
Lake water temperature is one of the key parameters in determining the ecological conditions within a lake, as it 
influences both chemical and biological processes. Therefore, accurate prediction of water temperature is crucially 
important for lake management. In this paper, the performance of soft computing techniques including gene 
expression programming (GEP), which is a variant of genetic programming (GP), adaptive neuro fuzzy inference 
system (ANFIS) and artificial neural networks (ANNs) to predict hourly water temperature at a buoy station in 
the Yuan-Yang Lake (YYL) in north-central Taiwan at various measured depths was evaluated. To evaluate the 
performance of the soft computing techniques, three different statistical indicators were used, including the root 
mean squared error (RMSE), the mean absolute error (MAE), and the coefficient of correlation (R). Results 
showed that the GEP had the best performances among other studied methods in the prediction of hourly water 
temperature at 0, 2 and 3 meter depths below water surface, but there was a different trend in the 1 meter depth 
below water surface. In this depth, the ANN had better accuracy than the GEP and ANFIS. Despite the error 
(RMSE value) is smaller in ANN than GEP, there is an upper bound in scatter plot of ANN that imposes a constant 
value, which is not suitable for predictive purposes. As a conclusion, results from the current study demonstrated 
that GEP provided moderately reasonable trends for the prediction of hourly water temperature in different depths. 

La temperatura del agua es uno de los parámetros básicos para determinar las condiciones ecológicas de un lago, ya 
que está influenciada por procesos químicos y biológicos. Además, la exactitud en la predicción de la temperatura 
del agua es esencial para el manejo del lago. En este artículo se evalúa el desempeño de técnicas de soft computing 
como la Programación de Expresiones de Genes (PEG), que es una variante de la Programación Genética (PG), 
el Sistema Neuro-fuzzy de Inferencia Adaptativa (Anfis, en inglés) y las Redes Neuronales Artificiales (RNA) 
para predecir la temperatura del agua en diferentes niveles de una estación flotante del lago Yuan-Yang (YYL), en 
el centro-norte de Taiwán. Se utilizaron tres indicadores estadísticos, el Error Cuadrático Medio (ECM), el Error 
Absoluto Medio (MAE, en inglés) y el Coeficiente de Correlación (R) para evaluar el desempeño de las técnicas de 
computación. Los resultados muestran que la PEG es más exacta en la predicción de la temperatura del agua entre 0,2 
y 3 metros de profundidad. Sin embargo, se evidencia una tendencia diferente a partir del metro de profundidad. A 
esta distancia de la superficie, las RNA son más exactas que la PEG y el Anfis. Los resultados de este estudio probaron 
claramente la usabilidad del PEG y las RNA en la predicción de la temperatura del agua a diferentes profundidades.
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1. Introduction

Water temperature is a fundamental physical property with a direct 
impact on all organisms inhabiting the aquatic environment (Webb et 
al., 2008). Because predicting the water temperature is important for 
maintaining water quality and for ecosystem management, several authors 
have investigated methods for simulating water temperature of lakes 
(Lawrence et al., 2002; Lee et al., 2009; Schwab et al., 2009). Hondzo and 
Stefan (1996) simulated daily water temperature and dissolved oxygen 
profiles in Minnesota lakes by deterministic process-based water quality 
models with daily meteorological conditions as input. Derived empirical 
formulas for lake water quality and stratification indicators from the 
simulation results gave good predictions of temperature and dissolved 
oxygen characteristics estimated from measurements in seven Minnesota 
lakes. Fang and Stefan (1996) substantially modified a water temperature 
and ice cover model for freshwater lakes and combined it with a summer 
model to simulate water temperature structures and ice thickness in two 
small lakes in the north central US. The best value of volume averaged water 
temperature for the two studied small lakes was higher than was previously 
found for a larger lake. Benyahya et al. (2007) provided an overview of 
the existing statistical water temperature models. They categorized them 
in two major groups: deterministic and statistical/stochastic models. They 
stated that the deterministic models require numerous input data and they 
are appropriate for analyzing different impact scenarios, but the main 
advantage of the statistical models is their relative simplicity and relative 
minimal data requirement. Sharma et al. (2008) developed models to predict 
annual maximum near-surface lake water temperatures for lakes across 
Canada using four statistical approaches: multiple regression, regression 
tree, artificial neural networks and Bayesian multiple regression. Although 
artificial neural networks were marginally better for three of the four data 
sets, multiple regression was considered to provide the best solution based 
on the combination of model performance and computational complexity. 
Trumpickas et al. (2009) tried to construct empirical relationships between 
surface water temperatures and local air temperatures that could be used to 
estimate future water temperatures using future air temperatures generated 
by global climate models. Zhao et al. (2011) calculated the surface 
water temperature, deep water temperature and mean annual epilimnetic 
temperature and compared the obtained values with empirical data in Lake 
Taihu by using the dynamic water temperature model. The simulated values 
were consistent with empirical data. Results showed that this model could 
be used for the temperature simulation in the studied lake. Thiery at al. 
(2014) evaluated a set of one dimensional lake models for Lake Kivu, 
East Africa. In this study, meteorological observations from two automatic 
weather stations were used to drive the models, whereas a unique dataset, 
containing over 150 temperature profiles recorded since 2002, was used 
to assess the model’s performance. Simulations were performed over the 
freshwater layer only (60 m) and over the average lake depth (240 m). The 
good agreement between the deep simulations and the observed meromictic 
stratification also showed that a subset of models was able to account for 
the salinity- and geothermal induced effects upon deep-water stratification. 

Also, some attempts have been made to relate lake water temperature to 
meteorological parameters such as air temperature. In this context, Piccolroaz et 
al. (2013) developed Air2Water, a simple physically based model to relate the 
temperature of the Lake Superior (USA–Canada), considering a 27 years record 
of measurements, to air temperature only. The results proved that their model 
was suitable to be applied over long timescales (from monthly to interannual), 
and could be easily used to predict the response of a lake to climate change, 
since projected air temperatures were usually available by large-scale global 
circulation models. Toffolon et al. (2014) reconstructed temperature of the 
surface layer of temperate lakes by means of a simplified model on the basis of 
air temperature alone. The comparison between calculated and observed data 
showed a remarkable agreement for all 14 lakes investigated (Mara, Sparkling, 
Superior, Michigan, Huron, Erie, Ontario, Biel, Zurich, Constance, Garda, 
Neusiedl, Balaton, and Baikal, in west-to-east order), which presented a wide 
range of morphological and hydrological characteristics. 

Given the significant impact of lakes on surface atmosphere 
interactions, the need for an accurate simulations of lake temperatures at 
different depths arises. For this purpose, soft computing techniques such 
as gene expression programming (GEP), adaptive neuro fuzzy inference 
system (ANFIS) and artificial neural networks (ANN) can play undeniable 
roles in mentioned simulations.

Gene expression programming (GEP) has been applied to a wide 
range of problems in artificial intelligence, artificial life, engineering 
and science. GEP can be successively applied to areas where (i) the 
interrelationships among the relevant variables are poorly understood (or 
where it is suspected that the current understanding may well be wrong), 
(ii) finding the size and shape of the ultimate solution is difficult, (iii) 
conventional mathematical analysis does not, or cannot, provide analytical 
solutions, (iv) an approximate solution is acceptable (or is the only result 
that is ever likely to be obtained), (v) small improvements in performance 
are routinely measured (or easily measurable) and highly prized, (vi) 
there is a large amount of data in computer readable form, that requires 
examination, classification, and integration, e.g., molecular biology for 
protein and DNA sequences, astronomical data, satellite observation data, 
financial data, marketing transaction data, or data on the World Wide Web 
(Banzhaf et al. 1998). During the last decade, genetic programming has 
been used as a viable alternative approach to physical models. Aytek and 
Kisi (2008) applied GP to suspended sediment transport, and found it to 
perform better than conventional rating curve and multi-linear regression 
techniques. Shiri and Kisi (2011) compared GEP and ANFIS methods for 
predicting groundwater table depth fluctuations and found GEP to be better 
than ANFIS in this regard. Samadianfard (2012) examined the potential of 
the GEP technique in estimating flow friction factor in comparison with 
the most currently available explicit alternatives to the Colebrook–White 
equation. Results revealed that by using GEP, the friction factor could be 
identified precisely. Samadianfard et al. (2012) studied the capabilities of 
the GP in simulating the wetting patterns of drip irrigation. Results showed 
that the GP method had good agreement with the results of HYDRUS 2D 
software considering the full set of operators in estimation of radius and 
depth of wetting patterns. Also results obtained from field experimental 
in a sandy loam soil showed reasonable agreement with the GP results. 
Results of the study demonstrated the usefulness of the GP method for 
estimating wetting patterns of drip irrigation.

ANFIS is a neuro-fuzzy system, which uses a feed-forward network to 
search for fuzzy decision rules that perform well on a given task. Using a given 
input/output data set, ANFIS creates a fuzzy inference system whose membership 
function parameters are adjusted using a back-propagation algorithm alone or a 
combination of a back-propagation algorithm with a least mean square method. 
This allows the fuzzy systems to learn from the data being modeled. Kisi (2006) 
investigated the ability of ANFIS technique to improve the accuracy of daily 
evaporation estimation. Based on his results, the ANFIS computing technique 
could be used successfully in modeling evaporation process from the available 
climatic data. Shiri et al. (2011) compared ANFIS to ANN to estimate daily pan 
evaporation values from climatic data and found ANFIS to be better than ANN.

The artificial neural network (ANN) approach provides a viable solution 
to the environmental problems because it is based on training not on analytical 
models or statistical assumptions. ANN models can be trained to predict results 
from examples and once trained; they can perform predictions at very high speed 
(Mellit et al., 2006). ANN is an intelligent data-driven modeling tool that is able 
to capture and represent complex and non-linear input/output relationships. 
ANNs are massively parallel, distributed processing systems that can 
continuously improve their performance via dynamic learning. Moghaddamnia 
et al. (2009) explored evaporation estimation methods based on ANN and 
ANFIS techniques. They found that ANN and ANFIS techniques had much 
better performances than the empirical formulas. Zaier et al. (2010) developed 
ANN ensemble models to improve the results of single artificial neural network 
(single ANN) for the estimation of the ice thickness in a number of selected 
Canadian lakes during the early winter ice growth period. ANN ensemble 
models for the estimation of ice thickness proved to be more accurate than single 
ANN models. Kisi et al. (2012) applied three artificial intelligence approaches, 
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namely ANNs, ANFIS and GEP to forecast daily lake-level variations of Lake 
Iznik in Turkey. The results obtained by the GEP approach indicated that it 
performed better than ANFIS and ANNs in predicting lake-level variations. 
Liu and Chen (2012) compared the performance of the ANN technique with 
a physically based three-dimensional circulation model for prediction of water 
temperature at a buoy station in the Yuan-Yang Lake in north-central Taiwan 
at various measured depths. The simulated results revealed that the accuracy 
of the three-dimensional circulation model was better than the ANN model. 
Fallah-Mehdipour et al. (2013) investigated the capability of ANFIS and GP 
as two artificial intelligence tools to predict and simulate groundwater levels 
in three observation wells in the Karaj plain, Iran. Results indicated that GP 
yielded more appropriate results than ANFIS when different combinations of 
input data were employed in both prediction and simulation processes.

The main objective of this paper is to investigate the accuracy of soft 
computing techniques such as gene expression programming, adaptive 
neuro fuzzy inference system and artificial neural network methods for the 
prediction of hourly water temperature in a lake at different measured depths. 
Some statistical parameters for error estimation are used herein as comparing 
criteria for the evaluation of the performance of the studied models.

2. Material and Methods

2.1. Study site and data collection

Yuan-Yang Lake (YYL, 24°34’60.00’N, 121°24’0.00’E, area= 
3.7×104 m2; maximum depth= 4.5 m) in north-central Taiwan is a 
subtropical, humid lake in the Clilan National Forest Preserve (Figure 
1). Figure 2 shows the bathymetry of the YYL (contours in m). Also, 
YYL is a subalpine lake situated in a natural reserve area that has been 
virtually undisturbed by human activity for a long time (Chen and Wu, 
1999). It is surrounded by a cloud belt forest of Taiwan yellow cypress, 
an important timber tree and a relic species. The lake is located 1670 m 
above the mean sea level which is at the subalpine region. The geography 
of the drainage basin allows large quantities of terrestrial runoff from the 
surrounding mountains to enter the YYL (Wu et al., 2001). The mean 
annual air temperature is approximately 13°C (monthly averages range 
from -5 to 15°C), and annual precipitation can exceed 4000 mm. Wind 
speed over the lake, which was measured 1 m above the lake by an 
anemometer, (between 0 to 4.220 m.s-1) is relatively weak. The dominant 
wind directions are from the east and the south west because of the 
V-shaped valley facing east to west. Concerns about the water quality 
in YYL, have been rapidly increasing recently due to the natural and 
anthropogenic pollution. In order to understand the underlying physical 
and chemical processes as well as their associated spatial distribution in 
YYL, Liu et al. (2011) analyzed fourteen physico-chemical water quality 
parameters recorded at the eight sampling stations by using multivariate 
statistical techniques and a geostatistical method. Their results showed 
that four principal components i.e., nitrogen nutrients, meteorological 
factor, turbidity and nitrate factors, account for 65.52% of the total 
variance among the water quality parameters. The spatial distribution of 
principal components further confirmed that nitrogen sources constitute 
an important pollutant contribution in the YYL. Since April 2004, the 
deepest point of YYL (approximately 4.5 m) was instrumented with a 
buoy that measures environmental parameters every 10 min (see Figure 
2) ; these data are accessible at the Global Ecological Lakes Observatory 
Network (GLEON) website. All data from the instrumented buoy and 
associated meteorological variables were downloaded from the GLEON 
publicly accessible database. The YYL buoy measured surface dissolved 
oxygen, wind speed, wind direction, water temperature profiles, and air 
temperature. A weather station approximately 1 km from the lake also 
measured rainfall, humidity, and soil temperature. High-resolution water 
temperature profiles collected from the buoy were used for the training and 
validation of the studied models. Also meteorological variables given in 
Table 1 were used to develop the soft computing techniques.

Figure 1. Location of Yuan-Yang Lake in Taiwan

Figure 2. The bathymetry of the YYL (contours in m)

Table 1. Meteorological variables used to develop the models

Table 2 represents the hourly statistical parameters of the applied variables. 
In this table, the terms Xmean, Xmin, Xmax, Sx, Cv and Csx denote the mean, minimum, 
maximum, standard deviation, coefficient of variation and skewness coefficient, 
respectively. As can be seen clearly, rainfall has the maximum skewness. Solar 
radiation and relative humidity also indicate a skewed distribution. Air pressure, 
soil temperature and air temperature show normal distributions because they 
have significantly low skewness values. Table 3 shows the correlations between 
the meteorological and hourly water temperature parameters. As can be seen 
from the table, the soil temperature has the highest correlations with hourly water 
temperatures in all depths. Air temperature also has higher correlations than the 
other variables. Time variation graphs of the meteorological variables used as 
inputs to the GEP, ANFIS and ANN models are illustrated in Figure 3.
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Table 2. Hourly statistical parameters of the observed data.

Note: the terms Xmean, Xmin, Xmax, Sx, Cv and Csx denote the mean, minimum, 
maximum, standard deviation, coefficient of variation and skewness, respectively.

Table 3. Correlations between meteorological and hourly water.temperature 
parameters.
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Figure 3. Time variation graphs of the meteorological conditions.
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2.2 General overview of genetic programming

In this section, a brief overview of the GP and GEP is given. Detailed 
explanations of GP and GEP are provided by Koza (1992) and Ferreira (2006), 
respectively. GP was first proposed by Koza (1992). It is a generalization 
of genetic algorithms (GAs) (Goldberg, 1989). The fundamental difference 
between GA, GP, and GEP is due to the nature of the individuals. In the GA, 
the individuals are linear strings of fixed length (chromosomes). In the GP, 
the individuals are nonlinear entities of different sizes and shapes (parse 
trees), and in GEP the individuals are encoded as linear strings of fixed length 
(the genome or chromosomes), which are afterwards expressed as nonlinear 
entities of different sizes and shapes (Ferreira, 2001 a,b). GP is a search 
technique that allows the solution of problems by automatically generating 
algorithms and expressions. These expressions are coded or represented as 
a tree structure with its terminals (leaves) and nodes (functions). GP applies 
GAs to a “population” of programs, typically encoded as tree-structures. 
Trial programs are evaluated against a “fitness function” then the best 
solutions are selected for modification and re-evaluation. This modification-
evaluation cycle is repeated until a “correct” program is produced.

There are five major preliminary steps for solving a problem by 
using GEP. These are the determination of (i) the set of terminals, (ii) the 
set of functions, (iii) the fitness measure, (iv) the values of the numerical 
parameters and qualitative variables for controlling the run, and (v) the 
criterion for designating a result and terminating a run (Koza, 1992). A 
GEP flowchart is presented in Figure 4.

Figure 4. GEP flowchart

There are five major steps in preparing to use GEP of which the first 
is to choose the fitness function. The fitness of an individual program i for 
fitness case j is evaluated by Ferreira (2006) using:

                                                               
Where p is the precision and E(i,j) is the error of an individual 

program i for fitness case j. For the absolute error, this is expressed by:
                                                                                                               
          (2)

Where P(i,j) is the value predicted by the individual program i for fitness 
case j (out of n fitness cases) and Tj is the target value for fitness case j. Again 
for the absolute error, the fitness fi of an individual program i is expressed by:

                                                                                                       
                            (3)

Where R is the selection range. The second major step consists 
of choosing the set of terminals T and the set of functions F to create the 
chromosomes. For this study, the function set consists of 7 functions including 
four basic arithmetic operators, i.e., (+, -, ×, /) and some basic mathematical 
functions, i.e., (√, Ln(x), exp) selected among all the available functions in GEP. 
The function selection was based on simplicity and its relevance to the nature 
of the problem thus ensuring a simple and efficient final GEP model. The third 
major step is to choose the chromosomal architecture, i.e., the length of the 
head and the number of genes. Values of the length of the head, h = 10, and 
six genes per chromosome were employed based on the discussion in Ferreira 
(2001b). The fourth major step is to choose the linking function. In this study, 
the sub- programs were linked by addition on the basis of recommendations 
made by Ferreira (2001a) and findings of other studies (e.g. Guven and Aytek, 
2009). Finally, the fifth major step is to choose the set of genetic operators that 
cause variation along with their rates. A combination of all genetic operators, 
i.e., mutation, transposition and recombination, was used for this purpose.

The parameters of the training of the GEP are given in Table 4.

Table 4. Parameters of the GEP model

2.3. General overview of adaptive neuro-fuzzy inference system (ANFIS)

ANFIS (Jang, 1993), using a given input/output data set, constructs 
a fuzzy inference system (FIS) whose membership function parameters 
are tuned (adjusted) using either a back propagation algorithm alone or in 
combination with a least squares type of method. This adjustment allows 
fuzzy systems to learn from the data set. Figure 5 shows the ANFIS structure 
for a fuzzy inference system with two inputs.
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Figure 5. ANFIS structure

Firstly, the FIS type should be selected. In this regard, the Sugeno 
method was selected for the present study (Ozger, 2009; Ullah and 
Choudhury, 2013). To train a FIS, a training data set that contains the 
desired input/output data of the system to be modeled must be loaded. 
Before training, an initial FIS model structure must be specified:

(1) Hybrid algorithm was selected as the optimization method. 
The optimization methods train the membership function parameters to 
emulate the training data.

(2) The number of training Epochs and the training Error Tolerance 
were selected. These values are entered to set the stopping criteria for 
training. The training process stops whenever the maximum epoch number 
is reached or the training error goal is achieved. To validate the trained FIS, 
after loading the test data, the number of membership functions (MFs) and 
the type of input and output membership functions were selected. There 
are only two choices for the output membership function: constant and 
linear. This limitation of output membership function choices is because 
ANFIS only operates on Sugeno-type systems (Jang, 1993). The Built-
in membership function composed of difference between two sigmoidal 
membership functions (dsigmf) and the constant membership function were 
selected as the input and output membership functions, respectively. The 
number of MFs assigned to each input was three. It should be noted that 
there is no basic rule for selecting the optimization method and determining the 
optimal number and type of MFs and they are usually considered by trial and 
error. Nevertheless, it should be taken into consideration that large numbers of 
MFs will increase the calculation time and efforts (Keskin et al., 2004). The 
values assigned to each parameter for the ANFIS model are given in Table 5.

Table 5. Parameters for the ANFIS model

2.4. General overview of artificial neural networks (ANNs)

The Qnet neural network development system which is a complete 
solution for back propagation neural network modeling (Qnet, 2000) was 
used for the present study. Back propagation type neural networks process 
information in interconnecting processing elements termed nodes. These nodes 
are organized into groups termed layers. There are three distinct types of layers 
in a back propagation neural network: the input layer, the hidden layer(s) and 
the output layer. A network consists of one input layer, one or more hidden 
layers and one output layer. Connections exist between the nodes of adjacent 
layers to relay the output signals from one layer to the next. Information enters 

a network through the nodes of the input layer. The input layer nodes are 
unique in that their sole purpose is to distribute the input information to 
the next processing layer (i.e., the first hidden layer). Figure 6 shows the 
structure of the ANNs with one hidden layer including three nodes.

Figure 6. The structure of the artificial neural networks

To design the neural network, the modeler must specify the layer and 
node quantities, transfer functions and network connections. Including the 
input layer, one hidden layer and the output layer, the specified number of 
the layers for the network was three. The number of nodes in the input layer 
will be equal to the number of input data values in the model. According to 
table 1, It was specified seven for the prediction of hourly water temperature 
for the present study. The number of output nodes for the network must 
correspond to the number of outputs in the network. It was one because we 
only had one output. Choosing the number of hidden layers and the number 
of hidden nodes in each layer is not so trivial. The construction of the 
hidden processing structure of the network is arbitrary. Generally, it is best 
to start with simple network designs that use relatively few hidden layers 
and processing nodes. However, in practice, it is usually better to employ 
multiple hidden layers for solving complex problems. A single hidden layer 
including three single nodes was specified herein to avoid an unnecessary 
large and complex model. The sigmoid function is Qnet’s default transfer 
function and it is the most widely used function for back propagation 
neural networks. Another network design consideration concerns how to 
control the network’s connections. While the connection editor gives the 
modeler almost unlimited flexibility in designing a network, the fact is that 
the vast majority of designs work best fully connected. Qnet’s connection 
editor is best suited for highly advanced models that require groups of 
input data to be processed through separate network pathways. The default 
fully connected configuration was used for the present study. The values 
assigned to each parameter for the ANN model are given in Table 6. As 
it is explained above, Qnet has a high and intelligent ability to simulate 
complex networks easily while preparing a code for these networks could 
be excruciating. For practical problems, using an easy method, which is 
usable for different cases, is more acceptable than sophisticated methods. 
In summary, Qnet is professional user friendly software and it has been 
used for simulating different complex problems (Kuo et al. 2004, Yang et 
al. 2009) and that is why it was used in this research.

Table 6. Parameters for the ANN model

The performance of three soft computing techniques, namely GEP, 
ANFIS and ANN to predict the hourly water temperature at YYL at various 
measured depths was compared. Hourly water temperature data from May 
1 to June 11, 2008 were taken as the training data set, while the measured 
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data from June 12 to 30, 2008 served as the validation data set. Furthermore, 
time-series meteorological conditions served as inputs for the studied 
models for data from May 1 to June 30, 2008 (Figure 3).

2.5. Evaluation parameters

Several parameters can be considered for the evaluation of the 
model-predicted values of hourly water temperature in the YYL Lake. In 
this study, root mean squared error (RMSE), mean absolute error (MAE) 
and correlation coefficient (R) were used as the evaluation criteria and 
they can be computed as follows (Liu and Chen, 2012):

     where Tp(i) and To(i) represent the model-predicted and the observed 
water temperature, respectively, and n is the number of observations.

3. Results and discussion

A comprehensive comparison was made to compare the accuracy 
of GEP, ANFIS and ANN methods for the prediction of hourly water 
temperature in different depths in the YYL. RMSE, MAE and R values 
of each model for the prediction of hourly water temperature at different 
depths are shown in Table 7. It is clear from the table that in the case of 
surface water temperature, the GEP model has the lowest RMSE (1.49 
oC), MAE (1.21 oC) and the highest R (0.73) values. The ANN model 
seems to be the second best from the RMSE and MAE viewpoints. 
Also, in the case of 1 meter depth, the ANN model shows better 
accuracy than the GEP and ANFIS models. ANFIS model is ranked as 
the second best. Despite the error (RMSE value) is smaller in ANN than 
GEP, there is an upper bound in scatter plot of ANN (see figure 7.e) that 
imposes a constant value, which is not suitable for predictive purposes. 
Furthermore, at the 2 meter depth below water surface, the GEP model 
has the lowest RMSE (0.35 oC) and MAE (0.24 oC) values. Also, the 
ANN model has a better accuracy than the ANFIS. Finally, at the 3 
meter depth below water surface, the superiority of the GEP model over 
the other models is clearly seen from Table 7. The ANN model seems to 
be the second best from the RMSE, MAE and R viewpoints.

Figure 7 shows the observed (x-axis) and predicted (y-axis) hourly 
water temperature values in different depths and in validation period in 
the form of scatter plots. GEP model seems to be better than the other 
soft computing techniques. In the case of surface water temperature, the 
estimates of GEP model seem to be closer to the exact line than those 
of the ANN and ANFIS models. The ANFIS model’s estimates are also 
less scattered than the ANN. In the case of 1 meter depth, although the 
ANN model has the least scattered estimates, but there is an upper bound 
in scatter plot of ANN that imposes a constant value, which will make 
additional problems in future predictions. So, GEP model having less 
scattered estimations seems to be the best.

Table 7. Performance assessment of different models for predicting hourly 
water temperature at different depths

At the 2 meter depth below water surface, the estimates of the 
GEP model closer to the exact line than those of the other models. The 
ANN and ANFIS models underestimate all the high values (>13.5 oC). 
The ANN model has a better accuracy than the ANFIS because ANFIS 
model significantly underestimates high values (>13 oC). It is clear from 
the figure, at the 3 meter depth below water surface, the estimates of the 
GEP model are closer to the ideal line than those of the other models. The 
ANN model’s estimates seem to be less scattered than the ANFIS model.

It should be noted that actual physical processes of the lakes 
such as vertical mixing, which controls the vertical distribution of 
temperature, have undeniable roles in changing water temperatures 
at different depths. Vertical mixing, in small, seasonally stratified 
lakes such as YYL, might result in partial or complete mixing of the 
water column, depending on the thermal conditions of the lake and the 
strength of meteorological forces driving the mixing process. Due to the 
fact that the purpose of the current research is statistical investigation 
of the effects of metrological parameters in predicting hourly water 
temperatures of YYL, the roles of physical phenomena including 
vertical mixing and phase lag between the sub-daily variations of the 
variables, affecting the heat flux, have been ignored. So, ignoring the 
physical factors might be one of the sources, which increased the error 
parameters of the predictions.

Figure 8 shows the observed and predicted values as time series 
plot in the validation period. From the figure, it can be said that the 
GEP model is generally more successful than the ANN and ANFIS 
model especially for the high water temperature values. One of the 
advantages of GEP in comparison to the other theories is its ability in 
producing analytical formula for determination of output parameters. 
Table 8 summarizes the GEP mathematical equations for the prediction 
of hourly water temperature in different depths. From the table, the AP 
seems to be not effective variable on the water temperature in the case 
of 2- and 3-meter depth below water surface. It can be said that the 
AP has a more effect on WT0 than the WT1. Decreasing AP effect by 
increasing depth is clearly seen from the table.
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Figure 7. Scatter plots of observed (x-axis) and predicted values (y-axis) of hourly water temperature in different depths.
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Figure 8. Time series plots of observed and predicted values of hourly water temperature in different depths.

Table 8. Mathematical expressions of GEP model.
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As a conclusion, output results showed that GEP provided 
reasonable and moderately accurate trends for the prediction of hourly 
water temperature in different depths.

4. Conclusion

In the present study, the performance of some soft computing 
techniques, namely gene expression programming, adaptive neuro fuzzy 
inference system and artificial neural network to predict hourly water 
temperatures at different layers of the Yuan-Yang Lake in north-central 
Taiwan has been compared. A time-series set of data for the hourly water 
temperature at different measured depths from May 1 to June 11, 2008 was 
taken as training dataset, while the data measured from June 12 to June 
30, 2008 were served as a validation dataset for the studied models. The 
relative performances of these models were comprehensively evaluated 
using various statistical indices including RMSE, MAE and R coefficients. 
Results showed that the GEP had the best performances in predicting hourly 
water temperatures at the surface and both 2 and 3 meter depths below water 
surface, whereas, a different trend was seen for the 1 meter depth below 
water surface. In this depth, in spite of smaller error in ANN than GEP, there 
is an upper bound in scatter plot of ANN that imposes a constant value, which 
is not appropriate for predictive purposes. Conclusively, results obtained from 
this study showed that GEP can provide reasonable trends for the prediction of 
hourly water temperature in different depths especially in shallow waters.
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