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Peat is an organic material that has been widely used as an efficient and low-cost adsorbent. As many studies tend to 
focus on temperate peats, there is a lack of knowledge about the adsorption mechanism of tropical peats. This paper 
investigates the use of two Brazilian peats (Cravinhos - C and Luis Antônio - LA) from the Mogi-Guaçu river basin 
for the adsorption of lead (Pb), zinc (Zn), and cadmium (Cd), in order to contribute to the use of local and easy access 
materials to remediate contaminated sites. The peats adsorbed a high percentage of cations, especially Pb cations 
(100.0-46.3%), with commercial peat C showing higher adsorption than peat LA. The removal order was Pb2+ > 
Cd2+ ≥ Zn2+ for C and Pb2+ > Zn2+ > Cd2+ for LA. The batch data for both peats and for all metals were better fit by 
the Langmuir isotherm, with adsorption capacities (qm) for Pb, Zn, and Cd of 37.3134, 29.0674 and 21.2890 mmol 
kg-1 in peat C and 21.7391, 14.2550 and 3.6460 mmol kg-1 in LA, respectively, values comparable to those of other 
peats and biosorbents. The studied peats are considered efficient, alternative and low-cost adsorptive materials for 
these metals. The proximity of peatlands to areas with high potential for contamination necessitates the use of local 
materials to reduce remediation costs.

ABSTRACT

Assessment of the use of tropical peats as local alternative materials for the adsorption  
of Pb, Zn and Cd: An equilibrium study

Evaluación del uso de turbas tropicales como materiales alternativos locales para la adsorción  
de Pb, Zn y Cd: Un estudio de equilibrio
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La turba es un material orgánico que se ha utilizado ampliamente como adsorbente eficiente y de bajo costo. Dado 
que muchos estudios tienden a centrarse en las turbas templadas, hay una falta de conocimiento sobre el mecanismo 
de adsorción de las turbas tropicales. Este trabajo investiga el uso de dos turbas brasileñas (Cravinhos - C y Luis 
Antônio - LA) de la cuenca del río Mogi-Guaçu para la adsorción de plomo (Pb), zinc (Zn) y cadmio (Cd), con el fin 
de contribuir al uso de materiales locales y de fácil acceso para remediar sitios contaminados. Las turbas adsorbieron 
un alto porcentaje de cationes, especialmente cationes Pb (100,0-46,3%), mostrando la turba comercial C una mayor 
adsorción que la turba LA. La orden de eliminación fue Pb2+ > Cd2+ ≥ Zn2+ para C y Pb2+ > Zn2+ > Cd2+ para LA. Los 
datos de equilibrio por lotes para turbas y para todos los metales se ajustaron mejor a la isoterma de Langmuir, con 
capacidades de adsorción (qm) para Pb, Zn y Cd de 37,3134, 29,0674 y 21,2890 mmol kg-1 en turba C y 21,7391, 
14,2550 y 3,6460. mmol kg-1 en LA, respectivamente, valores comparables a los de otras turbas y biosorbentes. Las 
turbas estudiadas se consideran materiales adsorbentes eficientes, alternativos y de bajo costo para estos metales. La 
proximidad de las turberas a áreas con alto potencial de contaminación requiere el uso de materiales locales para 
reducir los costos de remediación.
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Introduction

Peat is formed by the decomposition of several plant materials in the 
waterlogged environments of marshes, bogs and swamps (Spedding, 1988; 
Zulkifley et al., 2016) and is present on all continents, from sea level to high 
altitudes (Joosten and Clarke, 2002). Peatlands cover an estimated area of 400 
million hectares. However, peats located in tropical and subtropical regions 
correspond to a small portion of the total: 35.80 million hectares (Andriesse, 
1988; IPS, 2008).

The typical characteristics of a tropical climate (high precipitation, high 
evapotranspiration and high average annual temperatures) directly affect the 
type of peat formed in this region. Climate has both direct (for example, via 
hydrology) and indirect (via the vegetation species; trees, containing woody 
material, are typically present in tropical regions, whereas sedges and Sphagnum 
moss are found in temperate regions) effects on peatlands. The temperature 
also influences the rate of oxidation of the material, and since tropical soils 
frequently have larger sesquioxide contents than soils in temperate regions, 
their iron and aluminum contents may be higher. The tropical climate region is 
defined as that located between the Tropics of Cancer and Capricorn. However, 
the typical characteristics of tropical peat do not necessarily coincide with 
the geographical limits, especially at high altitudes. Thus, tropical peatlands 
can be found on the entire African continent and in most of South America 
(notably Brazil and Uruguay), southern Florida, North Carolina and Southeast 
Asia (which contains the largest extension, approximately 57%, of tropical peat 
deposits) (Andriesse, 1988).

Peat is a material with a high organic matter content, consisting of 
mainly lignin, cellulose and humic substances (which include humic acids, 
fulvic acids and humin). The presence of functional groups (such as carboxylic 
acids, phenolic hydroxides and alcohols) associated with these organic 
compounds imparts a polar character; therefore, peat is a material with high 
potential for adsorbing metals and polar organic molecules (Couillard, 1994).

Due to its characteristics, peat has been studied over the past decades as 
a low-cost, efficient and environmentally friendly adsorbent for potentially 
toxic elements (PTEs) (Babel and Kurniawan, 2003; Bolan et al., 2014; 
Zehra et al., 2014; Leiviskä et al., 2018; Lima et al., 2018). Contamination 
by PTEs contributes to environmental degradation. Several anthropogenic 
sources, such as fertilizers, mines, landfills and industrial sites, may result 
in potential hotspots of PTEs pollution (Orgiazzi et al., 2016; Mohamed 
et al., 2017). The presence of PTEs as contaminants can create significant 
environmental risks over time, as these metals are nondegradable and can 
become mobile and available to biological receptors. These elements may 
bioaccumulate and biomagnify to critical levels in the food chain, generating 
grave effects on human health as well as on flora and fauna (Siegel, 2002; 
Yong and Mulligan, 2003).

Pb, Zn and Cd are PTEs frequently present in areas contaminated 
by industrial and mining activities (Kasemodel et al., 2016; Marques et 
al., 2019). Pb is a toxic element that is nonessential and has the potential 
to accumulate in humans, affecting fundamental biochemical processes; it 
has the ability to imitate Ca and consequently inhibit Ca-protein interactions 
(ATSDR, 2007). Cd is another environmental pollutant. It is toxic to plants 
and organisms at smaller concentrations than Zn, Pb and copper (Cu) are 
(Adriano, 1986). Studies have provided evidence that Cd is a carcinogenic 
element and that acute exposure can lead to death in humans and animals 
(ATSDR, 2012; Santos et al., 2016). Zn is an essential nutrient for plants 
and animals and it is important for the biological functions of living tissues. 
However, when present in high concentrations in the environment, Zn 
becomes toxic to organisms (Kabata-Pendias, 2011). Chronic ingestion of Zn 
is also dangerous and may have negative effects on the gastrointestinal and 
hematological systems (WHO, 2001; ATSDR 2005).

The treatment of PTE-contaminated water and soil includes several 
processes, including adsorption. To date, knowledge is still limited, and a 
complete understanding of the mechanisms involved in adsorption has not 
been achieved. Although several studies have explored adsorption by peat from 
temperate and boreal climate zones (e.g., Coupal and Lalancette, 1976; Gosset 
et al., 1986; Chen et al., 1990; Brown et al., 2000, Qin et al., 2006; Kalmykova 
et al., 2008; Koivula et al., 2009; Bartczak et al., 2018; Egene et al., 2018; 
Hammi et al., 2019), there are little works using tropical peat deposits (Petroni, 
2004; Balasubramanian et al., 2009; Abat et al., 2012; Lima, 2017; Santos et al., 

2018; Marques et al., 2020). Nonetheless, interest in PTE adsorption by tropical 
peat is increasing due to its low cost and high availability. In Brazil alone, there 
are approximately 24,000 km2 of peatlands (WER, 2013), therefore, there are 
many areas still available as a natural resource. According to Franchi et al. 
(2006), the use of peat in countries with tropical climate is recent, increasing 
the interest in these areas.

The Mogi-Guaçu river basin, located in the northeast of the state of São 
Paulo (Brazil), and drainage area of approximately 15,000 km², is an example of 
an area with extensive peatland that can be easily exploited (PERH, 2005). The 
Mogi-Guaçu peat deposits are found in the extensive flood plains associated 
with the meandering river system (Franchi et al., 2006). These peatlands 
originate from predominantly the remnants of grasses or, alternatively, woody 
plants (Franchi, 2004).

Brazil, like many other developing countries, struggles with PTE 
contaminations (Reis et al., 2019; Trevizani et al., 2019; Fernandes et al., 
2020). As regards Mogi-Guaçu river basin, some studies have shown the 
presence of Pb, Cd, and Zn (among others PTE) in high concentrations in 
water, sediments, and living organisms; wherein, their concentrations can 
vary according to the period of floods (Tomazelli and Martinelli, 1999; 
Tomazelli, 2003; Silva, 2005; La Serra, 2015). In addition, the Mogi-Guaçu 
river basin Committee (SIGRH, 2020) establishes that the basin is classified as 
industrial, with emphasis on agribusiness (including sugarcane and orange), 
pulp and paper industry, slaughterhouses, among others. The agriculture 
is considered an important source of PTE for soil and water bodies, which 
can occur through fertilizers, pesticides, and soil amendments (Silva et al., 
2016; Shanshan and Yanqing, 2020); however, the effluents of the pulp and 
paper industry stand out due to the presence of Pb, Cd, Zn and Cu in their 
composition (Frizzo et al., 1996). PERH (2005) confirmed the high demand 
of water for industrial activity in the Mogi-Guaçu river system. These pointed 
factors could increase the risk of contamination of the region by PTE in a 
short or long-term.

Some studies have shown good results regarding the adsorption of metals 
to Brazilian peats from various river basins in the states of Sergipe, Bahia, São 
Paulo, Rio de Janeiro and Santa Catarina (Santos, 1998; Lamim et al., 2001; 
Franchi, 2004; Petroni, 2004; Crescêncio Junior, 2008; Batista et al., 2009; 
Cerqueira et al., 2012; Oliveira et al., 2015; Carvalho, 2015; Marques et al., 
2020). However, studies are necessary to evaluate the adsorption capacity of 
peat from the Mogi-Guaçu river basin, since this is a strategically located area 
(industrial area with high potential for Pb, Zn and Cd contamination) containing 
peatlands with easy access, which would facilitate the use of and reduce the 
acquisition costs associated with this reactive material.

Because of this lack of knowledge, the aim of this study was to 
comparatively assess the Pb, Zn and Cd adsorption capacities of two Brazilian 
peats collected in two cities from the Mogi-Guaçu river basin: Cravinhos 
(already commercialized in the country) and Luis Antônio. This study also 
intends to verify whether the adsorption results are compatible with those of 
other peats (including tropical and temperate ones), as well as those of other 
biosorbents. Studies such as this might encourage the use of locally available 
adsorptive materials and might also provide a promising direction for the 
development of low-cost and ecofriendly technologies for soil and water 
remediation, especially in tropical contaminated areas.

Materials and methods

Field sampling
Peat samples for this study were sourced from the Mogi-Guaçu river 

basin (São Paulo State, Brazil) in two different cities: Cravinhos (peat C) and 
Luis Antônio (peat LA) (Figure 1). 

Peat C is exploited for commercial use since its modified form (as liquid 
humic acid) is widely used as a fertilizer for local crops. The peat C is extracted 
and placed in piles in the field (Figure 2) to subsequently proceed to air drying 
(in covered area) and to modification (Marques et al., 2020). Peat C collection 
area by the company covers a few square kilometers in the municipality. For 
this study, the company provided samples without any treatment or chemical 
modification, as research intention. Peat LA was collected in November of 2017 
at kilometer 40 of highway SP-255 in Luis Antônio city (21° 35’53.2 “S and 
47° 57’03.3” W).
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Figure 1. Locations of the peat collection sites in the Mogi-Guaçu river basin: 
Cravinhos city (peat C) and Luis Antônio city (peat LA). Adapted from Shimada 

et al. (1981).

Peat sample preparation
Peat C is a commercialized peat, and after receiving it from the company, 

the samples were sieved through 2 mm mesh, dried at 50°C for 48 h and then 
homogenized. Peat LA was first dried at room temperature, homogenized in 
a porcelain mortar, sieved through 2 mm mesh, and subsequently dried at 
50°C for 48 h. Both peats were stored at room temperature prior to analysis. 
Some physicochemical properties of both peats were published by Raimondi 
et al. (2019) and are summarized in Table 1. Table 1 also shows additional 
characteristics to those presented by Raimondi, such as specific surface area 
and pore volume, which are important properties for adsorption studies. 
According to Raimondi et al. (2019), both peats have similar characteristics, 
and the results indicate that these materials are favorable for PTE ion 
retention. Most of the characteristics of the two peats were similar, but peat C 
had a higher organic matter content, and specific surface area, besides a lower 
cation exchange capacity (CEC).

Table 1. Physicochemical properties of peat C and peat LA
Parameter Peat C Peat LA Reference

Organic matter 520.43 ± 2.08 
g kg-1

510.06 ± 8.26 
g kg-1

Raimondi et 
al. (2019)

Ash content 47.9 ± 0.2% 48.9 ± 0.8%
Cation exchange 
capacity (CEC) 91.0 cmolc kg-1 116.0 cmolc 

kg-1

pH H2O 5.1 ± 0.1 5.9 ± 0.1
Specific surface 

area 3.45 m2 g-1 2.04 m2 g-1

This study
Pore volume 0.025 cm3 g-1 0.014 cm3 g-1

Metal adsorption experiments

Batch adsorption experiments were carried out to evaluate the adsorption 
capacities of the peats. These procedures were based on and adapted from the 

Figure 2. Peatland areas - Cravinhos (peat C).

methodology used by Roy et al. (1992), Soares and Casagrande (2000) and 
ASTM D4646 (2016). One gram of the tropical peat samples was added to 
a Falcon tube containing 50 mL of a single metal solution. This peat/solution 
ratio (1/50) was used because it is the most favorable condition according to the 
preliminary step presented in Lima (2017) and Raimondi et al. (2019), studies 
that characterized both tropical peats from the Mogi-Guaçu river basin.

In the batch adsorption assays, eight initial concentrations of the three 
ions (Pb2+, Zn2+, and Cd2+), which ranged from 0.10 to 2.36 mmol L-1, were 
used. The most concentrated solutions of each metal (1.05, 2.36 and 1.45 
mmol L-1 for Pb2+, Zn2+ and Cd2+, respectively) were prepared by dissolving the 
corresponding chloride salt (PbCl2, ZnCl2 and CdCl2·H2O) in deionized water. 
The remaining concentrations were obtained by diluting the concentration 
solutions in deionized water. The pH of the initial suspensions was not adjusted, 
and the pH of the solutions ranged from 4.0 to 6.0 depending on the peat and 
the PTE analyzed. The suspensions were agitated on a horizontal shaking table 
(Novatécnica, NT 155) at an agitation rate of approximately 120 rpm. After 
being agitated for 24 h (contact time determined according to ASTM D4646 
(2016), the samples were centrifuged and filtered through Unifil filter paper 
(weight of 80 g m-2 and particle retention of 4-12 μm). The Pb2+, Cd2+ and 
Zn2+ concentrations in the filtrates were determined by an atomic absorption 
spectrometer (PerkinElmer PinAAcle 900F). The instrument standard 
curves had three points at different concentrations (dilution of the respective 
PerkinElmer standards - ISO 9001 Purity Certification - in deionized water), 
and correlation coefficients higher than 0.995 were utilized. The solutions were 
diluted according to the instrument’s quantification limits (0.448 mg L-1 Pb2+, 
0.006 mg L-1 Zn2+, and 0.018 mg L-1 Cd2+), and the maximum value indicated 
by the manufacturer for a linear fit zone of the equipment (10.00 mg L-1 Pb2+, 
0.75 mg L-1 Zn2+, and 1.00 mg L-1 Cd2). Batch equilibrium tests were performed 
in triplicate at room temperature (approximately 25°C).

The efficiency of metal removal by both peats was calculated as a 
percentage, as shown in Equation 1:

metal removal
C C x

C
e

  %( )=
−( )0

0

100
� (1)

The ions adsorbed by a mass of material at equilibrium (qe) in mmol kg-1 

was calculated by Equation 2:

q
C C V

me
e

=
−( )0 �

� (2)

In Equations 1 and 2, C0 is the initial concentration of ions in solution 
(mmol L-1), Ce is the ion concentration after adsorption equilibrium (mmol L-1), 
V is the solution volume (L), and m is the mass of peat (kg).

The Langmuir (types I and II) and Freundlich (linearized forms) 
isotherm models were chosen to investigate the mechanism of target 
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metal adsorption. According to Febrianto et al. (2009), both Langmuir 
and Freundlich isotherms are widely used to describe PTEs adsorption by 
biosorbents (which include peat).

The Freundlich isotherm has been used to interpret adsorption onto 
heterogeneous surfaces or surface sites with different affinities (Bulgariu et al. 
2011, Freitas et al. 2018). The Freundlich isotherm is expressed in Equation 3:

q K Ce f e
n . � (3)

The linearized form of the Freundlich isotherm is expressed in Equation 4:

log log logq K n Ce f e= + � (4)

The Langmuir isotherm is based on monolayer adsorption onto 
homogeneous surfaces and can be used to estimate the maximum adsorption 
capacity of the surface (Langmuir, 1997). This isotherm is expressed in 
Equation 5:

q
q K C
K Ce

m L e

L e
=

+1
� (5)

The linearized forms of the Langmuir isotherm are expressed in Equation 
6 for Langmuir I and Equation 7 for Langmuir II:

C
q K q

C
q

e

e L m

e

m
= +

1 � (6)

1 1 1
q K q C qe L m e m

= + � (7)

In Equations 3 to 7, Kf is the Freundlich equilibrium constant (L kg-1), n 
is the Freundlich exponential coefficient (dimensionless), qm is the adsorption 
capacity or maximum amount of ions or molecules to be absorbed (mmol kg-1), 
and KL is the Langmuir adsorption constant related to the binding energy (L 
mmol-1).

The separation factor (RL) is a dimensionless constant calculated to 
predict the feasibility of the Langmuir isotherm (Foo and Hameed, 2010) and 
is defined in Equation 8:

R
K CL
L

=
+

1
1 0

� (8)

The adsorption process can be described as a function of RL as follows:
RL>1: Unfavorable; RL=1: Linear; 0<RL<1: Favorable; RL=0: Irreversible

Additionally, the change in free energy (∆G) was evaluated from the 
Langmuir constant. Thermodynamic parameters are often used in environmental 
engineering to determine whether the process will occur spontaneously (Ho, 
2006). The ∆G calculation is presented in Equation 9.

∆ =−G RT KLln � (9)

In Equation 9, R is the universal gas constant (8.314 J mol-1 K-1), and T 
is the absolute temperature (K). The temperature in the experiments was 25°C.

Results and discussion

In the batch adsorption experiments, the adsorption percentage of both 
peats was calculated as a function of the initial concentration, and the results 
are shown in Figure 3. The ion adsorption on peat occurred in single-solution 
systems. The removal percentage of the three ions was dependent on the initial 
concentration, and higher removal occurred at lower concentrations, with 
maximum removal reached at the lowest concentration (for example, 100% Pb, 
81.4% Zn and 90.8% Cd for peat C).

Peat C had a higher efficiency than peat LA, and the difference in metal 
ion removal can be seen in Figure 3. Both peats adsorbed more Pb than Cd and 
Zn, showing the preference of peat for this cation. In peat C (Figure 3a), the Pb 

adsorption was above 70% at all concentrations (from 100.0 to 71.9%), while 
in LA (Figure 3b), the Pb removal ranged from 98.6 to 46.3%. For peat C, the 
removal order was Pb2+ > Cd2+ ≥ Zn2+. The removal efficiency was very similar 
for Zn and Cd (81.4 to 27.8% Zn and 90.8 to 34.4% Cd) but was slightly higher 
for Cd. For peat LA, the removal efficiency followed an order of Pb2+ > Zn2+ > 
Cd2+, with Zn removal ranging from 39.6 to 12.5% and Cd removal from 52.6 
to 9.8%. Figure 3b shows that Cd removal achieved higher percentage (52.6%) 
over Zn (39.6%) at the lowest initial concentration, however, its removal was 
generally lower. Therefore, following the order of Pb2+ > Zn2+ > Cd2+. 

According to Qin et al. (2006), adsorption affinity is frequently correlated 
with electronegativity and softness. The preference of peat for Pb2+ can be 
explained, for example, by the theory of hard and soft acids and bases (HSAB) 
(Pearson, 1968). According to this theory, “C class cations”, such as Pb2+, form 
stronger complexes with fulvic and humic acids in peat than do “B class ions” 
(Zn2+ and Cd2+) (Kalmykova et al., 2008). When considering electronegativity, 
the more electronegative the element is, the more strongly it is attached to the 
surface (McKay and Porter, 1997). Pb has the maximum adsorption capacity 
and the greatest electronegativity (2.33) (Table 2). Nonetheless, the order of 
Cd (1.69) and Zn (1.65) held true for only peat C. However, it is important that 
the electronegativity of Cd and Zn are similar, as are the removal efficiency 
results for both metals in the peats. Regarding the order Zn2+ > Cd2+ for peat 
LA, Liu et al. (2009) reported that the greater ionic radius of Cd may interfere 
with its access to the adsorbent pores, even though it has a higher affinity for 
binding sites. In fact, the larger pore volume of peat C (0.025 cm3 g-1) could 
allow greater access to Cd ions than the LA peat pore volume (0.014 cm3 g-1) 
could allow. 

Table 2. Properties of the metal ions

Metal ions Electronegativity1 Pearson’s HSAB2

Pb2+ 2.33 Between hard and soft

Zn2+ 1.65 Soft

Cd2+ 1.69 Soft
1 Alleoni et al. (2009)
2 HSAB = hard and soft acids and bases (Pearson, 1968)

The superior efficiency and higher maximum adsorption capacity of peat 
C in the removal of all three tested ions from solution could be explained by its 
specific surface area (3.45 m2 g-1 for C and 2.04 m2 g-1 for LA – Table 1) as well 
as its higher organic matter content (520.4 g kg-1 for peat C and 510.06 g kg-1 for 
peat LA – Table 1). These characteristics may favor the performance of specific 
adsorption mechanisms. The higher efficiency of C may also be associated with 
the functional groups present on the surface of this peat.

The pH variation during the batch equilibrium test was also verified 
(Figure 4). In Figure 4, the “solution pH” was considered the pH of the metallic 
ion solution (pH at each initial concentration), “initial pH” was the pH after 
contact between the peat and metallic ion solution, and “final pH” was the pH 
after 24 h of the experiment. Batch equilibrium tests were performed without 
buffering the pH because the resulting initial pH of all samples (between 4 and 

Figure 3 Percentage of metal ion removal versus the initial concentration of Pb2+, 
Cd2+ and Zn2+ for two natural Brazilian peats: (a) Peat C, (b) Peat LA
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6 – Figure 4) was within the range considered ideal for the adsorption of metal 
ions onto peat and soils, between approximately 4 and 8 (Couillard, 1994; 
Petroni et al., 2000; Qin et al., 2006; Lim and Lee, 2015). Peats generally have 
a pH of approximately 4.0 due to the humic acids present, and their structures 
degrade at pH values higher than 9.0 and below 3.0, decreasing their chelation 
capacity. In addition, at low pH values, the high concentration of H+ in solution 
competes with metallic ions in ion exchange reactions, and at high pH values, 
the formation of metal oxide precipitates is the main active retention mechanism 
(Couillard, 1994).

As shown in Figure 4, in general, the “initial pH” tended to decrease in 
relation to the “solution pH”. The “initial pH” resulted from an equilibrium 
between the “solution pH” and the pH of the material. This decrease compared 
to the “solution pH” is mainly due to the acidic properties of the carboxylic and 
phenolic functional groups present in peat (Bloom and Mcbride, 1979; Sharma 
et al., 2011). The “initial pH” of peat C was lower than the “initial pH” of LA 
(comparing the same metal – Figure 4). As an example, the “initial pH” of Pb 
for C ranged from 4.4 to 3.9 as the initial concentration increased, while in 
LA, this variation was from 4.7 to 4.5. This slight difference in the “initial pH” 
of the peats may have resulted from the pH of each peat, because the pH of 
pHH2O (measured in water) for C was 5.1 and that for LA was 5.9 (according to 
Raimondi et al., 2019). The difference in “initial pH” may have contributed to 
the higher efficiency of peat C. pH is one of the main parameters that influences 
adsorption processes, and at lower pH values, Pb, Zn and Cd tend to be ionized 
and, therefore, more soluble and available for adsorption. Therefore, the higher 
efficiency of peat C than of LA may be a result of their properties (such as the 
specific surface area, organic matter content and surface functional groups, as 
previously mentioned) and the lower pH values under the initial test conditions.

For both peats and for the three metals analyzed, the “final pH” of the 
samples (pH after 24 h of the experiment) was between 4 and 6. Koivula et al. 
(2009) emphasized that the final pH is governed by both the initial pH and the 
ions present in solution. Their research verified that the final pH decreases as 
the initial concentration increases and suggested that this occurs due to the ion 
exchange principle. According to the ion exchange reactions, with the increase 
in the number of adsorbed ions on peat, a greater number of H+ ions are released 
in solution, decreasing the pH (Lima et al., 2018). A decrease in the final pH as 
a function of the increase in the initial concentration can be observed in Figure 
4 for both peats, except for Cd adsorption by peat LA, where the pH remained 
constant throughout the test as a function of the characteristics of this material, 
with stable ion exchange.

The experimental data were also fitted to isotherm models to understand 
the adsorption behavior of the Pb2+, Cd2+ and Zn2+ ions onto two tropical peats. 

Adsorption isotherms describe the distribution of metal ions between the 
phases of the solid peat and the aqueous solution and are important elements 
for obtaining valuable information about the mechanism and nature of the 
adsorption process (Sposito, 2004; Balan et al., 2008).

The isotherm models fitted to the experimental data were Freundlich and 
Langmuir (linearized form I and II), and Table 3 provides the parameters of 
the adsorption models for the three metal ions and their correlation coefficients 
(R2). The equilibrium adsorption isotherm and fitting of the models to the 
experimental data are shown in Figures 6, 7 and 8 for Pb2+, Zn2+, and Cd2+, 
respectively.

The highest values of the correlation coefficient R2 (above 0.9000) are 
highlighted in gray in Table 3. As seen from the R2 data, the Langmuir I model 
fits the data on Pb and Cd for peat C (values of 0.9940 and 0.9366, respectively) 
and Pb, Zn and Cd for peat LA (0.9369, 0.9772 and 0.9264, respectively), and 
Langmuir II was a good fit of the data on Cd for peat C (0.9607) and Zn for 
peat LA (0.9938). The Freundlich isotherm model also fit the data for most 
metallic ions, except for Zn on peat C (0.6378) and Cd on peat LA (0.6574). 
The correlation coefficient of the Freundlich model was 0.9891 for Pb and 
0.9387 for Cd with peat C and 0.9357 for Pb and 0.9674 for Zn with peat LA.

The obtained R2 results (from Table 3) suggest that the Langmuir 
isotherm model is a better fit for Pb, Cd and Zn adsorption on both tropical 
peats, which is in agreement with other studies of peats, including those from 
tropical and temperate areas (Bencheikh-Lehocine, 1989; McKay and Porter, 
1997; Franchi, 2004; Qin et al., 2006; Batista et al., 2009; Sõukand et al., 2010; 
Carvalho et al., 2017). Brown et al. (2000) found that Langmuir isotherms were 
frequently effective in studies modeling the binding of a metal to peat.

For the case of peat C and Zn, the good fit was not obtained for any of 
the models (Freundlich or Langmuir) (R2 < 0.7000). As can be seen in Figures 
3a and 7, the adsorbed Zn increased rapidly with increasing Zn equilibrium 
concentrations in the isotherm initial stage and then increased slowly, tending 
to reach saturation condition. According to the system of isotherm classification 
(Giles et al., 1974), this behavior suggests that data experimental fit in the “L”-
type curve (i.e., Langmuir). This finding is similar to the other metals studied. 
However, the batch equilibrium results for peat C and Zn revealed two points 
of adsorption capacity associated with the highest initial concentrations that 
appear to be above this saturation plateau. This may indicate a change in the 
adsorbate retention mode evidenced by the completion of the first adsorption 
monolayer and the start of a second adsorption layer. This may have been the 
cause of the lack of adjustment to the adsorption models.

The Langmuir isotherm model is assumed to represent monolayer surface 
coverage without interaction between the adsorbed ions, and the existence of a 

Figure 4. The pH variation variation during the batch adsorption tests of Pb, Cd and Zn ions onto two tropical peats (C – Cravinhos; LA – Luis Antonio)
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value for qm (maximum adsorption) means the presence of a finite supply of 
sorption sites (Langmuir, 1997). Table 3 shows that peat C had higher maximum 
adsorption capacities (37.3134, 29.0697 and 21.2890 mmol kg-1 for Pb, Zn and 
Cd, respectively) than peat LA (21.7391, 14.2550 and 3.6460 mmol kg-1 for 
Pb, Zn and Cd, respectively). These qm values and all parameters obtained from 
the Langmuir model were considered from the best fit of the Langmuir model: 
Langmuir II for the adsorption of Cd onto peat C and Zn onto peat LA and 
Langmuir I for the others. These considered values are highlighted with an 
asterisk in Table 3. Table 4 provides the monolayer adsorption capacities of 
some materials tested as low-cost adsorbents for metallic ions; the peats tested 
in the present work presented lower values than those in other studies but were 
still comparable. From Table 4, it is also verified that even among Brazilian 
tropical peats, the parameter qm varies widely, presenting values ranging from 
752.86 mmol kg-1 (Lattuada et al., 2014) to 150.36 mmol kg-1 (Franchi, 2004) 
for Pb, for example.

Following the Langmuir model, the adsorption capacity increased 
in the order Pb2+ > Zn2+ ≥ Cd2+ for peat C and Pb2+ > Zn2+ > Cd2+ for peat 
LA, showing the higher affinity of the peat functional groups for Pb2+ and 
confirming the preference of peat for this cation, as previously determined. 
These orders are due to the characteristics of the analyzed organic materials. 
A similar order was obtained for the removal efficiency of peat LA (Figure 
3b). For peat C, the qm values were very similar for Zn and Cd but larger for 
Zn. The removal efficiency was also similar for Cd and Zn but was slightly 
higher for Cd. For this sequence, the ion electronegativity may explain the 
selectivity for the metals (Table 2).

Another parameter obtained from the Langmuir isotherm model is KL, 
which is related to the binding energies of the adsorption process. The high 
KL parameters for Pb and Cd suggest stronger interactions with surface groups 
than those for Zn binding. The KL parameters for Pb, Cd and Zn with peat C 
were 89.3333, 63.7354 and 2.9913 L mmol-1, respectively, while for peat LA, 
the values were 20.9091, 11.9781 and 3.0077 L mmol-1, respectively. These 
values were considered from the best fit of the Langmuir model (Langmuir I or 
Langmuir II) and are highlighted with an asterisk in Table 3.

Other parameters, such as the separation parameter (RL) and the change 
in free energy (∆G), were calculated from the best fit of the Langmuir model. 
The separation parameter (RL) values are shown in Figure 5; all values were 
in the range 0-1, suggesting that Pb, Zn and Cd adsorption in both tropical 
peats are favorable. In general, for both peats, the RL values indicated more 
favorable sorption at high initial metal ion concentrations than at a lower 
initial concentration. According to Poots et al. (1978) and Ho et al. (2002), 

values closer to zero indicate more favorable adsorption. On the basis of the 
RL parameter, peat C was very favorable for Pb and Cd adsorption but less 
favorable for Zn adsorption. In contrast, peat LA was more favorable for Pb 
and Zn adsorption than for Cd adsorption, following the order of preference 
obtained from the Langmuir model (Pb2+> Zn2+ > Cd2+). Overall, peat C is more 
favorable than peat LA for the adsorption of metallic ions, except for Zn.

The negative values for the change in free energy (∆G) (Table 3) ranged 
between -28.2588 and -19.8527 kJ mol−1) and indicate that metal ion adsorption 
is spontaneous and feasible at 25°C, while the absolute magnitudes indicate a 
physisorption process, in accordance with the results determined from the pH 
data that suggested an ion exchange process. Adsorption with ∆G between -20 
and 0 kJ mol−1 implies a physical process, while values from -80 to -400 kJ mol−1 

correspond to chemisorption (Fernandes et al., 2010). In comparison, Ho (2006) 
obtained a value of -11.1 kJ mol−1 for the adsorption of Pb, while Balan et al. 
(2008) obtained a value of -26.054 kJ mol−1 for Cd adsorption. Both experiments 
were carried out in Sphagnum moss peat with temperatures close to 30°C, and 
the parameters were obtained from a Langmuir I linearization. These two values 
are close to those obtained for the peats in this study and show that the process 
of metallic ion adsorption in peat is generally achievable and spontaneous and is 
characterized by physical processes.

Figure 5. Plot of RL versus the initial concentrations (Co) of Pb2+, Cd2+ and Zn2+ for 
the two Brazilian peats

Table 3. Isotherm parameters for Pb2+, Cd2+ and Zn2+ adsorption by two natural tropical peats  
(peat from Cravinhos – peat C – and peat from Luis Antonio – peat LA)

Isotherm parameter Peat C Peat LA

Pb2+ Zn2+ Cd2+ Pb2+ Zn2+ Cd2+

Freundlich R2 0.9891 0.6378 0.9387 0.9357 0.9674 0.6574

Kf  (L kg-1) 45.9934 20.9218 29.9778 24.3276 10.1438 3.3527

n 0.1750 0.2575 0.2278 0.2577 0.3993 0.1586

Langmuir I R2 0.9940 0.6837 0.9366 0.9369 0.9772 0.9264

qm (mmol kg-1) 37.3134* 29.0697* 25.9067 21.7391* 15.2905 3.6460*

KL (L mmol-1) 89.3333* 2.9913* 19.3000 20.9091* 2.3956 11.9781*

Langmuir II R2 0.8040 0.6701 0.9607 0.8276 0.9938 0.5037

qm (mmol kg-1) 28.8150 20.3250 21.2890* 15.0140 14.2550* 2.9610

KL (L mmol-1) 1428.7505 20.5000 63.7354* 348.8515 3.0077* 54.9888

∆G (kJ mol-1) - 28.2588 -19.8388 -27.4219 -24.6591 -19.8527 -23.2781

R2 – Correlation coefficients; Kf – Freundlich equilibrium constant (L kg-1); n – Freundlich exponential coefficient (dimensionless); qm – Adsorption capacity (mmol kg-1); 
KL – Langmuir adsorption constant (L mmol-1); ∆G – Change in free energy (kJ mol-1); * represents values considered from the best fit of the Langmuir model; highlighted 
in gray means R2 above 0.9000
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The Freundlich isotherm of sorption is also one of the most commonly 
used mathematical descriptions due to its wide adjustment range for 
experimental concentrations (Mobasherpour et al. 2012). The isotherm theory 
assumes that the adsorption energy decreases logarithmically as the surface 
becomes covered by the adsorbate. The Freundlich isotherm is better adjusted 
to heterogeneous surfaces (Soares and Casagrande, 2000). As occurred for 
the Langmuir model, most metallic ions were well adjusted to the Freundlich 
model, with the exception of Cd on peat LA (R2 of 0.6574) and Zn on peat C 
(0.6378) (Table 3). For the adjustment of Cd on peat C and Pb on peat LA, 
the correlation coefficients of the Freundlich isotherm (0.9387 and 0.9357, 
respectively) were practically the same as those of Langmuir I (0.9366 for Cd 
and 0.9369 for Pb). Lattuada et al. (2014) and Koivula et al. (2009) also found 
Freundlich to be the most suitable isotherm for Pb adsorption to tropical peat 
(from Brazil) and temperate peat (from Finland); Lattuada et al. (2014) and 
Kalmykova et al. (2008) found the same for Zn, and Qin et al. (2006), Balan et 
al. (2008) and Kalmykova et al. (2008) found the same for Cd.

The Freundlich constant n for all ions was less than 1 and ranged 
from 0.1586 to 0.3993 (Table 3), indicating favorable adsorption, strong 
interaction and surface heterogeneity. The closer the value n is to zero, the more 
heterogeneous the surface is (Soares and Casagrande, 2000; Bulgariu et al., 
2011). Zhang et al. (2010) described n values of humic acid from sediment 
ranging from 0.735-0.902 and suggested unevenly distributed sorption 
sites on this material. Kf is considered a Freundlich parameter related to the 
adsorption capacity (Oliveira et al. 2015), and the determined values indicate 
the great ability of peat C and peat LA to retain Pb (Kf of 45.9934 and 24.3276 
L kg- 1, respectively). For Zn, the parameters were 20.9218 L kg-1 for peat C 
and 10.1438 L kg-1 for peat LA, while for Cd, the values were 29.9778 and 
3.3527 L kg-1, respectively. The Kf values from this study are in agreement with 
values obtained for adsorption in soils, such as Zn and Cd adsorption in 11 soils 
(Spodosols and other types); the Kf ranged from 2.1 to 776.3 L kg-1 and 5.4 to 
755.09 L kg-1, respectively (Buchter et al., 1989).

In addition to the adsorption efficiency of the material, the cost is also 
an important parameter and is even considered essential in the selection of any 
treatment process. As this study classifies tropical peat as a low-cost adsorbent, 
price analysis was also conducted.

In the Brazilian market, local peats have been sold on a large scale in 
2019 for an average of U$0.05 per kilo (approximately R$0.22 in national 
currency). On the other hand, in the same market, activated carbon is traded 
at between U$1.20 and U$2.10 per kilo (approximately R$5.00 – R$9.00), 
average prices that are 33 times higher than the price estimated for peats. 
Activated carbon is the most common and efficient adsorbent but has 
disadvantages due to its cost (especially in developing countries) (Silva 
et al., 2020). The financial advantage of peat as an alternative and low-
cost adsorptive material confirms the importance of the study of local and 
efficient materials.

In general, both tested tropical peats are efficient adsorptive materials, 
especially for the removal of Pb. The peat deposits are located near industrial 
regions and are already close to areas with great potential for contamination. 
Both peats are therefore easily accessible materials for the remediation 
of  these contaminated areas and can be used in adsorption technologies. 
These materials can maintain high efficiencies for contaminant removal but 
reduce the associated treatment costs. Thus, these findings provide direction 
for the use of local materials in a tropical area for soil and water treatment. 
According to Crini (2006) and Sharma et al. (2011), an adsorption process 
can be an attractive technology if the low-cost adsorbent is easy to acquire 
and ready for use.

Conclusion

The batch adsorption experiments showed a high percentage of Pb, 
Zn and Cd removal by both tropical peats, with the removal efficiency being 
a  function of the initial concentration of the cation. The removal order was 
Pb2+ > Cd2+ ≥ Zn2+ for peat C and Pb2+ > Zn2+ > Cd2+ for peat LA, showing 
the higher affinity of both peats for Pb. Pb removal by both materials ranged 
from approximately 46.0 to 100.0%. Regarding Zn and Cd, the efficiency 
of removal by peat C remained between 90.8 and 27.8%, while that by peat LA 
was between 52.6 and 9.8%.

Table 4. Comparison of adsorption capacities (qm) for Pb2+, Zn2+ and Cd2+  
of some adsorbents

Metal 
adsorbed

Adsorbent
qm (mmol 

kg-1)
Reference

Pb2+

Peat (Brazil) 752.86 Lattuada et al. (2014)

Peat (Denmark) 730.00 Qin et al. (2006)

Peat (Romania), 
alkaline treated

660.30 Bulgariu et al. (2011)

Peat (Estonia) 571.00 Sõukand et al. (2010)

Peat (Romania) 562.40 Bulgariu et al. (2011)

Peat (China) 428.00 Qin et al. (2006)

Peat (Poland) 397.23 Bartczak et al. (2018)

Peat (Brazil) treated 
with HCl

155.69 Franchi (2004)

Peat (Brazil) 150.36 Franchi (2004)

Sugar cane bagasse 419.67
Abdelhafez and Li 

(2016)

Sugar beet pulp 356.00 Reddad et al. (2002)

Orange peel 134.45
Abdelhafez and Li 

(2016)

Sugar cane bagasse 61.78
Mahmood-ul-Hassan 

et al. (2015)
Peat C (Brazil) 37.31 This study

Peat LA (Brazil) 21.74 This study

Zn2+

Peat (Brazil) treated 
with HCl

247.78 Franchi (2004)

Peat (Brazil) 183.54 Lattuada et al. (2014)

Peat 179.00
McKay and Porter 

(1997)

Peat (Brazil) 102.78 Franchi (2004)

Sugar beet pulp 272.00 Reddad et al. (2002)

Commercial 
activated carbon

160.60 Lattuada et al. (2014)

Rice husk 35.64 Lattuada et al. (2014)

Peat C (Brazil) 29.07 This study

Peat LA (Brazil) 14.25 This study

Cd2+

Peat (Denmark) 447.00 Qin et al. (2006)

Peat (Estonia) 374.00 Sõukand et al. (2010)

Peat (China) 285.00 Qin et al. (2006)

Peat 188.00
McKay and Porter 

(1997)
Peat (Brazil) treated 

with HCl
149.76 Franchi (2004)

Peat (Romania) 92.27 Balan et al. (2008)

Peat (Brazil) 59.36 Franchi (2004)

Sugar beet pulp 217.00 Reddad et al. (2002)

Compost of organic 
waste

14.28
Simantiraki and 

Gidarakos (2015)

Sugar cane bagasse 6.98
Mahmood-ul-Hassan 

et al. (2015)
Peat C (Brazil) 21.29 This study

Peat LA (Brazil) 3.65 This study
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Figure 6. Adsorption isotherms of Pb ions onto Peat C (Cravinhos) and Peat LA (Luis Antonio), using Freundlich, Langmuir I and Langmuir II model fitting linearization

Figure 7. Adsorption isotherms of Zn ions onto peat C (Cravinhos) and peat LA (Luis Antonio) using Freundlich, Langmuir I and Langmuir I model fitting linearization

Peat C was slightly more efficient than peat LA, which may have been 
due to the characteristics of peat C that were more favorable to adsorption than 
those of peat LA, such as the higher surface area, higher organic matter content, 
and lower pH  of peat C, which resulted in a lower pH in the initial test condition 
(“initial pH”). Peat C is already commercialized in Brazil, which would further 
facilitate its use as an adsorptive material.

During the batch assays, the increase in solution pH after adsorption as 
the initial concentration increased suggested an ion exchange mechanism. This 
finding is in accordance with the parameter ∆G, which implied a physisorption 

process. According to the parameters ∆G and RL, adsorption occurred in 
favorable, spontaneous and feasible conditions.

Among the isotherm models used to describe the metal adsorption, 
Langmuir had the best correlation, which included the best fit for both the 
Langmuir I and Langmuir II models. These best fits assume a monolayer 
sorption capacity (qm), decreasing in the order of 37.3134, 29.0697 and 
21.2890 mmol kg-1 for peat C and 21.7391, 14.2550 and 3.6460 mmol kg-1 

for peat LA for Pb, Zn, and Cd, respectively. Such adsorption capacities are 
comparable to the values for other peats (including temperate and tropical 
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peats), as well as for other biosorbents, proving the potential use of the 
tested peats.

In some cases, the Freundlich model also achieved a high adjustment, 
comparable to that of the Langmuir model. The removal of Pb and Cd by peat C 
(R2 of 0.9891 and 0.9387, respectively) and Pb and Zn on peat LA (R2 of 0.9357 
and 0.9674, respectively) indicated favorable adsorption, strong interaction and 
surface heterogeneity.

Regarding costs, the price of peat in the Brazilian market was found to 
be 33 times lower than that of activated carbon (an efficient adsorbent with 
regular use).

In general, both tropical peats are efficient, alternative and low-cost 
adsorption materials, especially with respect to the removal of Pb. Sources of 
both peats are located near large industrial areas in Brazil, and the presented 
findings contribute to the use of local materials to remediate contaminated sites, 
thus lowering costs and maintaining efficiency.
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