tx >

Proof. Let y = 2zt € [m!, M']. By using the inequality (2.15) we have
(3.17) and by (2.17) we have (3.18). 1

1 b1 1-gt b1
2max{1,Mt}<mt - f) g (3.18)

v

We also have:

THEOREM 4. Let A, B be two positive invertible operators and the con-
stants M > m > 0 with the property (3.3). Then for any t > 0 we have

1

—1
sy | THAIB) AT T(ALB)

> T(A|B) — S(A|B) (3.19)

>_ - -1 >
> i HABATT(AB) 2 0

and

5 max{ 1L, MUY T(A|B) (1 — (A8B)~ )

> Ty(A|B) — S(A|B) (3.20)
> %min{l,mt}Tt(A]B)(lH — (Af,B)"'A) > 0.

Proof. If we use the inequality (3.17) for the selfadjoint operator X =
A~Y2BA~1/2 that has its spectrum contained in the interval [m, M], then we
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get

1 ((A—l/QBA—W)t = 1)2

2min{1, m!} t

(A—1/QBA—1/2)t 1
= t

“1/2p 4172\t _ 1\ 2
1 }t<(A BA~'?) 1)20

—In (A71/2BAY?)

>
~ 2max{l, M! t

for any t > 0.
If we multiply both sides of this inequality by A2 we get

- —1/2\t 2
;tAl/Q (A72BAT) -1 A1/2 (3.21)
2min{1, m!} t '

(Afl/QBAfl/Q)t _

1A1/2 o A1/2(1n (A—1/2BA—1/2))A1/2

—1/2 1 4—1/2\t 2
~ 2max{1l, M} t -

for any t > 0.
Since ) ,
Afl ZBAfl 2
A1/2 (
t

)t -1 1/2
AY? = T,(A|B),
then
(A—1/2BA—1/2)t 1

p = A7'2T,(A|B)A™1/?

and

_ _ t 2
A1/2<(A '2BA 1/2) _1> AL/?
t

= AYVZATYPT(AIB) ATV AT, (A|B) A2 A
= Ti(A|B)A™'Ty(A|B)

for any t > 0.
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By making use of (3.21) we then get (3.19).
By using inequality (3.18) we have

(AV2BA12) 1 1 (A‘l/QBA—l/Q)_t>

t t

;max{l,Mt}<

(A71/2BA71/2)t _

> —In (A7Y2BATY?)
t
A-12pA-Y2\ 1 1 (A2 A1)
zlmin{l,mt}<( ) — ( ) >0,
2 t t
for any t > 0.

If we multiply both sides of this inequality by AY?2 we get
(A-12BA-12) —1 1 (A—l/QBA_l/Z)_t>A1/2

1
2max{1,Mt}A1/2< . "

Afl/QBAfl/Q)t _

1141/2 o Al/Q(ln (A—I/QBA—1/2))A1/2

<(A_1/QBA_1/2)t 1o1- (A—l/QBA-W)‘t)Al/Q
t t

> A1/2(

for any t > 0, and the inequality (3.20) is obtained. N
For ¢t = 1 we get from (3.19) and (3.20) that

1 _
2min{l, m} (B-A)A™(B - 4)
> B—A-S(A|B) (3.22)
1 _
EM(B—A)A (B-A4) >0

and
%max{l M}B - A)(1g — B'4)

)(
— A—S(A|B) (3.23)

N | = tU

> ~min{l,m}(B — A)(lg — B~'A4) > 0.
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For ¢t = 1/2 we get from (3.19) and (3.20) that
1

e — — -1 —
VTRV (A$B — A)A~Y(AEB — A)
> 2(AtB — A) — S(A|B) (3.24)
1 -1
> mmw — A)AY(A$B — A) >0
and
max {1,V M }(A4B — A)(1y — (A4B) ' A)
> 2(AtB — A) — S(A|B) (3.25)
> min {1,vm}(AfB — A)(1g — (AfB)"'4) > 0.
For ¢t = 2 we get from (3.19) and (3.20) that
1

-1 -1 1
W(BA B—A)A"'(BAT'B — A)

> —(BA™'B— A) — S(A|B) (3.26)

N

1

- —1p _ -1 —1p
24max{1’M2} (BAT'B—-A)A™'(BA™'B—-A4) >0

and

max {1,007} (BA7B — 4) (14 — (B 4)?)
> ~(BA™'B - A) - S(A|B) (3.27)

>

== N

min {1,m?}(BA™ B — 4) (1 = (B~ 4)%) > 0.

4. SOME GLOBAL BOUNDS

For [m, M] C (0,00) and ¢t > 0 and by the use of (2.18) we define

Ui(m, M) : = U(m', M") (4.1)
(m;;l)z if M <1,
— { max { (m'-1)? (M;;tw} ifm<1<M,
(Mt-1)?

e ifl<m,
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and by (2.19)
A=MD® i M <1,

ug(m, M) == u(m',M") =< 0 itm<1<M,

(m'-1)?
mt

ifl<m.

By (2.20) and (2.21) we have for y = 2' € [m!, M"] and ¢ > 0 that

1 11—zt
—_— M)>Inz —
2t min{1, m!} Ui(m, M) 2 Inz t
1
> M
- 2tmax{1,Mt}ut(m’ )
and
1 . b —1
ﬂmax{l,M}Ut(m,M)Z " —Inx
1
> % min{1, m'}u(m, M),
where x € [m, M] and ¢t > 0.
Using (2.22) and (2.23) we define
Zi(m, M) : = Z(m', M")
(1—m')’ if M <1,

= dmax { (1 —mt)*, (M = 1)’} ifm <1<,

(M! —1)? if 1< m,

and
(1—MH?  ifM<1,

zi(m, M) ::z(mt,Mt): 0 ifm<1<M,
(mt—l)2 ifl<m.
By (2.24) we have for y = 2! € [m!, M*] and ¢ > 0 that

1 |
— 7 M
2t min{1, m*} t(m, M)

v

—Inz

1

> M
- thax{l,M’f}zt(m7 )

(4.2)

(4.4)

(4.5)

(4.6)

(4.7)
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where x € [m, M| and ¢t > 0.
Utilising (2.25) and (2.26) we can define

Wi(m, M) : = W(mt,Mt)

(Lomt)? if M <1,
— max{(l%Tt)Q,(%)Q} ifm<1< M,
(M1 if 1<m,

and

(M2 M < 1,
wi(m, M) := W(m', M) ={ 0 itm<1< M,
(M2 i1 <m,
By (2.24) we have for y = z* € [m!, M'] and ¢ > 0 that

1—gt

t

1 ¢
Q—tmax{l,M }Wi(m, M) > Inz —

.
> 27 Tin {1, m" }wi(m, M),

where x € [m, M] and ¢t > 0.
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(4.9)

(4.10)

THEOREM 5. Let A, B be two positive invertible operators and the con-
stants M > m > 0 with the property (3.3). Then for any t > 0 we have

1
a1 M)A > S(A|B) —T,(A|B)(A#,B)'A
o min 1) U1 M)A 2 S(AIB) — Ti(A|B) (A%, B)

1
>
~ 2tmax{l, Mt} u(m, M)A,

%max{LMt}Wt(m,M)A > S(A|B) — Ty(A|B)(AtB) ' A

%min {1,mt}wt(m, M)A,

Vv

1

9 mind1 mtl > —

2t min{1, m'} Zy(m, M)A > Ti(A|B) — S(A|B)
1

> — M)A
— 2tmax{l, M*} 2(m, M)
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and

1
27max{1,Mt}Ut(m, M)A > T,(A|B) — S(A|B)

%min {1, mt}ut(m, M)A.

v

The proof follows by the inequalities (4.4), (4.5), (4.7) and (4.10) in a
similar way as the one from the proof of Theorem 3 and we omit the details.

Fort =1,¢t=1/2 and ¢t = 2 one can obtain some particular inequalities
of interest, however the details are not provided here.
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