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ABSTRACT

The present study focuses on some experimental laboratory tests using a newly-constructed
modified direct shear test apparatus. The single-stage and multistage direct shear tests were
performed to determine the shear rate and test scheme of the unsaturated shear test. Shear strength
parameters of unsaturated soil in different conditions are obtained, and the criteria indicate good
agreement with standard theories of unsaturated soil. The nonlinear matric suction failure envelope
is determined. Some shear strength equations are also fitted through the experimental results.
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matric suction

Ensayo de Cizallamiento Directo en Suelos no Saturados

RESUMEN

El presente estudio se basa en varias pruebas de laboratorio montadas en una maquina de experimentos
recientemente construida y modificada para este objetivo. Se realizaron las pruebas monofase y multifase de
cizallamiento para determinar el punto de corte y el modelo de cizallamiento no saturado. De esta manera se
obtuvieron los parametros de cizallamiento de suelos no saturados bajo diferentes condiciones y los resultados
coincidieron con las teorias evaluadas en esta materia. También se determind la curva de corte para la succion
matricial no lineal. Algunas ecuaciones de fuerza de cizallamiento también encajan en los resultados experimentales.

Palabras  clave:  Suelos no  saturados;
cizallamiento directo; succion matricial.
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Introduction

Expansive soil mostly spreads in arid, and semi-arid areas, and it has
been found in more than 40 countries (Fredlund, 1993), including 20 regions
of China. In addition to the unsaturated state most expansive soil always been
in practical application, the study on mechanical properties of expansion soil
in the unsaturated state is of great significance (Lee, 2010; Abbasi et al., 2017).

Unsaturated soil test features time consuming and expensive in
general, mainly due to the low permeability of the unsaturated soil and
high air-entry ceramic disc (even though it is permeable but airproof).
Test samples in triaxial tests are relatively bigger (39.1 mm diameter, 80
mm thickness; 50 mm diameter, 100 mm thickness and 70 mm diameter,
140 mm thicknesses). Thus, determining the matric suction requires much
more time; comparatively time associated with shear strength testing
of unsaturated soils is significantly reduced from the smaller size of test
samples, generally 61.8 mm diameter, 20 mm thickness (Bishop et al.,
1960; Bishop et al., 1963; Ali et al., 2017; Anjum et al., 2017).

Method

Experimental procedures

The newly-constructed modified direct shear test apparatus

The conventional direct shear apparatus has been modified, and
now it can control the pore air pressure ua and pore water pressure uw.

The direct shear box is placed in a sealed pressure chamber; its internal
structure is presented in Figure 1.

verti i load

Figure 1. Schematic diagram of the modified direct shear test apparatus.

As shown in Figure 1, the soil specimen is placed in a high air-entry
ceramic disc with a porous-permeable stone on top. The pore air pressure
ua can be controlled by adjusting the air pressure in the pressure chamber,
and the air pressure can be directly added to the porous-permeable stone
(Yasin et al., 2017; Shazad et al., 2017). The pore water pressure u  can
be controlled by the high air-entry ceramic disc which is placed at the
bottom of the soil specimen to provide continuity of the water phase
in the soil specimen and under the ceramic disc (Basarian and Tahir,
2017). Nevertheless, with the test time passed by, the air in soil pore may
diffuse into the bottom of the high air-entry ceramic disc with the water
flow and generated bubbles. The flushing device is placed at the bottom of the
test apparatus to exhaust the air under ceramic disc which can speed up the
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testing process efficiently. The overall test system is controlled by a computer
recording the shear strength, horizontal displacement, vertical displacement and
water phase inlet and outlet.

Test soil samples

The study is conducted using undisturbed expansive soils from
Yuzhou, middle of Henan, China, and the clay mineral mainly consists of
calcium montmorillonite (Harith and Adnan, 2017). Before testing, soil
sample of 25% moisture is dispensed and placed in the moist chamber for
24 hours to permit uniform distribution of water, and then expansive soil
specimens in different dry density conditions are created by being extruded
from lifting jack and using a cutting ring. The diameter and height of the
example are 61.8 mm and 20 mm, respectively. The sample is placed in the
moist chamber for spare after being pumped and saturated.

Laboratory test
Shear rate determination

Shear rate determination is a crucial problem that directly affects the
time and results associated with the shear strength testing of unsaturated
soils. In the consolidated undrained shear test, it takes some time for pore
water pressure of the soil transferred to the specimen bottom through the
specimen or filter paper (Rahman et al., 2017; Simon et al., 2017). If the
shear rate is too high, pore water pressure will not dissipate completely,
values of pore water pressure measured at the bottom of the sample will
perform lagging, and useful stress parameters cannot be obtained, which
apparently makes numerical value measured low. Thus, the shear rate
should be determined appropriately according to the soil permeability
coefficient (FredLund et al., 1997; Ismail et al., 2017).

Several single-stage direct shear tests were carried out at four shear
rates on modified apparatus as experimental tests by maintaining a constant
the net normal stress, considering the effect of shear rate on test results.
The test detail and results are presented in Table 1 and Figure 2.

Table 1. Tentative experiment scheme for determining test shear rate.
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Figure 2. Results of shear displacement and shear stress in different shear rates.
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As the test results showed, the ultra pore water pressure can dissipate, peak
shear stress can remain stable when the shear rate is controlled by 0.012 mm/
min. Thus, 0.012 mm/min is proposed as the standard shear rate in the entire test.

Single-stage shear test of unsaturated soil

The loading steps of the matric suction for the single-stage tests were 0
kPa, 50 kPa, 100 kPa, 200 kPa; under different matrix suctions, the vertical
stress measures were 100 kPa, 200 kPa, 300 kPa. Table 2 summarizes the
single-stage direct shear test scheme of expansive unsaturated soil.

Table 2. The single-stage direct shear test scheme of expansive unsaturated soil.
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Twenty samples of same dry density were prepared once a time and
placed in the moist chamber after being pumped and saturated to eliminate
the effects on test results from sample preparation. Each time the sample
was transferred to direct shear apparatus and applied predetermined air
pressure until the suction arrived at equilibrium (generally last 12 hours),
then the vertical load was applied (maintaining for 12 hours) with keeping
the air pressure and vertical stress constant and then be sheared. The shear
rate was determined to 0.012 mm/min. Terminated shear displacement
was set to 6 mm and 9 - 10 hours. It was needed to guarantee that the peak
strength was not surpassed.

Results and discussion

(a) Single-stage direct shear test results of unsaturated soil in dry
density of 1.4 g/mm?

The effects of shear displacement and shear stress in different matric
suction and vertical pressure are presented in Figure 3.

Table 3. Single-stage direct shear stress parameters of expansive unsaturated
soil in the dry density of 1.4 g/mm’.

Mairic suction Met verincal CREUNe Peak shear siress Ciohewoa M -
[kPa) |'.<h;m- {kPa) {kPa) Teacrmal friction gl (°)
[[E1] ]
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sy 200 " 1833 Asctsn (0.33) = 1827
300 1
[{01] 1]
100 00 101 31,00 Asctan (0.345) = 19,04
300 154
100 N
00 200 1% 3647 Asctsn (0.39) = 21,31
300 183

It can be summarized from Figure 3 that shear strength of soil
sample increased with the rise in vertical pressure and matric suction.
Under different matric suctions, the peak shear stress was chosen as
failure shear stress if the displacement didn’t arrive 4 mm; if exceeded, it
should be 4 mm. Shear stress under different matric suctions, and vertical
pressure concluded from Figure 3 are presented in Table 3.
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Figure 3. The results of shear displacement and
shear stress (pd = 1.4 g/cm?)

(b) Single-level direct shear test data of unsaturated soil in dry
density of 1.5g/mm?

Figure 4 presents relationships between shear displacement and
shear stress in different matric suctions and net vertical pressure.

Table 4. Single-stage direct shear test stress parameters of expansive
unsaturated soil in a dry density of 1.5 g/mm?
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(kPz) {uPa) (kPg} (Ps)
100 3
o 200 T &.00 Arctan (0.33) = 1827
A0 i
100 4
50 200 % 2000 Arctan (0.335) = 1853
A0 [ k4]
100 &7
100 200 104 1166 Arctan (0.35) = 19.30
k{101 137
L0 T8
20 200 e 4067 Arctan (0195 = 21 56
Rl 160

It can be summarized from Figure 4 that shear stress of soil sample
increased with the rising of vertical stress and matric suction. Table
4 shows the single-stage direct shear test strength parameters under
different matric suctions.

From Table 4 and Figure 4 it can be summarized that shear stress
increase with the rising of net vertical pressure and matric suction.
Cohesion value c increased sharply with the rising of net vertical
pressure, which can mean that the increase of vertical force has a
significant effect on cohesion enhancements; while, the internal friction
angle under vertical pressure changed little.
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Figure 4. Results of shear displacement and shear stress (pd = 1.5 g/cm?)

(c) Single-stage direct shear test results of unsaturated soil in dry density
of 1.6 g/mm®

Figure 5 presents the results of shear displacement and shear stress under
different matric suctions and vertical pressure.
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Figure 5. Results of shear displacement and shear stress (pd = 1.6 g/cm?).

It can be summarized from Figure 5 that soil shear stress increased
with the rising of vertical pressure and matric suction. Under different
matric suctions, the peak shear stress was chosen as failure shear stress
if the displacement didn’t reach 4mm; if exceeded, it should be 4mm.
Shear stress under different matric suctions, and vertical pressure
concluded from Figure 5 are presented in Table 5.

Table 5. Single-stage direct shear test stress parameters of expansive unsaturated
soil in a dry density of 1.6 g/mm’.
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(d) Single-stage direct shear test results of unsaturated soil in dry density

of 1.7 g/mm?

Figure 6 presents results of shear displacement and shear stress in a dry
density of 1.7 g/mm?® under different matrix suctions and vertical pressure.

Figure 6 allows determining that shear stress of soil samples continuously
increased with the rising of matric suction and vertical pressure. Shear strength
parameters under different matric suction are presented in Table 6.
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Figure 6. Results of shear displacement and shear stress (pd=1.7g/cm?).

Table 6. Single-stage direct shear test stress parameters of expansive unsaturated
soil in a dry density of 1.7 g/mm?.
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Results analysis

Shear strength parameters of four dry density specimens under
different matric suction and vertical pressure are listed in Table 7
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Table 7. Direct shear test stress parameters of unsaturated soil.

(a) Effects on shear strength parameters from matric suction
Table 8. Fitting parameters.
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Figure 7. Results of cohesion and matric suction in different dry
density conditions.
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Figure 8. Results of internal friction angle and matric suction in different dry
density conditions.
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Figure 9. Relationship between dry density and fitting parameters
() 2,5 (b): a: (€): a (d): by: (e): by (A: by,

Matric suction conditions can be calculated substituting (3) - (7) to (8) and
(9), cohesion and internal friction angle in any dry density.

€= 5732043 -96.55174% g, +41.791% o +(-0.01123+
081 598% o, ~0.389% p2)* 5+ [=0.00429 + 0.002T7* g, = (3.11375E - 4)* g} ]* §°

. (10)
@ o= exp[ 226455 - 0.04TT5* o, + DUMTS™ o] +
(000386 - 0U00B05* o, +0.00288* o] 1* 5 + (3.0E - 6)*57] (11)

Conclusions

Methods for unsaturated shear testing are more complicated, more time
consuming and more expensive when compared to conventional test methods
for saturated soils. An extensive investigation was carried out to study the
validity of rapid procedures in obtaining shear strength parameters of saturated
and unsaturated soils using the single-stage direct shear test. In this paper, the
tests used a newly-constructed modified direct shear test apparatus that uses
smaller samples and allows independent control of pore air pressure u_and pore
water pressure u . The shear strength was established using single-stage
loading over a range of net normal stresses and matric suction values. The
study was carried out using soil samples from the middle route of South-
to-North Water Transfer Project in YuZhou section. The main conclusions
from the study are presented as below:

(1) The tests to determine appropriate shear displacement rate was
successfully applied before unsaturated direct shear tests. The results of
experimental tests showed that 0.012 mm/min is the most suitable shear
rate for the samples of Yuzhou.

(2) It was shown that efficiency of the direct shear test of unsaturated
soil is higher compared with the conventional analysis. Because of this
time-saving test method, it cost less time to get shear strength parameters
of unsaturated soil under different conditions.

(3) Numerous parameters can be controlled in modified tests, from
which we got shear strength parameters of unsaturated soil under different
conditions; some classical theories about unsaturated soil are also verified.
Also, the nonlinear failure envelope of matric suction was obtained.

(4) The test results confirmed the nonlinear interrelationship among
the cohesion, internal friction and dry density, which can be used in some
practical engineering about unsaturated soil as a kind of empirical formula.

(5) It was shown that the shear rate must be controlled within 0.012
mm/min to get reliable shear strengths parameters for unsaturated soil samples
of Yuzhou. Thus, the test of determining appropriate shear displacement
rate before the shear test is necessary. Thus, the recommendations are given
excessively, it is essential to shear the soil sample beyond the peak shear
stress to the strain softening region, and make sure that the samples are wholly
consolidated at every new effective normal stress-stage.
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