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HYDROGEOLOGY

Groundwater is the main water source for domestic and agricultural use in Eghlid, a city located 
in Fars province in southern Iran. Here, spatial and temporal changes in groundwater depth were 
monitored by using geostatistical methods at 41 observation wells in Eghlid during the wet and dry 
seasons of 1997, 2003 and 2010. Experimental semivariograms were calculated and modeled with 
the GS+  (Gamma Design Software, Plainwell, Michigan USA),and groundwater depth was inter-
polated by using the ordinary kriging (OK), simple kriging (SK) and inverse distance weighting 
(IDW) methods within the GIS environment. Moreover, groundwater depth fluctuations over 13 
years (from 1997 to 2010) were calculated and mapped for wet and dry periods. The groundwater 
depth in the Eghlid aquifer exhibited a strong spatial correlation that followed a spherical model 
for three years. However, the spatial correlation distance was larger for both seasons in 1997 (grea-
ter than 27 km) than in 2003 (22 to 27 km) and 2010 (23 to 25 km). The cross-validation results 
indicated that OK resulted in the lowest root mean square error (RMSE) and mean error (ME) and 
was the most appropriate method for interpolating groundwater depth. Therefore, OK was used 
to map the spatial distribution of the groundwater depth over the study area. The resulting maps 
indicated that the spatial variability of groundwater depth was greater during the wet season than 
during the dry season over three years. In addition, changes in the depth to groundwater occurred 
more slowly during the wet seasons than during the dry seasons. Furthermore, the ground water 
depth decreased slightly from 1997 to 2003 and decreased considerably (2-13 m) from 2003 to 
2010. Moreover, the decrease in the groundwater depth was more notable in the central to west and 
southern regions of the aquifer. Thus, these regions are critical and should be managed carefully to 
optimize groundwater resource exploitation.

Las aguas subterráneas son la principal fuente hídrica para el uso doméstico y agrícola en Eghlid, una 
ciudad ubicada en la provincia de Fars, al sur de Irán. Aquí, los cambios temporales y espaciales en la 
profundidad de las aguas subterráneas se sondean a través de métodos  geoestadísticos en 41 pozos de 
observación en Eghlid durante las estaciones de verano e invierno de 1997, 2003 y 2010. Se calcularon 
semivariogramas experimentales y se modelaron con el programa informático GS+, y la profundidad de 
las aguas subterráneas se interpolaron por el uso de krigging ordinario (OK), krigging simple (SK) y mé-
todos de ponderación de distancia inversa (IDW) dentro del ambiente GIS. Sin embargo, la fluctuación 
de profundidad de las aguas subterráneas en cerca de 13 años (de 1997 a 2010) se calculó y se mapeó 
para las temporadas húmeda y seca. La profundidad de las aguas subterráneas en el acuífero de Eghlid 
muestra una fuerte correlación que sigue un modelo esférico de tres años. Sin embargo, la distancia de 
correlación espacial fue mayor para ambas temporadas en 1997 (mayor que 27 km.) y en 2003 (22 a 27 
km.) y 2010 (23 a 25 km.). Los resultados de validación cruzada indicaron que el producto OK en la raíz 
cuadrada media de desviación más baja (RMSE) y Error Medio (EM) fueron los métodos más apropia-
dos de interpolación de la profundidad de aguas subterráneas. Por lo tanto, el OK fue usado para mapear 
la distribución espacial de la profundidad de las aguas profundas en el área de estudio. El resultado de los 
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mapas indican que la variabilidad espacial de la profundidad de aguas subterráneas fue mayor durante la 
temporada húmeda que durante la temporada seca en tres años. Adicionalmente, la profundidad de las 
aguas subterráneas fue menor durante la temporada húmeda que durante la temporada seca. Además, el 
nivel de las aguas profundas cedió ligeramente desde 1997 a 2003 y cayó considerablemente (de 2 a 13 
metros). Además, el decrecimiento en el nivel de las aguas profundas fue más notable en las regiones de 
oeste, centro y sur del acuífero. Por ende, estas regiones son críticas y se deben manejar cuidadosamente 
para optimizar el recurso de explotación de las aguas subterráneas.
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Introduction

In Iran, which is located in an arid and semiarid region, surface wa-
ter bodies are scarce. Consequently, groundwater is the main water source 
for domestic and irrigation purposes. Approximately 95 % of the fresh 
water resources in Iran are used for agricultural production, of which 80 
% are obtained from groundwater (Ahmadi and Sedghamiz, 2008). Thus, 
groundwater resources are important for sustainable agriculture. In recent 
years, water table levels have dropped from 0.5 to 15 m beneath many 
agricultural lands, which has resulted in unproductive wells (Ahmadi and 
Sedghamiz, 2008). Therefore, to optimize groundwater resource exploi-
tation, a detailed study regarding the spatial and temporal fluctuations of 
groundwater in this region is needed. In addition to water supply studies, 
knowledge regarding the spatio-temporal variability of groundwater depth 
is important for landfill characterization, management of agricultural sa-
linity and chemical seepage (Buchanan and Triantafilis, 2009). However, 
the groundwater depth is generally measured at a small number of random 
locations. To obtain the required information on a dense grid, several inter-
polators should be employed. The common interpolation methods of clas-
sical statistics are not appropriate because they neglect the geographical po-
sitions of wells. In addition, it is well known that environmental variables 

are often spatially dependent. Geostatistics is a branch of statistics in which 
the spatial continuity behavior of the groundwater data is incorporated 
into the estimation process (Isaaks and Srivastava, 1989). Many researchers 
have mapped groundwater levels or optimized groundwater monitoring 
networks with geostatistical approaches (Delhomme, 1978; Sophocleous 
et al., 1982; Virdee and Kottegoda 1984; Tonkin and Larson, 2001; Nu-
nes et al., 2004; and Delbari, 2013). Geostatistics can be used to improve 
the management and protection of water resources (Kumar and Sondhi, 
2005; Reghunath et al., 2005). For example, Delbari (2013) compared 
several univariate and multivariate interpolation approaches for estimating 
groundwater levels in Iran. Kumar and Ahmad (2003) used geostatistical 
methods to estimate the groundwater depth in India. Furthermore, Desba-
rats et al. (2002) used a digital elevation model (DEM) to provide auxiliary 
data for estimating groundwa-
ter levels by using kriging with 
external drift. Cameron and 
Hunter (2002) determined an 
optimum sampling network 
by investigating the spatial 
and temporal variations of 
groundwater quality. In addi-

Figure 1. Location of the study area and observation wells
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tion, Hu et al. (2005) investigated the spatial variability of groundwater 
levels, salinity and nitrate in northern China. These authors found that 
indicator kriging (IK) was more appropriate than ordinary kriging (OK) 
for mapping nitrate contamination risk. Kumar and Remadevi (2006) 
performed a spatial variability analysis of groundwater depth using data 
that were provided from more than 60 observation wells in India. These 
authors fit Spherical, Gaussian and exponential models to the experimental 
semivariograms and compared kriging estimates to inverse square distance 
(ISD) estimates. In this case, the kriging estimator with the Gaussian semi-
variogram model yielded the smallest error when estimating groundwater 
depth. Theodossiou and Latinopoulos (2007) used the kriging method to 
estimate groundwater levels and to optimize a groundwater-monitoring 
network. Furthermore, Ahmadi and Sedghamiz (2007, 2008) used geosta-
tistics to map groundwater depth in Iran and Ta’any et al. (2009) investiga-
ted groundwater level fluctuations between 2001 and 2005 in the Amman 
Zarqa Basin in Jordan. These authors used OK to interpolate groundwater 
levels by using data from 31 wells. Sunet al.(2009) compared different 
methods for modeling groundwater level changes in 48 piezometric wells 
from 1981 to 2003 in China by using inverse distance weighting (IDW), 
radial basis function (RBF) and three kriging variants (the OK, simple 
kriging (SK) and universal kriging (UK) variants). These authors showed 
that the SK method was the most appropriate method among those tested. 

This study aimed to investigate the spatial and temporal changes of 
the groundwater depth in an aquifer near Eghlid city, which is located in 
Fars province in southern Iran. Groundwater depth data were collected 
during dry and wet seasons in1997, 2003 and 2010. The OK, SK and 
IDW methods were used.

Methodology

Study area and groundwater depth 

The city of Eghlid is located in Fars province in southern Iran, covers 
an area of 7054 sq. km and is located at 31° 13’ N latitude and 52° 55’ E 
longitude. Eghlid is allocated in a mountainous and highland region. The 
city of Eghlid follows the Zagross Mountains and Bell Mountains to the 
south with a maximum elevation of 3943 m asl. This area is characterized 
by cold winters and mild summers with minimum and maximum tempe-
ratures of -22 and 37 °C, respectively. The average annual rainfall levels in 
the city and highland villages are 300-330 mm and 400-600 mm, respec-
tively. The study area includes an aquifer that covers an area of approxima-
tely 716.2 sq. km (Figure 1). The elevation in this region fluctuates from 
2068 m west of the aquifer to 2690 m southeast of the aquifer. However, 
several small regions northwest of the study area are characterized by high 
elevation. Furthermore, Eghlid is an important location for agricultural 
production, especially for wheat, barley, potato and fruit production (in-
cluding grapes, walnuts, apples and pears).

Groundwater resources provide an important water source for 
drinking water and water for agricultural purposes. Here, the spatio-
temporal variability of the groundwater depth was determined by using 
data from 41 observation wells that were placed throughout the study 
area. The geographical locations of the wells are shown in Figure 1. For 
these observation wells, the monthly averages of groundwater depth 
data for March (wet season) and September (dry season) were monito-
red between 1997 and 2010.These data were used for the geostatistical 
analysis. To consider temporal fluctuations, data were analyzed from 
1997, 2003 and 2010. 

Geostatistics

The theory of geostatistics has been expressed in many textbooks, in-
cluding those of Isaaks and Srivastava (1989) and Goovaerts (1997). Here, 
a brief description of the geostatistical methodsthat were used in this stu-

dy is presented. In geostatistics, a semivariogram is used to quantify the 
differences between sampled data values as a function of their separation 
distance, h. In practice, the experimental semivariogram, *(h), is calcula-
ted as follows:

where N(h) is the number of sample pairs that are separated by a vec-
tor h, and z(xi) and z(xi+h) are the values of the variable z at locations of xi 
and xi+h, respectively. However, for kriging analysis, an appropriate theo-
retical model should be used to fit the experimental data. The most widely 
used models include the spherical, exponential and Gaussian models. The 
spherical model used in this study is defined as follows:

where C0 is the y-axis intercept (the “nugget effect”), C0+C is the 
“sill”, which is near the sample variance, and a represents the range of 
influence.

Ordinary kriging
OK assumes that the mean is stationary but unknown. In addition, 

the OK estimator is known as the best linear unbiased estimator (BLUE) 
and is defined as follows (Journel and Huijbregts, 1978):

where z*(x0) is the OK estimator at location x0, z(xi) is the observed 
value of the variable at location xi, λi is the weight assigned to the known 
values near the location to be estimated and n(u) is the number of neigh-
boring observations. The values of λi are weighted to obtain a sum of unity, 
and the error variance is minimized as follows: 

where μ is the Lagrange coefficient for minimizing the OK estimation 
variance, γ(xi, xj) is the average semivariogram value between the observed 
values and γ(xi, x0) represents the average semivariogram value between the 
location xi and the location to be estimated (i.e., x0).

The OK estimation variance (or standard deviation) can be used as a 
measure of the estimation uncertainty as follows:

Simple kriging
For example, OK and SK assume a stationary but known mean. In 

addition, OK uses local averages and SK uses entire observation averages. 
The SK estimator is given as follows:

where m is the mean value of the variable z and λi is the weight assig-
ned to the residual value of z(xi) from the mean. This estimate is unbiased 
because E [z(xi)-m]=0 and E [z*(x0)]=m=E [z(x0)].
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Inverse distance weighting
When using IDW, the unknown value at location x0, z

*(x0) is estima-
ted from the linear weighted average of several neighboring observations 
as follows:

where z(xi) is the observed value at location xi, di is the distance 
between the interpolated and observed values and a is an exponent. In 
IDW, the weights are inversely proportional to a power of the distan-
ce between the observations and the location x0. As the value of power 
aincreases, the effect of the farthest observations on the estimated value 
decreases. In Here, values of a were set to 1, 2 and 3.

Comparison of the interpolation methods

Here, the cross-validation technique (Isaaks and Srivastava 1989) was 
used to compare different interpolation approaches. The evaluation criteria 
that were used included the root mean square error (RMSE) and the mean 
error (ME), which are defined as follows:

where z*(xi) and z(xi) are the estimated and measured values at loca-
tion xi, respectively, and n is the number of observations. The most appro-
priate method has the smallest RMSE. In addition, the best estimator has 
an ME near zero.

Here, the semivariogram calculations and groundwater depth mode-
ling were performed in GS+ (Robertson, 2000). Interpolation and map-
ping were performed by using the ArcGIS Geostatistical Analyst.

Results and Discussion

Statistical Analyses

A summary of the groundwater depth data is presented in Table 1. 
The mean groundwater depth in 2010 was greater than its corresponding 
value in 1997 and 2003. In contrast, the groundwater depth did not fluc-
tuate much between the two seasons between 1997 and2003. However, the 
groundwater depth significantly decreased (approximately 4.5 m) between 
2003 and 2010. The groundwater depth fluctuations of four randomly se-
lected wells (wells number 13, 19, 29, and 36) during the dry (September) 
and wet (March) seasons of 1997 and 2010 are shown in Figure 2. The 
groundwater depth fluctuations were minimal until 2006 (for wet season) 
and 2007 (for dry season) (Figure 2). However, the groundwater depth 
significantly decreased after 2007. The increases and decreases in ground-
water depth for all 41 wells between 1997 and 2010 are presented in Table 
2. In September, the largest decrease occurred at well number 24 (18.47 
m).In March, the largest decrease (10.14 m) occurred at well number 29. 
Both of these wells are located near the center of the study area (Figure 1). 
As shown in Table 2, in majority of wells, the drop in March was less than 
the drop in September, which could be attributed to changes in aquifer 
storage. Recharge generally occurs in the late winter and spring seasons, 
when precipitation is generally the greatest and the evapotranspiration rate 
is low. In Figure 3, the amounts of annual rainfall during 1997, 2003 and 
2010 are shown. A drastic reduction in rainfall occurred between 2003 and 

2010. This decrease potentially resulted in the deeper groundwater depth 
between 2003 and 2010. 

Table 1. Summary statistics of the groundwater 
depth data from 41 observation wells

Year Month Mean 
(m)

Standard 
Deviation (m)

Maximum 
(m)

Minimum 
(m)

1997 September 
March

14.05 
11.49

13.44 
12.88

1.15 
0.51

46.85 
42.90

2003 September 
March

14.40 
11.39

13.01 
11.76

1.18 
0.68

46.11 
40.97

2010 September 
March

18.76 
15.94

14.29 
14.38

1.63 
0.33

54.62 
55.26

Table 2. Groundwater depth fluctuations (m) from  
41 observation wells between 1997 and 2010

Well 
number Wet season Dry season Well 

number Wet season Dry season

1 -3.73 -5.98 22 -3.44 -8.81
2 -4.7 -3.95 23 -0.4 -2.57
3 1.22 4.3 24 -5.21 -18.47
4 -0.61 -2.86 25 -7.33 -17.52
5 0.5 4.89 26 -1.63 -2.72
6 -6.66 -9.23 27 -6.77 -15.9
7 -4.82 -7.53 28 1.38 0.21
8 -2.7 -4.74 29 -10.14 -13.2
9 -0.78 -1.37 30 -4.64 -9.19
10 0.87 -1.18 31 -7.7 -10.33
11 -1.75 -2.75 32 -6.45 -15.07
12 -1.91 -6.66 33 -8.18 -9.54
13 -2.31 -3.66 34 -1.38 -1.76
14 5.67 4.97 35 -1.48 -2.83
15 -8.07 -13.63 36 -3.57 -10.76
16 -2.02 -14.69 37 -2.06 -3.2
17 0.42 0.13 38 -2.15 -3.59
18 -3.61 -4.2 39 -7.34 -9.16
19 -2.85 -7.56 40 -3.72 -8.75
20 1.18 -2 41 -0.96 -3.14
21 -1.8 -4.2      

 Table 3. Semivariogram parameters of the groundwater depth data

Model type C0 (m
2) C0+C (m2) a (m) C/(C0+C) R2 RSS

Sep 
1997 Spherical 50.4 250.2 27340 0.799 0.857 6018

Mar 
1997 Spherical 43.1 234.7 27170 0.816 0.860 5408

Sep 
2003 Spherical 50.2 222.1 22410 0.774 0.803 5576

Mar 
2003 Spherical 41.5 195.3 26500 0.788 0.851 3705

Sep 
2010 Spherical 59.6 280.7 23430 0.788 0.852 7330

Mar 
2010 Spherical 52.1 297.6 25000 0.825 0.873 7726
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Table 4. Cross-validation results from estimating the groundwater depth  
with the different interpolation methods in 1997, 2003 and 2010

Year Estimation method Season RMSE (m) ME (m)

1997

OK
Dry 2.69 -0.4
Wet 1.80 -0.37

SK
Dry 2.81 -1.1
Wet 2.20 -0.94

IDW-1
Dry 4.15 1.16
Wet 3.26 -1.27

IDW-2
Dry 4.15 -1.73
Wet 2.06 -1.55

IDW-3
Dry 3.59 -2.07
Wet 2.25 -1.82

2003

OK
Dry 1.40 -0.36
Wet 1.43 -1.23

SK
Dry 2.65 -0.99
Wet 1.54 .1.09

IDW-1
Dry 4.31 -1.24
Wet 3.87 -1.11

IDW-2
Dry 3.39 -1.64
Wet 1.53 -1.43

IDW-3
Dry 3.44 -2.00
Wet 1.74 -1.74

2010

OK
Dry 2.10 -0.36
Wet 1.69 -1.45

SK
Dry 2.44 -1.51
Wet 2.15 -1.55

IDW-1
Dry 3.80 -1.32
Wet 3.80 -1.32

IDW-2
Dry 2.28 -1.72
Wet 2.17 -1.72

IDW-3
Dry 2.98 -2.06
Wet 2.60 -2.06

 

Figure 2. Groundwater depth fluctuations (m) for wet (up)  
and dry (bottom) seasons from 1997 to 2010

Figure 3. Annual precipitation (mm) across the study area in 1997, 2003 and 2010

Geostatistical Analyses

To investigate the spatial autocorrelations of the groundwater depth 
for selected years, the omnidirectional experimental semivariogram was 
calculated (Figure 4). The best theoretical model of the semivariogram is 
shown in Figure 4. To determine the directional behavior of the spatial 
variability of the groundwater depth, the experimental semivariogram 
of groundwater depth was calculated for four directions (0, 45, 90 and 
135 degrees) with an angle tolerance of 22.5°.These results did not show 
any significance differences. Thus, the groundwater depth was assumed as 
isotropic and the semivariograms shown in Figure 4 were considered for 
further analysis. The groundwater depth during the wet and dry seasons 
in 1997, 2003 and 2010 was strongly spatially correlated because the ratio 
of the nugget effect to the sill of the semivariograms was small (Figure 4). 
The spatial structure of the groundwater depth during the wet and dry 
seasons in 1997, 2003 and 2010 followed a spherical model. Similarly, 
Kumar and Ahmad (2003) indicated that the spherical model was the best 
for modeling the spatial structure of groundwater depth. However, Del-
bari et al. (2010) and Ahmadi and Sedghamiz (2007) indicated that the 
spherical and exponential models were the best theoretical semivariogram 
models. Ta’any at el. (2009) and Kumar and Remadevi (2006) introdu-
ced the Gaussian model and Mendes and Lorandi (2008) introduced the 
exponential model as the best fitted semivariogram models for predicting 
groundwater levels. As shown in Table 4, the smallest and largest nugget 
effects (random variance) were found for groundwater depths in March 
2003 and September 2010, respectively. The influence range was greatest 
(approximately 27 km) during September 1997 and smallest (approxima-
tely 22 km) during September 2003.

For the interpolation of groundwater depth, the OK, SK and IDW 
methods were used with exponents of 1, 2 and 3. The RMSE and ME 
values that were associated with each method were calculated through 
cross-validation and are presented in Tables 4 for 1997, 2003 and 2010. 
These results indicated that the OK approach is the most appropriate 
interpolation approach for estimating groundwater depth because it yiel-
ded the lowest RMSE for all three years and all seasons and resulted in 
the smallest bias (ME) in most cases. The IDW method, which does not 
consider the spatial correlation of the observations during the estimation 
processes, often resulted in the highest error. In the study by Kumar and 
Remadevi (2006), OK was more accurate than IDW for groundwater 
level interpolation.

Figure 5 shows the maps of interpolated groundwater depth du-
ring the wet and dry seasons of 1997, 2003 and 2010 that were obtai-
ned by OK. Greater spatial variability occurred for the groundwater 
depth during the wet seasons than during the dry seasons. This finding 
potentially resulted from the spatial variations of the groundwater re-
charge and discharge. The groundwater depth was greater from the cen-
ter to the west of the aquifer, which potentially resulted from the lower 
topographical elevation and greater groundwater resource exploitation. 
A drastic decrease in groundwater depth occurred between 1997 and 
2010 throughout the study area. This decrease resulted from the exces-
sive exploitation of groundwater resources for drinking and agricultural 
purposes and from the lack of precipitation during the most recent 

Spatio-temporal variability of groundwater depth in the Eghlid aquifer in southern Iran
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Figure 4. Experimental semivariograms and the best-fit groundwater depth models for the wet and dry seasons in 1997, 2003 and 2010 

years. Moreover, as shown in Figure 5, the groundwater depth signifi-
cantly increased between March and September each year. For example, 
in March 2010, the groundwater depths in many areas in the southern, 
southeastern and upper portions of the study area were approximately 2 
m below the surface. However, in September these groundwater depths 
increased from 2 to 8 m. This change resulted from increasing water 
levels during the late winter and spring and decreasing water levels 
through the summer and fall. 

As previously indicated, the estimated standard error of OK can be 
used to measure the uncertainty of groundwater depth estimates. The maps 
of the OK estimation error (Figure 6) show that a smaller uncertainty oc-
curs near the observation wells (i.e., the upper half (except northwest) 
and southeastern regions of the study area). Larger uncertainty regarding 
groundwater depth estimates can be observed in regions where more va-
riability in the spatial distribution of groundwater depths (e.g., northwest) 
occurs and where the sample points are farther apart (e.g., near the center 

of the study area). In addition, larger uncertainty can be observed around 
the borders of the study area, especially in the lower half, which has no 
observation wells. These locations are primary candidates for digging addi-
tional wells in the future. 

In addition, groundwater depth fluctuation maps were obtained from 
1997 to 2010 during the wet and dry seasons (Figure 7). During the wet 
season, the groundwater depth decreased by7 to 10 m in the central re-
gions of the study area and by 3 to 5 m in the southern regions of the 
study area. During the dry season, the groundwater depth decreased by 
approximately 8 to12 m in the central regions of the study area and by 5 
to8 m in the southern regions of the study area. This significant decrease in 
groundwater level potentially resulted from (1) lower rainfall during recent 
years and from (2) high groundwater resource exploitation. Overall, these 
results could be used in future macro- policies, e.g., using modern irriga-
tion systems rather than conventional irrigation methods or enhancing the 
efficiency of current irrigation systems. 
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Figure 5. Groundwater depth (m) maps for the wet and dry seasons in 1997, 2003 and 2010 (obtained by OK)

Conclusions

Here, the spatiotemporal variability of groundwater depth was inves-
tigated. Three interpolation methods, including OK, SK and IDW, were 

applied to estimate the groundwater depth throughout the study area. The 
groundwater depth is strongly spatially correlated and its spatial structu-
re follows a spherical model. The OK method was the most appropriate 
method for the three investigated years. The spatial distribution maps of 

Spatio-temporal variability of groundwater depth in the Eghlid aquifer in southern Iran
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groundwater depth showed that groundwater depth in Eghlid aquifer did 
not change much between 1997and 2003, but decreased in 2010. This 
decrease potentially resulted from the lower annual rainfall in 2010 relative 
to 2003. Moreover, the generated maps clearly indicated that the ground-

water depth decreased during the wet seasons relative to the dry seasons. 
The groundwater depth fluctuations maps indicated that the groundwater 
decrease was more noticeable in the central and southern regions of the 
aquifer than in the northern regions, which potentially resulted from the 

Figure 6. Estimation error (m) maps for groundwater depth during the wet and dry seasons of 1997, 2003 and 2010 (obtained by OK)
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higher density of observation wells in the central and southern regions 
of the aquifer. Therefore, for sustainable exploitation of groundwater re-
sources, these regions should be carefully managed. Potential management 
options include the use of modern irrigation techniques and changing 
cropping patterns to crops that require less irrigation.

Moreover, unlike inverse distance weighting, ordinary kriging can be 
used to produce maps of the estimation errors that are associated with the 
groundwater depth estimates. These maps can be used to identify the next 
locations for new monitoring wells.
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