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Abstract: We show that every extreme polynomials of 77(2R ) is exposed.

1. INTRODUCTION

According to the Krein-Milman Theorem, every nonempty convex set in
a Banach space is fully described by the set of its extreme points. Let n € N.
We write B for the closed unit ball of a real Banach space F and the dual
space of F is denoted by E*. We recall that if x € B is said to be an extreme
point of Bg if y,z € Bg and x = Ay + (1 — A\)z for some 0 < A < 1 implies
that © = y = 2. « € Bp is called an exposed point of B if there is an f € E*
so that f(z) =1=||f|| and f(y) <1 for every y € Bg \ {z}. It is easy to see
that every exposed point of B is an extreme point. We denote by ext Bg and
expBE the sets of extreme and exposed points of Bg, respectively. We denote
by L£("E) the Banach space of all continuous n-linear forms on E endowed with
the norm ||T|| = SUD)|, =1 |T(x1,...,2y)|. A n-linear form T is symmetric if
T(x1,...,2n) = T(acg(l), e ,:ca(n)) for every permutation o on {1,2,...,n}.
We denote by Ls("E) the Banach space of all continuous symmetric n-linear
forms on F. A mapping P : E — R s a continuous n-homogeneous polynomial
if there exists a unique T' € L("E) such that P(z) = T(z,...,x) for every
x € E. In this case it is convenient to write T = P. We denote by P("FE)
the Banach space of all continuous n-homogeneous polynomials from F into R
endowed with the norm [|P|| = supj,=1 [P(z)|. Note that the spaces L("E),
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Ls("E), P("E) are very different from a geometric point of view. In particular,
for integral multilinear forms and integral polynomials one has ([2], [9], [42])

extBr (ng) = {$102- - ¢n : ¢i € extBp«},
extBp gy = {£¢" : ¢ € EF, [|§] =1},

where L£7("E) and Pr("E) are the spaces of integral n-linear forms and inte-
gral n-homogeneous polynomials on E, respectively. For more details about
the theory of multilinear mappings and polynomials on a Banach space, we
refer to [10].

Let us say about the stories of the classification problems of extBx and
expByx if X = P("E). Choi et al. ([4], [5]) initiated the classification problems
and classified extBx if X = 73(2[12,) for p = 1,2, where lg = R? with the
lynorm. B. Grecu [14] classified extBx if X = P(%12) for 1 < p < 2 or
2 < p < oo. Kim [18] classified expBx if X = 73(213) for 1 < p < co. Kim
et al. [34] showed that every extreme 2-homogeneous polynomials on a real
separable Hilbert space is also exposed. Kim ([20], [26]) characterized extBx
and expBy for X = P(*d.(1,w)?), where d,(1,w)? = R? with the octagonal
norm

@ plla. = max {lal, lol, 55 < 0 <w <1},

He showed [26] that ext Bp(24, (1,w)2) # eXPBp 24, (1,w)2)- In [31], Kim classified

ext Bx and using the classification of ext By, Kim computed the polarization

and unconditional constants of the space X if X = P(QR}ZL( 1 )), where Ri(w)
2

denotes the space R? endowed with the hexagonal norm

12, 9)lnwy = max{[yl, 2] + (1 = w)ly[}.

We refer to ([1]-]9], [11]-[43]) and references therein for some recent work
about extremal properties of multilinear mappings and homogeneous polyno-
mials on some classical Banach spaces.

We will denote by T'((z1,y1), (2, y2)) = az122+by1ys +c(x1y2 +22y1) and
P(z,y) = az? + by? + cry a symmetric bilinear form and a 2-homogeneous
polynomial on a real Banach space of dimension 2, respectively. Recently,
Kim [31] classified the extreme points of the unit ball of 77(2]1%2( 1 )) as follows:
exth(QRi(l)) :{i V2, (a2 + L2 £ ay), (2 + 39?),

2

+ [22 + (S = 1)y® + cay],
+ [ea® + (%\/ﬁ —1)y*+(c+2vVT—c)ay] (0< e < 1)}
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2

In this paper, we show that that every extreme polynomials of P(Q]Ri( 1 )) is
2
exposed.
2. RESULTS

THEOREM 2.1. ([31]) Let P(z,y) = ax® + by? + cay € P(QRZ
a>0,¢>0 anda2+b2+027§0. Then:

(1)) with

N

Case 1: c< a.
If a < 4b, then

) _c2 )
||PH = max{a, b, Ea + b‘ + %C» 4aiac ) Zi(faleb’ |2iciba_c4b‘}

= max{a, b, ia—k b’ + %c}

If @ > 4b, then ||P| = max {a, 1b],

1 1, |c2—4ab|
Za—i—b‘—i-ﬁc, = }
Case 2: ¢> a.

If a < 4b, then |P| = max{a, b, Ea + b‘ + %c, %it;fﬂ)}

If a > 4b, then ||P| = max{% 1B, |Sa + | + Lc. 25634:1&}‘
THEOREM 2.2. ([31])

2R2
h(%)

extBy( )Z{i v, £(2? + 3y% £ ay), £(2? + 37,
t [2? + (5 — 1)y £ ey],
= ea? + (SEYIE 1)y & (e 20T = ey (0 < e < 1)),

THEOREM 2.3. Let f € P(’R} 1 )" with a = f(2%), B = f(y*), v =
f(zy). Then

1711 =sup {131, o+ 8]+ s |+ 48], [+ (5 = 1)8] + e,
oo+ (=2 — 1)) + (c+ 2V T= O] (0 < e < 1)}

Proof. 1t follows from Theorem 2.2 and the fact that

I =sup {L7P)] < P e exty oy,

h($)
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Note that if ||f|| =1, then |a| <1, [8] <1, |y| < &.

We are in a position to show the main result of this paper.

THEOREM 2.4.

expB =extB
P<2Ri(%>) P(QR?M%))
Proof. Let (0 <c<1)

Pl(x7y) = y2 )

Pf (z,y) = 2° + 4 + zy,

Py (2,y) = 2° + 3y° — zy,

Pg(l‘,y) = '172 + %y27

2

sz:c(xvy) = $2 + (CZ - 1)y2 + cry ,
Py (z,y) =% + (5 —1)y* — cay,

Claim 1: P, =19% € expB (2R2 )
h(%)

Let f € 77(2R2 ))* be such that

h(%
1
a=g, B , o
Indeed,
FP) =1, |f(PE) = o, |f(Py)|= =2 *)
’ 2 20’ 20
Note that for all 0 < ¢ <1,
by =it ()
e/l 5 4 T 57
11
|f (Psi)!—lvl—chf— | < 5 (%)

20
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Hence, by Theorem 2.3, 1 = ||f||. We will show that f exposes P;. Let

Q(z,y) = az® + by? + cxy € P(QRZ( )) such that 1 = ||Q]| = f(Q). We will

show that Q = P;. Since P(QR}% (7)) is a finite dimensional Banach space with

dimension 3, by the Krein—Milm;n Theorem, B 73( ) is the closed convex

2R2
h(%)

hull of extB Then,

73(2R}2L<%))'

Qz,y) = uPl(mxy) + 0" Py (z, y) +v Py (w,y) +tP3(w,y)

n=1

forsomeuvit)\iéiER(anN)w1th0<c £ <1and

Yy Ymo

o
Iu\+|v+\+|v‘\+|t|+Z|A:|+Z|A;!+ Z 60+ > 16, =1
n=1 n=1 m=1 m=1
We will show that v* =t = Af = §= = 0 for every n,m € N.

Subclaim: v+ =t = 0.
Assume that vt # 0. It follows that

1= f(Q) = uf(P1) + v f(P) + v f(Py) + tf(P3) +Zx\+f )

+ Z A (Pre,) + Z O (Psla,,) + Z O f (Ps,,)

< Jul + W FIIF PO+ [0 11 (Py)] + [t f (Ps) |+Z|A+Hf (Pie,)]

n=1
oo
JrZIA 1f(Pye,) |+ZI5 f(P,) !+Z!5;L|\f(P£am)l
m=1
9 9 19 4 &
< — T+ —=|v | + =|t| + = AF
< ful + 55 v + 55l |+20||+5n§:jl\ "l

+ Z\ n|+ ZI +|+*Z|5;@\ (by (%), (**), (**%))
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9 19 4 &
+ - +
<lul + o] + 5 lv !+;O|tl+5Z_IIAn\
+ - ZM |+ Z|6+|+f2|6m|
o0 o0
< ru|+w+\v-|+\t\+2m+zm|+ DTIGEI+ D 16, =1,
n=1 n=1 m=1 m=1

which is impossible. Therefore, v = 0. Using a similar argument as above,
we have v~ =1t = 0.

Subclaim: \f = 6% = 0 for every n,m € N,

Assume that A} # 0 for some ng € N. It follows that

1= F(@Q =uf(P)+ N f(Pf, )+ Y MFP L)

"-n
neN,n#ng

+Z)\f 4_+Za fP5+++Zc5mf )
m=1

m

< Jul + INGIFEL O+ 3 INHIB 01+ 3 ARl (P )]
n=1

neN,n#ng

ITCANED DAL ]
m=1 m=1

TR AR ZIAH Z!é*H Z!él

neNn#ng
o0 00 o )
< ful+ Y I+ AT+ D 1o+ D 16 =1,
n=1 n=1 m=1 m=1

which is impossible. Therefore, A\ = 0 for every n € N. Using a similar
argument as above, we have A\, = 5?; = 0 for every n,m € N. Therefore,
Q(z,y) = uPi(x,y). Hence u =1, so Q = P;. Therefore, f exposes P;.
Claim 2: Pso = 2xy € eXpB (2R2 )
h( )
Let f € P(zRi(%))* be such that
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We will show that f exposes Pso. Indeed, f(Pso) = 1, f(P1) = 0, f(Py) =
i%: f(P3) = 07

1 + c 1
*gﬁf(P4,c):i§§§ (0<e<1)
Note that, for 0 < ¢ <1,
c+2v1l—c
1< (P = (1

Hence, by Theorem 2.3, 1 = || f||. Let
Q(z,y) = uPi(z,y) + v Py (2,9) + v Py (z,y) + tP3(x,y)

—|—Z)\:P4++ z,y —|—Z)\n Ao
n—1

for some u, v, t, At (5i ER(anN)w1th0<ci at <1 and

»y s Ymo n7m

Jul + o] + o7 | + [t] +ZM! +Z\A;! - Z 16,5 ]+ Z 6] =1.
n=1 n=1 m=1 m=1

We will show that v* =t = A = 6= = 0 for every n,m € N.
Subclaim: v = 0.
Assume that vt # 0. It follows that

1= f(Q) = vt f(P) +v f(P +ZA+f
+Z)\ f(P +Zd+fps++ +Za HP)
<P+ !v !+ZWHf !+ZM 1P, -
+ Z::l [l (P )1+ Z::l [6ml1f (P, =)
SIv+|+lv‘|+ilkil+ilm+i|5$|+§:I5;I <1,
n=1 n=1 m=1 m=1
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which is impossible. Therefore, v© = 0. Using a similar argument as
Claim 1, we have v~ = Af = 0 for every n € N. Hence,

Qz,y) = uPi(z,y) + tP3(z,y) + Y 55PF . (2,y) +Zf5m )

m=1

It follows that

Zé FPS ) +Z5mf )

A,

8

< 3 IRl |+Z|5 7Py )l

SZ +Zy<sy<1

m=1

8

which shows that

fF(PS ) =f(P,

5,am

) = Z\5+y+215|_1 u=t=0 forallmeN.

5,am

By (1), P = = Pspforeverym € Nand Y °_, 6,5 +> >°_ 6, = 1. Therefore,

m=1"m
Q= P50 Hence f exposes Ps .
Claim 3: P;:x +411?J + xy € expB (2R2 )
h(3)
2m2  \*
Let f € 73( Rh(%)) be such that

1 3
a_i_/ﬁa 7_§

We will show that f exposes P». Indeed, f(Py) =1, f(Py) = 1, f(P1) =
f(P) = 7 By some calculation, we have

1 57
Lf(}zi;)|f; é’a Lf(}%i;)’<: 62; for 0 f; C f; 1.

Hence, by Theorem 2.3, 1 = || f||. By similar arguments as Claims 1 and 2, f

exposes P, . Obviously, P, € expB., PRz | )
h(%)

Claim 4: PIO =2 —y? € expB (sz )
h($)
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Let f € P(QR,QI )* be such that

(3)

1
= - = — :0_
a=; B, o

We will show that f exposes Py . Indeed,

1 3 1

Note that )

yf(Pfc)y:1—%<1 for 0 <c<1.

Note that, for 0 < ¢ <1,

_3c+4—4\/1—c<

7
PP = S < L

Hence, by Theorem 2.3, 1 = || f||. By similar arguments as Claims 1 and 2, f
exposes PI 0

Claim 5: Py = z2 + %yQ S eXpBP(2R2 . )
()
*
Let f € P(QRZ(%)) be such that
5 1
a = g ) 6 - 5 ) Y= 0.

We will show that f exposes P3. Indeed,

1 3
Note that 1 1
IF(Pi)] < 1 IF(P)| < ;3 for0<c<t.

Hence, by Theorem 2.3, 1 = || f||. By similar arguments as Claims 1 and 2, f
exposes Pis.

Claim 6: P5+’1 =g2 — %yQ +xy € eXpBP(QR2 1 )
h($)
2m2  \*
Let f € 73( Rh(%)) be such that
11 1 1
o = /8:—7’ "}/:—
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We will show that f exposes ngr 1- Indeed,

>~ w

AP =1, )= FEDI< S, P =5

Note that

3 1
TSIER) <1 - <f(PR) <1 for0<e<l.

Hence, by Theorem 2.3, 1 = || f||. By similar arguments as Claims 1 and 2, f

exposes P; 1- Obviously, Py, € expB > (2R2 )
h(3)

: . pt o 2 2 2
Claim 7: Py, =2° + (T — 1)y* +cay € expBP(2RZ(1)) for 0 < c< 1.
2

Let f € P(QR}QL )* be such that

(3)

_3 e g1 _c
“T1 160 T 77w
Indeed,
n 3 _ c?
f(P) =1, Zﬁf(P4,c):1—Z<1a lf(P)] =~ -
1 3 1 9
S<f(PHY<= - < f(P) < —.

Note that for every ¢ € [0, 1] with ¢ # ¢,

1 c c?
Ph)=——t+-t+(1-=
f(PL) 16 + 3 + < )

and
1

FPL) = ——t2— St 4 (1 ¢
BT 160 8 16)°
Hence, we have, for every ¢ € [0, 1] with ¢ # c,

2 2
) c (1—c¢)
1<m1n{1—16,1— T }gf(Pjt) <1 (*%)
and ( 2 )
1+c¢ _ &
1<1-— <f(P,)<1——<1.
< 16 < f(Pyy) < T
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Note that, for every t € [0, 1],

—c? 4+ 2c+11 c—1 1
f(Pf) = (w)t+< 1 >\/1—t+4

and

—c2—2c+11 +1 1
f(Psy) = <cl6‘3>t+<c4 >\/1—t+4.

Hence, we have that, for every ¢ € [0, 1],

—2 42 +1
_1<E§f(p5+t)§w<1 (***)
4 , 16
and
2 —?2—2+1
_1<CZ < f(p) < ——— T2 160+ 5 1.

Hence, by Theorem 2.3, 1 = ||f||. We will show that f exposes PZ’F .. Let

Q(z,y) = ax® + by? + cxy € P(ZRi(l)) such that 1 = ||Q] = f(Q). We will
2

show that @ = PZ .- By the Krein-Milman Theorem,

Q(may) = UPl(l’ay) + 7)+P2+(.'Il‘,y) + U7P2_(.’B,y) + tPg(IIZ,y)

00 00
+ NP @) + Y AP ()
n=1 ' n=1 '
00 00
+ Z 6TJrr1P;’_a;Ln(x7y) + Z 5771P5_’a;1(x7y) ’
m=1 m=1

for some u, v, t, A 6= € R (n,m € N) with 0 < ¢, af <1 and

Yy \n oy VYmo ny)'m —

o0 o0 o0 o0
ul + [0+ o7 [+ DI+ AT+ D 16E > ol =1.
n=1 n=1 m=1 m=1

We will show that v = v =t = A, = §- = 0 for every n,m € N. Assume
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that d,,,, # 0 for some mg € N. It follows that

1=f(Q) =uf(P) +v" f(P") +v™ f(Py) +tf(P3) +ZA+f Pl .)

n=1
+ Z_; AP )+ Z_l Ol (P 4+ Z_jl Ol (P, )

< Lt B Bt LS
4Ty 4 16" " &

A I Gk + D 10ml+ D161 (by (%), (%), (%%%) <1,
n=1 m=1

m#£mo

which is impossible. Therefore, 8 = 0 for every m € N. Using a similar
argument as above, we have u = vt =t = A, = 0. Therefore,

DRLNE

We will show that if ¢} # ¢ for some ng € N, then A} = 0. Assume that
b, # 0. Tt follows that

1=f(Q) =X\ f + > ATA(P
n#ng
<MD N =1,
n#ng

which is impossible. Therefore, A\ = 0 for every n € N. Therefore,

Qary) = (ZA*)PM y) = Pi.(r.y).

Therefore, f exposes PI .- Obviously, P, . € expB ( ) for 0 <c< 1.

QRQ
h(%)

Claim 8: P;C = cx’+ (CJF44 vVi—e 1>y2+(c+2\/1 —c)zy € expB (

for 0 <e< 1.

QRi( ))
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Let f € 77(2}1%,21(%))* be such that

1 c+4v/1—c c c+2v/1—c
0425 1—f y /8:_7 ’Y:f.

Note that 3 1 ) )
< b - < z < .
O_a<8, 2<B_0, 4<7_2

We will show that f exposes ng .- Indeed,

JP) =1, IfRl<3, 0< (B <3,
)
S1<f(P) < -5 —5 S IR <0,

Note that for every ¢ € [0, 1],

+2\/1—c 3c 1—c
P+ 2 c ot
f( 4t t + >t+2 3 5
and
__72 c+2\/1fc 3¢ Vl-c
f(P4t t < >t—i—2+ 3 5
Hence, we have for every ¢ € [0, 1],
1 3¢ +1—-c c+1
_ o= < ) < *k
1 1 3 v1-—
—1<§—\/1—c§f(P4’t)§§+§c— 5 ‘<1

Note that for every ¢ € [0, 1] with ¢ # ¢,

1 c
f(PSy) = 5t+\/1 —c/1 —t+g

and
F(Fs3) = (wﬁ)t— (c+m)m+g,

Hence, we have for every ¢ € [0, 1] with ¢ # ¢,

1
_1<min{;+\/1—c,c+ }Sf(PsJ,rt)<1

—1<—(;+m><f(P5j) —Vi—c<1.

(***)

l\')M—t
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Hence, by Theorem 2.3, 1 = [|f||. Let Q(z,y) = az® + by? + cry in
P(*R? )) such that 1 = ||Q|| = f(Q). By the Krein-Milman Theorem,

h(}
Q(z,y) = uPi(z,y) + v P (2,y) + v Py (z,y) + tP3(z,y)

+Z)\;'{P4++ T,y +Z)\n e
n—1

+25:TFLP5++ Ty +25m 5,am z,Y)
m=1

for some u,v*,t, A\F 65 € R (n,m € N) with 0 < ¢&,af, <1 and

y’'‘'nr¥Vm> n?m—

o0 o0 o0 o0
Jul + [0t o7 [+ DI+ D AT+ D I6h + > 16l =1.
n=1 n=1 m=1 m=1

We will show that v = v* =t = XX = 6 = 0 for every n,m € N. Assume
that \,, # 0 for some ny € N. It follows that

1= f(Q) = uf(P) + v f(PF) + v~ f(Py) +tf(Py) +ZA*f )
+Z>\Ef(P;C;)+Z%f(P;a;HZ(S;Lf(P;a;)
n=1 m=1 m=1
< glul+ Gl Sl Sl A \+Z|A+\+Zra [+ 16l
m=1

n#ng

<1 (by (%), (*%), (%)),

which is impossible. Therefore, A\ = 0 for every n € N. Using a similar
argument as above, we have u = vt =t = A\, = §,, = 0 for every n,m € N.
Therefore,

S ILNE

We will show that if a;},, # ¢ for some mo € N, then 4}, = 0. Assume that
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e # 0. Tt follows that

L= Q) = 0n, f(Pf . )+ 3 0 f(P,,)

mz£mg

<o+ Y ok =1

m#£mo

which is impossible. Therefore, 5:{10 = 0. Therefore,

Q(z,y) = ( > 572) Py (2,y) = Py .(z,y).

Therefore, f exposes ng .- Obviously, Py . € expB ) for 0 < ¢ < 1.

2TR2
P( RE )
Therefore, we complete the proof. |
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